Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,366)

Search Parameters:
Keywords = Gas Chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2692 KB  
Article
Chemical Composition and Biological Activities of the Essential Oils from Different Parts of Rosa bracteata J.C.Wendl
by Shiyu Song, Yifang Chen, Hongrui Chen, Qinglei Han and Pengxiang Lai
Molecules 2025, 30(19), 4021; https://doi.org/10.3390/molecules30194021 - 8 Oct 2025
Abstract
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, [...] Read more.
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, leaves, and flowers of Rosa bracteata for the first time. The chemical composition of the essential oils obtained through hydro-distillation was characterized by means of gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID). Thirty-seven, thirty-six, and forty-two constituents were identified from leaf oil (LEO), stem oil (SEO), and flower oil (FEO), representing 96.3%, 95.9%, and 97.4% of the total oil constituents, respectively. The LEO was mainly composed of 1-pentadecene, α-cadinol, and hexadecanoic acid. However, the main identified components of SEO were (E)-nerolidol, phytol, and benzyl benzoate, and the main components of the flower oil were ethyl octanoate, octanoic acid, and α-cadinol. All of the EOs exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria with MIC values ranging from 40.00 to 640.00 μg/mL. In addition, the checkerboard method demonstrates potent synergistic effects of Rosa bracteata EOs when combined with commercial antibiotics (chloramphenicol and streptomycin). In the MTT test, SEO (IC50: 37.91 ± 2.10 to 51.15 ± 6.42 μg/mL) showed stronger cytotoxic activity against four cancer cell lines (MCF-7, A549, HepG2, and HCT-116) during the incubation time of 48 h in comparison to the EOs isolated from the other plant parts. Overall, these findings reveal the chemical composition and significant bioactivity of R. bracteata EOs for the first time, suggesting their potential as promising natural agents for therapeutic applications, especially in combination therapies to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Evaluation of Essential Oils)
Show Figures

Figure 1

16 pages, 1522 KB  
Article
Assessment of Mold-Specific Volatile Organic Compounds and Molds Using Sorbent Tubes and a CDC/NIOSH-Developed Tool in Homes Affected by Hurricane Ian
by Atin Adhikari, Oluwatosin Jegede, Victor Chiedozie Ezeamii, Oluwatoyin Ayo-Farai, Michael Savarese and Jayanta Gupta
Appl. Sci. 2025, 15(19), 10805; https://doi.org/10.3390/app151910805 - 8 Oct 2025
Abstract
Flooding from hurricanes creates damp indoor environments that support mold growth and microbial contamination, posing long-term health risks for occupants. This pilot study evaluated TMVOCs, microbial activity, and environmental conditions in 13 Hurricane Ian-affected residences across multiple flood-affected neighborhoods. Air samples were collected [...] Read more.
Flooding from hurricanes creates damp indoor environments that support mold growth and microbial contamination, posing long-term health risks for occupants. This pilot study evaluated TMVOCs, microbial activity, and environmental conditions in 13 Hurricane Ian-affected residences across multiple flood-affected neighborhoods. Air samples were collected using sorbent tubes and analyzed by gas chromatography–mass spectrometry, while microbial activity on surfaces was assessed via ATP bioluminescence. Visible mold and dampness were documented with the CDC/NIOSH Dampness and Mold Assessment Tool, and environmental measurements included temperature, relative humidity, and surface as well as hidden moisture. Median (IQR) TMVOC concentrations were 12 (8) µg/m3, with 61% of homes exceeding the 10 µg/m3 benchmark set by previous researchers despite minimal visible contamination. Spearman’s correlation revealed significant negative relationships between odor and surface microbial activity (ρ = −0.569, p < 0.05), indicating that organic debris may play a more crucial role in microbial activity within the tested homes, and that odors might originate from hidden microbes instead of surface microbial growth. Our study emphasizes the necessity of utilizing both chemical (TMVOC) and biological (ATP) indicators to evaluate poor air quality caused by molds in flood-affected homes, serving as a supplement to routine visible mold assessments. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

21 pages, 850 KB  
Article
From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay
by Radosław Balwierz, Katarzyna Kasperkiewicz, Martyna Straszak, Daria Siodłak, Katarzyna Pokajewicz, Ibtissem Ben Hammouda, Piotr P. Wieczorek, Anna Kurek-Górecka, Zenon P. Czuba and Tomasz Baj
Molecules 2025, 30(19), 4014; https://doi.org/10.3390/molecules30194014 - 8 Oct 2025
Abstract
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against [...] Read more.
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against previously published data from samples from Poland and Turkey. Volatile compounds were profiled using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The resulting data were interrogated using multivariate chemometric analyses (HCA, PCA), and antibacterial activity was assessed via the disk diffusion method against five bacterial strains. Chemometric analysis revealed a clear demarcation into two primary chemotypes: a European type (Poland, Romania, Turkey) dominated by aromatic compounds such as benzoic acid, and a non-European type (Australia, Uruguay) characterized by a high abundance of terpenes. The Australian propolis exhibited a complex terpene profile rich in α-copaene and pinenes, while the Uruguayan sample was distinguished by an exceptionally high concentration of α-pinene. All active extracts showed selective, concentration-dependent inhibition against Gram-positive Staphylococcus aureus and Streptococcus mutans. The terpene-rich Australian propolis displayed the highest antibacterial potency, particularly against S. mutans. Crucially, Pearson correlation analysis revealed a counter-intuitive relationship: the most abundant terpenes in the non-European samples (e.g., α-pinene, verbenone) were significantly negatively correlated with antibacterial activity (r ≈ −0.99). Conversely, less abundant compounds, including linalool and acetic acid, were identified as strong positive predictors of inhibition (r > 0.90). These findings underscore a complex geography-chemotype-bioactivity relationship, where the overall synergistic effect of a mixed chemical profile, rather than the dominance of a single compound, determines antibacterial potency. The initially proposed markers provide a basis for origin-based standardization and highlight Australian propolis as a promising source of natural antibacterial agents. Full article
(This article belongs to the Special Issue Bee Products: Recent Progress in Health Benefits Studies, 2nd Edition)
Show Figures

Figure 1

12 pages, 2898 KB  
Article
Unraveling the Electrochemical Reaction Mechanism of Bronze-Phase Titanium Dioxide in Sodium-Ion Batteries
by Denis Opra, Sergey Sinebryukhov, Alexander Sokolov, Andrey Gerasimenko, Sviatoslav Sukhoverkhov, Andrey Sidorin, Alexandra Zavidnaya and Sergey Gnedenkov
Reactions 2025, 6(4), 56; https://doi.org/10.3390/reactions6040056 - 7 Oct 2025
Abstract
Searching anode materials is an important task for the development of sodium-ion batteries. In this regard, bronze-phase titanium dioxide, TiO2(B), has been considered as one of the promising materials, owing to its crystal structure with open channels and voids facilitating Na [...] Read more.
Searching anode materials is an important task for the development of sodium-ion batteries. In this regard, bronze-phase titanium dioxide, TiO2(B), has been considered as one of the promising materials, owing to its crystal structure with open channels and voids facilitating Na+ diffusion and storage. However, the electrochemical de-/sodiation mechanism of TiO2(B) has not been clearly comprehended, and further experiments are required. Herein, in situ and ex situ observations by a combination of X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, gas chromatography–mass spectrometry was used to provide additional insights into the electrochemical reaction scenario of bronze-phase TiO2 in Na-ion batteries. The findings reveal that de-/sodiation of TiO2(B) occurs through a reversible intercalation reaction and without the involvement of the conversion reaction (no metallic titanium is formed and no oxygen is released). At the same time, upon the first Na+ uptake process, crystalline TiO2(B) becomes partially amorphous, but is still driven by the Ti4+/Ti3+ redox couple. Importantly, TiO2(B) has pseudocapacitive electrochemical behavior during de-/sodiation based on a quantitative analysis of the cyclic voltammetry data. The results obtained in this study complement existing insights into the sodium storage mechanisms of TiO2(B) and provide useful knowledge for further improving its anode performance for SIBs application. Full article
Show Figures

Figure 1

14 pages, 3191 KB  
Article
The Effects of Hot Air and Microwave Drying on the Structural and Physicochemical Properties of Soluble Dietary Fiber from Sugar Beet Pulp
by Xinmeng Huang, Zunqi Zhang, Yuanpeng Li, Yuting Yang, Ailikemu Mulati, Dilireba Shataer and Jiayi Wang
Foods 2025, 14(19), 3435; https://doi.org/10.3390/foods14193435 - 7 Oct 2025
Abstract
Sugar beet pulp (SBP), a byproduct of the sugar industry, presents significant potential for enhancing economic benefits and promoting sustainable development through its comprehensive utilization. SBP is rich in fiber, with its soluble dietary fiber (SDF) constituting a high-value component. The initial step [...] Read more.
Sugar beet pulp (SBP), a byproduct of the sugar industry, presents significant potential for enhancing economic benefits and promoting sustainable development through its comprehensive utilization. SBP is rich in fiber, with its soluble dietary fiber (SDF) constituting a high-value component. The initial step in the preparation of SDF involves the drying of fresh SBP. This study compares the effects of hot air and microwave drying on the composition, structure, and physicochemical properties of SDF in SBP. Technologies such as gel permeation chromatography, gas chromatography–mass spectrometry, Fourier transform infrared spectroscopy, scanning electron microscopy, and Zeta potential analysis were employed. Results indicated that microwave drying enhanced sugar components in SDF, reduced polysaccharide molecular weight, and formed a uniform and porous microstructure. This resulted in a higher Zeta potential (−24.76 mV) and increased water holding capacity (5.01 g/g). Hot air-dried samples preserved a more intact cell wall network, exhibiting higher swelling capacity (5.18 mL/g). The study demonstrated how both drying methods differentially regulated SDF quality from sugar beet pulp, suggesting that drying process selection should be based on specific application needs. Full article
Show Figures

Figure 1

24 pages, 2338 KB  
Article
Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters
by Małgorzata Rajfur, Paweł Świsłowski, Tymoteusz Turlej, Oznur Isinkaralar, Kaan Isinkaralar, Sara Almasi, Arianna Callegari and Anca-Iulia Stoica
Molecules 2025, 30(19), 4009; https://doi.org/10.3390/molecules30194009 - 7 Oct 2025
Abstract
The present investigation provides a comparative six-month analysis of atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) in the urban region of Opole, Poland. The study employs dual monitoring methods: traditional quartz filter-based active air sampling and active moss biomonitoring using Pleurozium schreberi, [...] Read more.
The present investigation provides a comparative six-month analysis of atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) in the urban region of Opole, Poland. The study employs dual monitoring methods: traditional quartz filter-based active air sampling and active moss biomonitoring using Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum mosses. The experimental campaign took place from August 2021 to February 2022, spanning the autumn and winter seasons. PAH concentrations were measured using gas chromatography–mass spectrometry (GC-MS) following methodical sample extraction protocols. Filters documented transient air changes in PAHs, particularly high-molecular-weight (HMW) components such as benzo[a]pyrene (BaP), which exhibited considerable increases during the colder months due to heightened heating activities and less dispersion. The size of particles deposited on the filters varied from 0.16 to 73.6 μm, with an average size of 0.71 μm. Mosses exhibited cumulative uptake trends, with D. polysetum showing the greatest bioaccumulation efficiency, particularly for low- and medium-molecular-weight PAHs, followed by P. schreberi and S. fallax. Meteorological indices, including sun radiation and air temperature, demonstrated significant negative relationships with PAH buildup in mosses. Diagnostic ratio analysis verified primarily pyrogenic sources (e.g., fossil fuel burning), although petrogenic contributions were detected in D. polysetum, indicating its increased sensitivity to evaporative emissions. The study shows that the integration of moss biomonitoring with traditional filter samples provides a strong, complementary framework for assessing air quality, particularly in fluctuating meteorological settings. The results advocate for the integration of moss-based methodologies into environmental monitoring initiatives and provide significant insights into contaminant dynamics influenced by seasonal and meteorological factors. Full article
Show Figures

Figure 1

24 pages, 3018 KB  
Article
Kinetics of Carboxylic Acids Formation During Polypropylene Thermooxidation in Water Saturated with Pressurized Oxygen
by Vadim V. Zefirov, Polina S. Kazaryan, Andrey I. Stakhanov, Svetlana V. Stakhanova, Mikhail M. Ilyin, Ivan A. Godovikov, Elizaveta V. Shmakova, Andrey G. Terentyev, Alexander V. Dudkin, Elena P. Kharitonova, Marat O. Gallyamov and Alexei R. Khokhlov
Polymers 2025, 17(19), 2696; https://doi.org/10.3390/polym17192696 - 7 Oct 2025
Abstract
In this paper we study in detail the products formed during the process of water-assisted thermal oxidative decomposition (TOD) of polypropylene in the presence of pressurized oxygen. A set of techniques has shown that the main decomposition product in such a process is [...] Read more.
In this paper we study in detail the products formed during the process of water-assisted thermal oxidative decomposition (TOD) of polypropylene in the presence of pressurized oxygen. A set of techniques has shown that the main decomposition product in such a process is acetic acid with small amounts of other carboxylic acids (formic, propionic, succinic). The kinetics of carboxylic acid formation is studied by means of gas chromatography–mass-spectrometry as well as capillary electrophoresis, and the possible mechanisms behind the products formation are discussed. The role of water is considered based on the results obtained from substituting H2O with D2O in TOD. Compositions of residual oligomeric fractions as well as gas products are analyzed. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

0 pages, 787 KB  
Article
Chemical Composition and Insecticidal Activity of Essential Oils from Origanum floribundum and Eucalyptus citriodora Against the Louse Bovicola limbatus
by Nassima Chikhi-Chorfi, Fairouz Haddadj, Baya Djellout, Safia Zenia, Mohamed Hazzit, Faiza Marniche, Amel Milla and Amina Smai
Molecules 2025, 30(19), 4001; https://doi.org/10.3390/molecules30194001 - 6 Oct 2025
Abstract
Background: Essential oils, obtained from plants, are an alternative for controlling ectoparasites, particularly lice, mites and ticks, due to the problems posed by chemical insecticides, such as insect resistance, environmental impacts and concerns related to human and animal health. This study aims to [...] Read more.
Background: Essential oils, obtained from plants, are an alternative for controlling ectoparasites, particularly lice, mites and ticks, due to the problems posed by chemical insecticides, such as insect resistance, environmental impacts and concerns related to human and animal health. This study aims to investigate and compare the insecticidal activity of essential oils from Origanum floribundum and Eucalyptus citriodora against the louse Bovicola limbatus. Methods: The chemical composition of the two oils obtained by hydrodistillation was determined by gas chromatography coupled with mass spectrometry (GC-MS) and a flame ionisation detector (FID-MS). To determine insecticidal activity, the essential oils were tested at different concentrations (0.05–0.8 µL/mL), with mortality recorded after 15 min, 30 min, 1 h, 2 h and 4 h of exposure. Results: A corrected mortality rate of 100% was achieved for concentrations of oregano and eucalyptus essential oils of 0.8 µL/mL and 0.4 µL/mL, respectively. The LC50 values were 0.11 and 0.10 µL/mL for oregano and eucalyptus, respectively, after 2 h of treatment. The LC90 values observed are 0.31 and 0.24 µL/mL for oregano and eucalyptus, respectively. Conclusion: Both essential oils have similar and promising insecticidal potential and could be an alternative to chemical insecticides in a control strategy that is more respectful of human and animal health and the environment. Full article
22 pages, 565 KB  
Article
Degradation of Dioxins and DBF in Urban Soil Microcosms from Lausanne (Switzerland): Functional Performance of Indigenous Bacterial Strains
by Rita Di Martino, Mylène Soudani, Patrik Castiglioni, Camille Rime, Yannick Gillioz, Loïc Sartori, Tatiana Proust, Flavio Neves Dos Santos, Fiorella Lucarini and Davide Staedler
Microorganisms 2025, 13(10), 2306; https://doi.org/10.3390/microorganisms13102306 - 5 Oct 2025
Viewed by 106
Abstract
Urban soils are often affected by long-term deposition of persistent organic pollutants, including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). This study evaluated the biodegradation potential of indigenous bacterial strains isolated from chronically contaminated soils in Lausanne, Switzerland. Using selective enrichment techniques, [...] Read more.
Urban soils are often affected by long-term deposition of persistent organic pollutants, including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). This study evaluated the biodegradation potential of indigenous bacterial strains isolated from chronically contaminated soils in Lausanne, Switzerland. Using selective enrichment techniques, five strains were isolated, with no biosafety concerns for human health and environmental applications. These isolates were screened for their ability to degrade dibenzofuran (DBF) and 2,7-dichlorodibenzo-p-dioxin (2,7-DD) under mineral medium conditions. A simplified two-strain consortium (Acinetobacter bohemicus and Bacillus velezensis) and a broader five-strain co-culture were then applied to real soil microcosms over a 24-week period. This work provides the first experimental evidence that A. bohemicus and B. velezensis can degrade DBF and 2,7-DD under controlled conditions. Dioxin concentrations were monitored at 4, 8, and 24 weeks using a Gas Chromatography Mass Spectrometry (GC-MS). In laboratory conditions, co-cultures showed enhanced degradation compared to individual strains, likely due to metabolic complementarity. In soil, the simplified two-strain consortium performed better at dioxin degradation, especially at earlier time points. Although no statistically significant reductions were observed due to high variability and limited sample size, consistent trends emerged, particularly at the most contaminated site. These findings support the relevance of testing bioremediation strategies under realistic environmental conditions. Full article
(This article belongs to the Special Issue Interaction Between Microorganisms and Environment)
14 pages, 1594 KB  
Article
Improvement of Cottonseed Oil and Fatty Acids Through Introgression Breeding in Upland Cotton
by Savyata Kandel, Francisco Omar Holguin, Claudia Galvan, Yi Zhu, Jane Dever, Carol Kelly, Derek Whitelock and Jinfa Zhang
Plants 2025, 14(19), 3078; https://doi.org/10.3390/plants14193078 - 5 Oct 2025
Viewed by 392
Abstract
Upland cotton is an important fiber and oilseed crop. Cottonseed produces approximately 15% of farm gate value in cotton production. Therefore, improvement of cottonseed oil can significantly increase the economic return of cotton production with the same land use and investment. However, genetic [...] Read more.
Upland cotton is an important fiber and oilseed crop. Cottonseed produces approximately 15% of farm gate value in cotton production. Therefore, improvement of cottonseed oil can significantly increase the economic return of cotton production with the same land use and investment. However, genetic variation in cottonseed oil is highly limited within upland cotton, limiting the genetic gain in cottonseed oil. Introgression breeding can alleviate this bottleneck effect by introducing desirable genes from Pima to Upland cotton. The objective of this study was to evaluate introgression lines (ILs) for better cottonseed oil. A population of 590 ILs, developed from a cross between Acala 1517-99 and Pima, was grown in Las Cruces, NM in 2022 which was used for the fatty acid methyl ester analysis through gas chromatography. There was a high level of variation in cottonseed oil and fatty acids. In the biplot, cottonseed oil was positively correlated with oleic acid and negatively related with palmitic acid. The cluster analysis identified a group of ILs with the highest average oil and oleic acid. As a result, ILs with better oil profiles were identified for further testing and analysis toward the development of high-quality cotton varieties with higher and better oil. Full article
Show Figures

Figure 1

24 pages, 5085 KB  
Article
Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential
by Panagiotis Georgios Kanellopoulos, Eirini Chrysochou and Evangelos Bakeas
Atmosphere 2025, 16(10), 1162; https://doi.org/10.3390/atmos16101162 - 4 Oct 2025
Viewed by 220
Abstract
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed [...] Read more.
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed by gas chromatography–mass spectrometry (GC-MS). The highest BTEX concentrations were detected during winter and autumn, particularly in urban and industrial areas such as in the Attica and Thessaloniki regions, likely due to enhanced emissions from combustion-related activities and reduced atmospheric dispersion. Health risk assessment revealed that hazard quotient (HQ) values for all compounds were within the acceptable limits. However, lifetime cancer risk (LTCR) for benzene exceeded the recommended limits in multiple regions during the colder seasons, indicating notable public health concern. Source apportionment using diagnostic ratios suggested varying seasonal emission sources, with vehicular emissions prevailing in winter and marine or industrial emissions in summer. Xylenes and toluene exhibited the highest ozone formation potential (OFP), underscoring their role in secondary pollutant formation. These findings demonstrate the need for seasonally adaptive air quality strategies, especially in Mediterranean urban and semi-urban environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

10 pages, 235 KB  
Article
Smoking and Alcohol During Pregnancy: Effects on Fetal and Neonatal Health—A Pilot Study
by Martina Derme, Marco Fiore, Maria Grazia Piccioni, Marika Denotti, Valentina D’Ambrosio, Silvia Francati, Ilenia Mappa and Giuseppe Rizzo
J. Clin. Med. 2025, 14(19), 7023; https://doi.org/10.3390/jcm14197023 - 3 Oct 2025
Viewed by 268
Abstract
Background/Objectives: Alcohol and smoking during pregnancy may be associated with several complications, but the underlying mechanism is still unclear. The aim of this study was to evaluate the role of oxidative stress induced by smoking and alcohol during pregnancy and their effects [...] Read more.
Background/Objectives: Alcohol and smoking during pregnancy may be associated with several complications, but the underlying mechanism is still unclear. The aim of this study was to evaluate the role of oxidative stress induced by smoking and alcohol during pregnancy and their effects on fetal and neonatal outcomes. Material and methods: We considered pregnant women at term. Validated questionnaires were used to investigate smoking and alcohol habits. Ultrasound was performed to evaluate fetal weight, amniotic fluid index, and maternal-fetal Doppler velocimetry. At the time of delivery, we collected a tuft of maternal hair, maternal venous blood, and cord blood. In these samplings we determined in phase I nicotine, cotinine, and ethyl glucuronide on the maternal keratin matrix with the gas chromatography-mass spectrometry technique. In phase II, the Free Oxygen Radicals Test (FORT) and Free Oxygen Radical Defense (FORD) test were used to assess circulating reactive oxygen species (ROS). Results: 119 pregnant patients were enrolled (n = 62 for smoking and n = 57 for alcohol). Twenty-six patients (42%) out of 62 were active smokers. Three patients (5%) out of 57 were alcoholic consumers. Mean neonatal weight and mean placental weight were significantly lower for active smokers (p = 0.0001). The neonatal weight was in the 1st–2nd percentile for all alcohol abusers. Considering two subgroups (n = 10 non-smokers and n = 10 smokers) for ROS determination, a statistically significant higher oxidative stress in the blood of smoking patients was evidenced (p < 0.0001). In cord blood the differences were not statistically significant (p = 0.2216). Conclusions: Fetal growth restriction was present in the group of active smokers and in patients with alcohol abuse. Oxidative stress was higher in smoking patients than in non-smokers. However, in cord blood, FORT was negative in all cases, suggesting a protective mechanism in utero. Given the limited sample size, the results obtained are preliminary and require future studies. Full article
(This article belongs to the Special Issue Clinical Updates on Prenatal Diagnosis)
15 pages, 1190 KB  
Article
Tropical Weathering Effects on Neat Gasoline: An Analytical Study of Volatile Organic Profiles
by Khairul Osman, Naadiah Ahmad Mazlani, Gina Francesca Gabriel, Noor Hazfalinda Hamzah, Rogayah Abu Hassan, Dzulkiflee Ismail and Wan Nur Syuhaila Mat Desa
Chemosensors 2025, 13(10), 363; https://doi.org/10.3390/chemosensors13100363 - 3 Oct 2025
Viewed by 182
Abstract
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most [...] Read more.
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most research on gasoline weathering has been conducted in controlled laboratory settings in temperate climates. However, the effects of tropical conditions on the rate of gasoline weathering and the resulting chemical composition of volatiles remain largely unexplored. Understanding how tropical environmental factors alter gasoline weathering is essential for accurate fire debris interpretation in such regions. This study investigates how tropical climates impact gasoline weathering indoors and outdoors. Weathered samples were prepared by volume reduction method, gradually evaporating gasoline from 10% to 95%. Indoor samples were exposed to room temperature, while outdoor samples were left in open space under natural tropical conditions. Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed chromatographic shifts in heavier compounds (C3–C4 alkylbenzenes) compared to lighter ones like toluene as weathering progressed. Correlation between indoor and outdoor samples was high (>0.970) at 10–50% weathering but declined (<0.600) at 90–95%, indicating differing patterns. All target compounds remained detectable across all samples. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

16 pages, 1349 KB  
Article
Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars
by Yucheng Zheng, Yuping Zhang, Yun Zou, Yutao Shi, Jianming Zhang, Huili Deng, Zhanhua Ji, Zhenying Liang and Xinlei Li
Horticulturae 2025, 11(10), 1196; https://doi.org/10.3390/horticulturae11101196 - 3 Oct 2025
Viewed by 241
Abstract
White tea quality is primarily determined by its chemical composition, which varies significantly among cultivars. This study aimed to elucidate the chemical basis underlying quality differentiation in Baimudan white tea produced from three major Fujian tea cultivars: “Zhenghe Dabaicha” (ZHDB), “Fuan Dabaicha” (FADB), [...] Read more.
White tea quality is primarily determined by its chemical composition, which varies significantly among cultivars. This study aimed to elucidate the chemical basis underlying quality differentiation in Baimudan white tea produced from three major Fujian tea cultivars: “Zhenghe Dabaicha” (ZHDB), “Fuan Dabaicha” (FADB), and “Fuding Dahaocha” (FDDH). Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), liquid chromatography–mass spectrometry (LC-MS), and quantitative descriptive analysis (QDA) were employed to characterize volatile compounds, amino acids, and saccharides. Odor Activity Values (OAVs) and Taste Activity Values (TAVs) were calculated to identify key contributors to sensory perception. Results showed that theanine, glutamic acid, asparagine, and serine were the primary contributors to umami taste, especially in ZHDB and FADB. Sweetness differences were largely due to sucrose, serine, and asparagine. OAV analysis further identified 22 critical aroma compounds: methyl salicylate, linalool, and β-ionone predominantly imparted floral notes, while β-ocimene, benzaldehyde, and geraniol enhanced sweet and fruity aromas. In contrast, (Z)-3-hexenol, (Z)-3-hexenal, and (E)-2-hexenal contributed grassy and refreshing characteristics, together defining the unique aroma profiles of each cultivar. This study provides an integrated chemical and sensory framework for understanding white tea quality variation, offering a theoretical basis for targeted flavor modulation. Full article
Show Figures

Figure 1

20 pages, 5025 KB  
Article
Characterization of Bulgarian Rosehip Oil by GC-MS, UV-VIS Spectroscopy, Colorimetry, FTIR Spectroscopy, and 3D Excitation–Emission Fluorescence Spectra
by Krastena Nikolova, Tinko Eftimov, Natalina Panova, Veselin Vladev, Samia Fouzar and Kristian Nikolov
Molecules 2025, 30(19), 3964; https://doi.org/10.3390/molecules30193964 - 2 Oct 2025
Viewed by 181
Abstract
We report the study of seven commercially available rosehip oils (Rosa canina L.) using GC-MS, colorimetry (CIELab), UV-VIS, FTIR, and 3D EEM fluorescence spectroscopy, including using a smartphone spectrometer. GC-MS revealed two groups of oil samples with different chemical constituents: ω-6-dominant [...] Read more.
We report the study of seven commercially available rosehip oils (Rosa canina L.) using GC-MS, colorimetry (CIELab), UV-VIS, FTIR, and 3D EEM fluorescence spectroscopy, including using a smartphone spectrometer. GC-MS revealed two groups of oil samples with different chemical constituents: ω-6-dominant with 45–51% α-linolenic acid (samples S1, S2, and S5–S7) and ω-3-dominant with 47–49% α-linolenic, 7.3–19.1% oleic, 1.9–2.8% palmitic, 1.0–1.8% stearic, and 0.1–0.72% arachidic acid (S3, S4). In S1 PUFA content was found to be ~75% with ω-6/ω-3 ≈ 2:1. Favorable lipid indices of AI 0.0197–0.0302, TI 0.0208–0.0304, and h/H 33.0–50.6 were observed. The highest h/H (50.55) was observed in S5 and the lowest TI (0.0208) in S3. FTIR showed characteristic lines at ~3021, 2929/2853, 1749, and ~1370 cm−1, and PCA yielded 60–80% variation and separated S1 from the rest of the samples, while the clusters grouped S5 and S6. The smartphone spectrometer also reproduced the individual differences in sample volumes ≤ 1 µL under 355–395 nm UV excitation. The non-destructive optical markers reflect the fatty acid profile and allow fast low-cost identification and quality control. An integrated control method including routine optical screening, periodic CG-MS verification, and chemometric models to trace oxidation and counterfeiting is suggested. Full article
(This article belongs to the Special Issue Advances in Food Analytical Methods)
Back to TopTop