Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (571)

Search Parameters:
Keywords = H2O2 flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5032 KB  
Article
Investigation of the Possibility of Obtaining Metallized Titanomagnetite Briquettes Suitable for Utilization in the Steelmaking Process
by Andrey N. Dmitriev, Galina Yu. Vitkina, Elena A. Vyaznikova, Roman V. Alektorov, Vladimir V. Kataev, Larisa A. Marshuk and Yulia E. Burova
Metals 2025, 15(11), 1250; https://doi.org/10.3390/met15111250 (registering DOI) - 16 Nov 2025
Abstract
The present study explores the production of metallized titanomagnetite briquettes, with a view to addressing two key issues. Firstly, it seeks to address the growing shortage of high-quality iron-bearing raw materials. Secondly, it looks at how to meet the increasingly stringent environmental constraints. [...] Read more.
The present study explores the production of metallized titanomagnetite briquettes, with a view to addressing two key issues. Firstly, it seeks to address the growing shortage of high-quality iron-bearing raw materials. Secondly, it looks at how to meet the increasingly stringent environmental constraints. The conventional blast-furnace treatment of titanomagnetite is hindered by the formation of refractory Ti-rich slags. It is hereby proposed that a single-cycle briquetting process in conjunction with a thermal reduction route should be utilized. This approach enables precise regulation of the Fe/flux ratio. Experiments were conducted on a low-grade titanomagnetite concentrate (68.5% Fe) from the Pervouralsk deposit (Russia). Cylindrical briquettes (D 15–20 mm, h 8–10 mm) were subjected to a pressure of 300 MPa during the pressing process, with the utilization of diverse binders comprising rubber cement, CaO, graphite + water, and basic oxygen-furnace (BOF) slag + sodium silicate. Following an oxidative pre-heating process at 1300 °C for two hours, followed by a gas-based reduction process at 1050 °C for three hours, with a CO/N2 ratio of 90/10, the products demonstrated an oxidation rate of 85–95% and a cold compression strength of 16–80 MPa. The highest observed strength (80 MPa) was obtained with a binder comprising CaO·MgO·2SiO2 (diopside/merwinite), which forms a low-viscosity melt, fills 90% of pores and crystallizes as acicular Mg-SFCA-I during cooling. Conversely, the CaO·TiO2 and FeO·TiO2 + Fe3C associations yield brittle structures and a maximum strength of 16 MPa. The optimum briquette (0.55% CaO, D/H = 20/10 mm) exhibited a 95.7% metallization degree, a compressive strength of 48.9 MPa, and dimensional changes within acceptable limits, thus fulfilling the requirements for electric arc furnace feedstock. Further research is required in the form of a full Life Cycle Assessment and pilot-scale testing. However, the results obtained thus far confirm that titanomagnetite briquettes with a binder consisting of CaO, MgO and SiO2 are a promising alternative to pellets for low-carbon steelmaking. Full article
30 pages, 2372 KB  
Review
Factors Affecting CO2, CH4, and N2O Fluxes in Temperate Forest Soils
by Amna Saher, Gaeun Kim, Jieun Ahn, Namyi Chae, Haegeun Chung and Yowhan Son
Forests 2025, 16(11), 1723; https://doi.org/10.3390/f16111723 - 13 Nov 2025
Viewed by 75
Abstract
Greenhouse gas (GHG) fluxes from forests, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), are regulated by complex interactions of abiotic and biotic factors. A better understanding of these interactions involving GHGs can help manage [...] Read more.
Greenhouse gas (GHG) fluxes from forests, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), are regulated by complex interactions of abiotic and biotic factors. A better understanding of these interactions involving GHGs can help manage forests and enhance their sequestration potential. This review examines how soil properties (moisture, temperature, and pH) and tree species-specific traits (litter quality, carbon storage, and microbial regulation) interactively control GHG dynamics in temperate forest soils, moving beyond a single-factor perspective. This literature review confirms that temperate forest soils are CH4 sinks and sources of CO2 and N2O; however, flux direction and magnitude differ across spatial and temporal scales. CH4 fluxes show high spatial variability and are sensitive to biogeochemical conditions. While soil temperature and moisture are well studied, their combined effects with site-specific variables such as substrate availability, soil texture, and canopy structure remain underexplored. Tree litter plays a dual role: chemically influencing microbial physiological/functional traits through priming, thereby affecting CO2 and N2O, and physically limiting CH4 diffusion. These mechanisms collectively determine whether soils act as GHG sources or sinks, and future research should account for how litter priming may override their carbon sink function while integrating site-specific factors to improve GHG predictions and forest management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

32 pages, 11442 KB  
Article
Microbial Inoculation Differentially Affected the Performance of Field-Grown Young Monastrell Grapevines Under Semiarid Conditions, Depending on the Rootstock
by Pascual Romero, Pablo Botía, Elisa I. Morote, Asunción Morte and Josefa M. Navarro
Agronomy 2025, 15(11), 2570; https://doi.org/10.3390/agronomy15112570 - 7 Nov 2025
Viewed by 234
Abstract
A trial was conducted from 2017 to 2023 in a 0.2 ha irrigated vineyard located in a semiarid area of southeastern Spain, using field-grown young vines (0–6 years old) of Vitis vinifera L. cv. Monastrell grafted onto three rootstocks: 140Ru, 161-49C, and 110R. [...] Read more.
A trial was conducted from 2017 to 2023 in a 0.2 ha irrigated vineyard located in a semiarid area of southeastern Spain, using field-grown young vines (0–6 years old) of Vitis vinifera L. cv. Monastrell grafted onto three rootstocks: 140Ru, 161-49C, and 110R. The main objective was to evaluate the effect of early co-inoculation in the field using commercial microbial inoculants containing arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPR), and a mycorrhizal helper bacterium (MHB) on young vine performance. We assessed the impact of microbial inoculation and its interaction with the rootstock on soil environment, plant water relations, leaf gas exchange, plant nutrition, growth, yield, and berry quality. Mycorrhizal colonization rates in root samples showed similar values in inoculated and non-inoculated vines across all of the rootstocks; however, inoculated vines grafted onto 140Ru showed significantly higher concentrations of total glomalin in the soil compared to their non-inoculated counterparts. Microbial inoculation altered the soil environment, leading to increased oxygen diffusion rate (161-49C), organic matter decomposition rate (140Ru), soil CO2 flux (110R, 140Ru), and soil H2O flux (110R) values in the rhizosphere of inoculated vines. Additionally, inoculated vines grafted onto 140Ru and 161-49C exhibited improved vegetative and reproductive development, enhancing productive water use efficiency (WUEyield), whereas inoculated vines on 110R showed poorer soil–plant water relations, growth, yield, and WUEyield compared to non-inoculated vines. Microbial inoculation also led to a significant decrease in must phenolic content, particularly in 140Ru, unlike 110R and 161-49C. These findings indicate that early microbial inoculation had a rootstock-dependent impact on the performance of young grapevines. Full article
(This article belongs to the Special Issue Plant–Microbiota Interactions Under Abiotic Stress)
Show Figures

Figure 1

18 pages, 4457 KB  
Article
Experimental Study on the Enhancement of Pool Boiling Heat Transfer Characteristics of Water-Based Nanofluids with Graphene Nanoplatelets on Nichrome Wire
by Srinivasan Venkatraman and Chandrasekaran Selvam
Thermo 2025, 5(4), 48; https://doi.org/10.3390/thermo5040048 - 3 Nov 2025
Viewed by 263
Abstract
The present study aims to experimentally investigate pool boiling heat transfer characteristics, such as critical heat flux (CHF) and boiling heat transfer coefficient (BHTC), of pure distilled water (d-H2O) and functionalised graphene nanoplatelet (f-GnPs)–d-H2O nanofluids using a nichrome (Ni-Cr) [...] Read more.
The present study aims to experimentally investigate pool boiling heat transfer characteristics, such as critical heat flux (CHF) and boiling heat transfer coefficient (BHTC), of pure distilled water (d-H2O) and functionalised graphene nanoplatelet (f-GnPs)–d-H2O nanofluids using a nichrome (Ni-Cr) test wire as the heating element. The distilled water (dH2O) and GnP (5–10 nm and 15 µm, Cheap Tubes, USA) were chosen as the base fluid and nanomaterial, respectively. The GnP was chemically functionalized and dispersed in dH2O using a probe sonicator. The nanofluids were characterized by measuring the zeta potential distribution and pH to ensure stability on day 1 and day 10 following preparation. The results show that the zeta potential values range from −31.6 mV to −30.6 mV, while the pH values range from 7.076 to 7.021 on day 1 and day 10, respectively. The novelty of the present study lies in the use of f-GnPs with a controlled size and stable nanofluid, confirmed through zeta potential and pH analysis, to determine the heat transfer behaviour of a Ni-Cr test wire under pool boiling conditions. The pool boiling heat transfer characteristics, such as CHF and BHTC, were observed using the fabricated pool boiling heat transfer test facility. Initially, the dH2O and f-GnP–dH2O nanofluids were separately placed in a glass container and heated using a pre-heater to reach their saturation point of 100 °C. The electrical energy was gradually increased until it reached the critical point of the Ni-Cr test wire, i.e., the burnout point, at which it became reddish-yellow hot. The CHF and BHTC were predicted from the experimental outputs of voltage and current. The results showed an enhancement of ~15% in the CHF at 0.1 vol% of f-GnPs. The present study offers a method for enhancing two-phase flow characteristics for heat pipe applications. Full article
Show Figures

Figure 1

20 pages, 3626 KB  
Article
Superwettable Carbon Fiber Membranes Functionalized with Cu-TiO2: High-Performance Oil–Water Separation and Sustainable Reusability
by Yuqiang Chen, Yang Chen, Xiaojun Li, Renzhong Li, Gege Lei, Ziyang Jia, Dongjie Liu and Zongfan Duan
Coatings 2025, 15(11), 1273; https://doi.org/10.3390/coatings15111273 - 3 Nov 2025
Viewed by 548
Abstract
Oily wastewater poses severe ecological and health threats, but conventional separation technologies have limitations like low efficiency or high energy consumption. Herein, two superwettable carbon fiber (CF)-based membranes were fabricated for efficient oil–water separation. Using CF (low cost, excellent mechanical stability) as the [...] Read more.
Oily wastewater poses severe ecological and health threats, but conventional separation technologies have limitations like low efficiency or high energy consumption. Herein, two superwettable carbon fiber (CF)-based membranes were fabricated for efficient oil–water separation. Using CF (low cost, excellent mechanical stability) as the substrate, Cu-TiO2@CF (superhydrophilic/underwater superoleophobic, renewable) was prepared via a deep ultraviolet (DUV)-assisted sol–gel method, and OTMS/Cu-TiO2@CF (superhydrophobic/superoleophilic) was obtained by modifying Cu-TiO2@CF with octadecyltrimethoxysilane (OTMS) via hydrothermal synthesis. Characterization showed Cu-TiO2 coatings uniformly covered CF, with strong substrate bonding. Both membranes exhibited outstanding performance: Cu-TiO2@CF achieved water fluxes of up to 79,839.6 L·m−2·h−1 and >97.3% separation efficiency for four oil–water mixtures; OTMS/Cu-TiO2@CF had a maximum oil flux of 86,593.4 L·m−2·h−1 and >98.1% efficiency. Cu-TiO2@CF regenerated via 10 min UV irradiation (restoring underwater oil contact angle to 153°), while OTMS/Cu-TiO2@CF achieved recovery through the process of UV irradiation followed by OTMS re-modification. Both membranes maintained stable performance over 100 cycles, demonstrating considerable potential for engineering applications. Full article
(This article belongs to the Special Issue Novel Application of Films and Coatings for Wastewater Treatment)
Show Figures

Figure 1

18 pages, 4347 KB  
Article
Rapid Synthesis of a CHA Membrane Using a Small Tubular Reactor
by Rizqan Jamal, Manabu Miyamoto, Yasuhisa Hasegawa, Yasunori Oumi and Shigeyuki Uemiya
Sustain. Chem. 2025, 6(4), 39; https://doi.org/10.3390/suschem6040039 - 31 Oct 2025
Viewed by 280
Abstract
Known for its excellent adsorption and molecular sieving properties, CHA-type zeolite is highly effective in separation technologies, including alcohol dehydration and gas separation. Despite their advantages, especially in terms of energy savings, the prolonged synthesis time of zeolite membranes limits their commercial adoption. [...] Read more.
Known for its excellent adsorption and molecular sieving properties, CHA-type zeolite is highly effective in separation technologies, including alcohol dehydration and gas separation. Despite their advantages, especially in terms of energy savings, the prolonged synthesis time of zeolite membranes limits their commercial adoption. The remarkably rapid synthesis of CHA membranes was demonstrated using an exceptionally small tubular reactor (ID: 4.0 mm, OD: 6.0 mm, L: 135 mm). The formation of membranes could be observed after 10 min of synthesis, and a membrane with a thickness of 0.65 µm, αH2O/2-PrOH of 1662, and a total flux of 2.97 kg/(m2 h), was produced after 40 min of synthesis in an oil bath. Using the synthesis time of 40 min and longer, membranes with good quality and enhanced reproducibility were produced, as the number of defects was reduced. These findings demonstrate the potential for rapid, scalable CHA membrane production, paving the way for broader industrial applications. Full article
Show Figures

Graphical abstract

22 pages, 2592 KB  
Article
UV/TiO2/IO4 Advanced Oxidation of Safranin O: Disentangling Matrix Complexity and Radical-Scavenger Interference
by Meriem Bendjama, Oualid Hamdaoui and Abdulaziz Alghyamah
Catalysts 2025, 15(11), 1022; https://doi.org/10.3390/catal15111022 - 30 Oct 2025
Viewed by 363
Abstract
The effectiveness of periodate-assisted photocatalysis in removing the cationic dye Safranin O (SO) was evaluated using a UV/TiO2/IO4 process operated at room temperature under near-neutral pH conditions. Under base conditions ([IO4] = 0.15 mM, [TiO2 [...] Read more.
The effectiveness of periodate-assisted photocatalysis in removing the cationic dye Safranin O (SO) was evaluated using a UV/TiO2/IO4 process operated at room temperature under near-neutral pH conditions. Under base conditions ([IO4] = 0.15 mM, [TiO2] = 0.4 g/L, [SO] = 10 mg/L), the ternary system achieved a pseudo-first-order rate constant of 0.6212 min−1, outperforming the UV/TiO2 and UV/IO4 processes by approximately 21- and 29-fold, respectively. This yielded a synergy ratio of about 12 compared to the sum of the binary processes. Targeted quenching experiments revealed the operative pathways. Strong inhibition by ascorbic acid and phenol indicates that interfacial holes and OH are key oxidants. Methanol caused a moderate slowdown, consistent with OH and hole scavenging. Benzoquinone and oxalate suppressed removal by intercepting the electron and O2•− pathways, respectively. Dichromate markedly inhibited the process via optical screening and competition for electrons. Azide had little effect, suggesting a minor role for singlet oxygen. Matrix studies showed progressively slower kinetics from deionized water to mineral water to seawater. This was due to halides, sulfate, alkalinity, and TiO2 aggregation driven by ionic strength. Additional tests confirmed that the dominant modulators of performance were humic acid (site fouling and light screening), chloride and sulfate (radical speciation and surface effects), nitrite (near-diffusion radical quenching), and bicarbonate at pH 8.3 (conversion of OH to CO3•−). Nonionic surfactants (Tween 80, Triton X-100) also depressed SO removal through micellar sequestration and competitive adsorption on TiO2. The study confirms the potential of UV/TiO2/IO4 as a tunable AOP capable of delivering rapid and reliable dye degradation under a wide range of water quality conditions. The mechanistic mapping unifies two roles for IO4, an electron acceptor that inhibits recombination and a photochemical precursor of iodine centered and OH radicals and connect these roles to the observed synergy and to the trend across deionized water, mineral water, and seawater. The scavenger outcomes assign the main oxidant flux to holes and OH radicals with a contributory electron or O2•− branch from IO4 reduction. Full article
Show Figures

Figure 1

15 pages, 2918 KB  
Article
Fouling Mitigation of PVDF Membrane Induced by Sodium Dodecyl Sulfate (SDS)-TiO2 Micelles
by Jie Zhang, Shiying Bo, Chunhua Wang, Zicong Jian, Yuehuan Chu, Si Qiu, Hongyan Chen, Qiancheng Xiong, Xiaofang Yang, Zicheng Xiao and Guocong Liu
Membranes 2025, 15(11), 330; https://doi.org/10.3390/membranes15110330 - 30 Oct 2025
Viewed by 510
Abstract
As a favorable hydrophilic additive for antifouling modification of polyvinylidene fluoride (PVDF) membrane, titanium dioxide (TiO2) nanoparticles have been applied for years. Sodium dodecyl sulfonate (SDS), a representative anionic surfactant, has been proven to benefit the dispersion of nano-TiO2 via [...] Read more.
As a favorable hydrophilic additive for antifouling modification of polyvinylidene fluoride (PVDF) membrane, titanium dioxide (TiO2) nanoparticles have been applied for years. Sodium dodecyl sulfonate (SDS), a representative anionic surfactant, has been proven to benefit the dispersion of nano-TiO2 via an electro-spatial stabilizing mechanism. In this study, various proportionally SDS-functionalized TiO2 nanoparticles were adopted to modify PVDF membrane. Dispersion and stability of SDS-functionalized TiO2 nanoparticles in casting solutions were evaluated by multiple light scattering technology. The properties and antifouling performance of PVDF/SDS-TiO2 composite membranes were assessed. The uniformity of surface pores as well as structures on cross-section morphologies was modified. The finger-like structure of PVDF/SDS-TiO2 composite membrane was adequately developed at the SDS/TiO2 mass ratio of 1:1. The improved antifouling performance was corroborated by the increasing free energy of cohesion and adhesion as well as the interaction energy barrier between membrane surfaces and approaching foulants assessed by classic extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory, the low flux decline during bovine serum albumin (BSA) solution filtration process, and the high critical flux (38 L/(m2·h·kPa)) in membrane bioreactor. This study exploits a promising way to modify PVDF membrane applicable to the wastewater treatment field. Full article
(This article belongs to the Special Issue Membrane Fouling Control: Mechanism, Properties, and Applications)
Show Figures

Figure 1

15 pages, 2881 KB  
Article
UiO-66-(COOH)2 Decorated Collagen Fiber Membranes for High-Efficiency Separation of Cationic Surfactant-Stabilized Oil/Water Emulsions: Toward Sustainable and Robust Wastewater Treatment
by Guifang Yang, Qiu Wu, Gao Xiao and Xiaoxia Ye
Polymers 2025, 17(21), 2879; https://doi.org/10.3390/polym17212879 - 29 Oct 2025
Viewed by 318
Abstract
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel [...] Read more.
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel composite membrane (CFM-UiO-66-(COOH)2) fabricated by in situ growth of functionalized UiO-66-(COOH)2 on a mechanically robust collagen fiber membrane (CFM) substrate. The resulting composite leverages the inherent properties of the CFM, along with the controlled generation of charge-neutralization demulsification sites and size-sieving filtration layers from the UiO-66-(COOH)2. This CFM-UiO-66-(COOH)2 exhibited superwetting behavior and achieved efficient separation of cationic surfactant-stabilized oil-in-water micro- and nano-emulsions. Specifically, the CFM-UiO-66-(COOH)2 achieved separation efficiencies exceeding 99.85% for various cationic O/W emulsions, with permeation fluxes ranging from 178.9 to 225.9 L·m−2·h−1. The membrane also demonstrated robust antifouling properties, excellent acid/alkali resistance, high abrasion durability, and good biocompatibility. Importantly, stable performance was maintained over six consecutive separation cycles. These characteristics, combined with the electrostatic interactions between carboxyl groups on the UiO-66-(COOH)2 and cationic contaminants, suggest that CFM-UiO-66-(COOH)2 holds significant potential for practical and sustainable wastewater treatment applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

12 pages, 2322 KB  
Article
Engineering Thermal Cross-Linking in Nanofiltration Membranes for Efficient Nicotine Extraction from Tobacco Extract
by He Du, Xinyuan Wang, Baodan Na, Yajun Ye, Yuemei Qiao, Linda Li, Ye Tian, Xiaoping Ning, Zhigang Wang, Xingquan Zhao and Chen Chen
Membranes 2025, 15(11), 327; https://doi.org/10.3390/membranes15110327 - 28 Oct 2025
Viewed by 538
Abstract
Tobacco extract contains numerous valuable components, among which nicotine possesses significant potential for high-value applications despite its well-known health risks. However, the efficient extraction of nicotine is challenging due to the complex composition of tobacco extracts and the limitations of conventional separation techniques. [...] Read more.
Tobacco extract contains numerous valuable components, among which nicotine possesses significant potential for high-value applications despite its well-known health risks. However, the efficient extraction of nicotine is challenging due to the complex composition of tobacco extracts and the limitations of conventional separation techniques. In this work, an integrally asymmetric nanofiltration membrane was developed via thermal cross-linking for highly efficient nicotine separation. A poly(aryl ether ketone) (PEK)-based ultrafiltration membrane was first prepared via non-solvent induced phase separation (NIPS), followed by controlled thermal cross-linking to tailor the membrane pore size toward the molecular weight of nicotine. To mitigate pore collapse and enhance flux, TiO2 nanoparticles were incorporated in situ through a sol–gel method. The resulting thermally cross-linked membrane exhibited a molecular weight cut-off of ~180 Da, a nicotine rejection rate of 93.2%, and a permeation flux of 143 L/(m2·h)—representing a 259% increase over the control membrane. Moreover, the thermally cross-linked membranes demonstrated exceptional chemical stability in various organic solvents and extreme pH conditions. This work offers a feasible and sustainable strategy for fabric high-performance nanofiltration membranes for the targeted extraction of bioactive molecules from complex plant extracts. Full article
(This article belongs to the Special Issue Applications of Membrane Filtration and Separation)
Show Figures

Figure 1

16 pages, 6095 KB  
Article
Unveiling the GA4-Ferulic Acid Regulatory Axis: Redox-Mediated Suberization Governs Adventitious Rooting Recalcitrance in Pinus massoniana
by Yin Wang and Ruiling Yao
Plants 2025, 14(21), 3246; https://doi.org/10.3390/plants14213246 - 23 Oct 2025
Viewed by 363
Abstract
Pinus massoniana, a critically important afforestation species in subtropical China, shows severe adventitious rooting recalcitrance linked to endogenous gibberellin (GA) dysregulation. Our study reveals a GA4-mediated regulatory network that coordinates hormonal crosstalk, redox homeostasis, and cell wall remodeling. Treatment with [...] Read more.
Pinus massoniana, a critically important afforestation species in subtropical China, shows severe adventitious rooting recalcitrance linked to endogenous gibberellin (GA) dysregulation. Our study reveals a GA4-mediated regulatory network that coordinates hormonal crosstalk, redox homeostasis, and cell wall remodeling. Treatment with the GA biosynthesis inhibitor paclobutrazol (PBZ, 100 mg·L−1) shortened rooting time by 32.5% and increased rooting success by 79.5%. We found that PBZ redirected GA flux by upregulating GA3-oxidase (GA3OX), leading to GA4 accumulation. However, elevated GA4 levels impaired root development by triggering suberization through ferulic acid (FA)-mediated redox imbalance. Application of GA4 (100 mg·L−1) reduced caffeoyl alcohol content by 54.4% but increased FA and caffeic acid levels 2.4–3.9-fold, shifting lignin precursors toward suberin biosynthesis. FA modulated H2O2 flux in a dose-dependent manner: 200 mg·L−1 optimized redox homeostasis (93.7% lower H2O2 influx), whereas 1000 mg·L−1 suppressed mitosis. The combination of PBZ (100 mg·L−1) and FA (200 mg·L−1) synergistically enhanced rooting success by 34.4% and achieved 95.8% field survival after two years (vs. 68.5% in controls), challenging the traditional view that lignification alone limits rooting in woody plants. This work provides the first evidence that the GA4-FA axis controls adventitious root formation in conifers via a Reactive oxygen species (ROS)-dependent switch between suberin and lignin metabolism, offering new strategies to overcome rooting barriers. The PBZ + FA protocol enables scalable clonal propagation of recalcitrant conifers, with potential applications in molecular breeding and forest restoration. Full article
Show Figures

Figure 1

18 pages, 3033 KB  
Article
Self-Sufficient Aflatoxin Decontamination System: MOF-Based Composite Membrane with Peroxidase-Mimic and Controlled H2O2 Generation
by Xiaofei Cheng, Wenzhong Zhu, Xueting Zhu, Jinmin Zhang, Jia Yang, Huali Wang, Xiaoqin Mo, Chi Zhang and Lina Wu
Toxins 2025, 17(10), 516; https://doi.org/10.3390/toxins17100516 - 20 Oct 2025
Viewed by 531
Abstract
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative [...] Read more.
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative polyvinylidene fluoride (PVDF) composite membrane incorporating Fe/Co-based metal-organic frameworks (MOF) (Named Fe/Co-MIL-88B(NH2)) and CaO2 for targeted aflatoxin removal from milk. This system integrates two synergistic mechanisms: (1) hierarchical porous MOF structures enabling superior aflatoxin adsorption capacity and peroxidase-like catalytic activity, and (2) CaO2 acts as a controllable-release H2O2 donor, supplying a steady flux of reactive oxygen species without the addition of exogenous H2O2. Moreover, the PVDF membrane with mechanical stability offers uniform immobilization of active components, which prevents the aggregation of nanozymes. As a result, the integrated membrane achieves high degradation efficiency for AFB1 and AFM1, exceeding 95% within 60 min. By eliminating external oxidant addition and minimizing collateral nutrient damage, the technology demonstrates remarkable operational stability (>10 cycles) and milk quality preservation capability. This breakthrough establishes an efficient and reusable detoxification method, providing new opportunities for mycotoxin mitigation in dairy products through spatiotemporal control of reactive oxygen species. Full article
(This article belongs to the Special Issue Detection, Biosynthesis and Control of Mycotoxins (4th Edition))
Show Figures

Figure 1

29 pages, 6643 KB  
Article
Experimental and Machine Learning-Based Investigation on Forced Convection Heat Transfer Characteristics of Al2O3–Water Nanofluid in a Rotating Hypergravity Condition
by Zufen Luo, Gen Li, Jianxun Xie, Xiaojie Zhang, Yunbo Wang and Xiande Fang
Aerospace 2025, 12(10), 931; https://doi.org/10.3390/aerospace12100931 - 15 Oct 2025
Viewed by 356
Abstract
This study experimentally investigates single-phase forced convection heat transfer and flow characteristics of Al2O3-water nanofluids under rotating hypergravity conditions ranging from 1 g to 5.1 g. While nanofluids offer enhanced thermal properties for advanced cooling applications in aerospace and [...] Read more.
This study experimentally investigates single-phase forced convection heat transfer and flow characteristics of Al2O3-water nanofluids under rotating hypergravity conditions ranging from 1 g to 5.1 g. While nanofluids offer enhanced thermal properties for advanced cooling applications in aerospace and rotating machinery, their performance under hypergravity remains poorly understood. Experiments employed a custom centrifugal test rig with a horizontal test section (D = 2 mm, L = 200 mm) operating at constant heat flux. Alumina nanoparticles (20–30 nm) were dispersed in deionized water at mass fractions of 0.02–0.5 wt%, with stability validated through transmittance measurements over 72 h. Heat transfer coefficients (HTC), Nusselt numbers (Nu), friction factors (f), and pressure drops were measured across Reynolds numbers from 500 to 30,000. Results demonstrate that hypergravity significantly enhances heat transfer, with HTC increasing by up to 40% at 5.1 g compared to 1 g, most pronounced at the transition from 1 g to 1.41 g. This enhancement is attributed to intensified buoyancy-driven secondary flows quantified by increased Grashof numbers and modified particle distribution. Friction factors increased moderately (15–25%) due to Coriolis effects and enhanced viscous dissipation. Optimal performance occurred at 0.5 wt% concentration, effectively balancing thermal enhancement against pumping penalties. Random forest (RF) and eXtreme gradient boosting (XGBoost) achieved R2 = 0.9486 and 0.9625 in predicting HTC, respectively, outperforming traditional correlations (Gnielinski: R2 = 0.9124). These findings provide crucial design guidelines for thermal management systems in hypergravity environments, particularly for aerospace propulsion and centrifugal heat exchangers, where gravitational variations significantly impact cooling performance. Full article
(This article belongs to the Special Issue Advanced Thermal Management in Aerospace Systems)
Show Figures

Figure 1

16 pages, 2875 KB  
Article
Clarification of Copper Sulfide Precipitates by Polymeric Microfiltration Membranes
by Michelle Quilaqueo, Nicolás Barraza, Lorena Barros, Karla Pérez, René Ruby-Figueroa, Elizabeth Troncoso and Humberto Estay
Processes 2025, 13(10), 3292; https://doi.org/10.3390/pr13103292 - 15 Oct 2025
Viewed by 464
Abstract
The recovery of copper from metallurgical effluents is critical for advancing sustainable mining and circular economy practices. This study evaluated a hybrid process combining copper sulfide precipitation with clarification using polymeric polyvinylidene fluoride (PVDF) microfiltration membranes. Laboratory-scale experiments were performed under controlled cyanide [...] Read more.
The recovery of copper from metallurgical effluents is critical for advancing sustainable mining and circular economy practices. This study evaluated a hybrid process combining copper sulfide precipitation with clarification using polymeric polyvinylidene fluoride (PVDF) microfiltration membranes. Laboratory-scale experiments were performed under controlled cyanide conditions (100 mg/L free CN, 1800 mg/L Cu2+), focusing on permeate flux behavior, fouling mechanisms, and cleaning strategies. Optimal performance was achieved at moderate transmembrane pressures (<2.0 bar) and higher flow rates, which provided a balance between productivity and fouling control. Flux decline was attributed to a combination of pore blocking and cake layer formation, confirming the multifactorial nature of fouling dynamics. Cleaning tests revealed that oxidizing solutions (HCl + H2O2) restored up to 96% of the initial permeability, while combined treatments with NaCN achieved complete recovery (>100%), albeit with potential risks of membrane aging under prolonged exposure. A techno-economic assessment comparing polymeric and ceramic membranes revealed similar capital and operational costs, with polymeric membranes offering slight reductions in CAPEX (10%) and OPEX (2.3%). Overall, the findings demonstrate the technical feasibility and economic competitiveness of polymeric membranes for copper sulfide clarification, while emphasizing the need to improve long-term chemical resistance to ensure reliable industrial-scale implementation. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

16 pages, 5578 KB  
Article
Glucose-6-Phosphate Dehydrogenase Modulates Shiraia Hypocrellin A Biosynthesis Through ROS/NO Signaling in Response to Bamboo Polysaccharide Elicitation
by Xinping Li, Qunyan Huang, Yanjun Ma, Liping Zheng and Jianwen Wang
Molecules 2025, 30(20), 4060; https://doi.org/10.3390/molecules30204060 - 11 Oct 2025
Viewed by 395
Abstract
Hypocrellin A (HA), a photodynamic perylenequinone pigment from Shiraia fruiting bodies, functions as an efficient photosensitizer for clinical photodynamic therapy. Glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme of the pentose phosphate pathway (PPP), governs carbon flux into NADPH production. This study elucidates G6PDH’s regulatory [...] Read more.
Hypocrellin A (HA), a photodynamic perylenequinone pigment from Shiraia fruiting bodies, functions as an efficient photosensitizer for clinical photodynamic therapy. Glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme of the pentose phosphate pathway (PPP), governs carbon flux into NADPH production. This study elucidates G6PDH’s regulatory role in HA biosynthesis in Shiraia sp. S9. Bamboo polysaccharide (BPS) elicitation (100 mg/L) significantly enhanced HA production to 428.1 mg/L, 1.6-fold higher than controls after 5 days. We cloned the G6PDH gene and demonstrated that BPS upregulated its expression and activity, concomitant with increased reactive oxygen species (ROS; H2O2 and O2•−) and nitric oxide (NO) generation. ROS production was mediated by NADPH oxidase induction, while NO generation was attributed to elevated nitric oxide synthase and nitrate reductase activities. Critically, the G6PDH inhibitor glucosamine (1.0 mM) suppressed both H2O2 and NO production. These ROS/NO signals upregulated key HA biosynthetic (PKS, Omef) and transport (MFS) genes. Our findings establish G6PDH as a central regulator of BPS-induced HA biosynthesis via ROS/NO signaling, revealing novel metabolic crosstalk between the PPP and fungal perylenequinone biosynthesis. This work presents BPS elicitation as a biotechnological strategy for scalable HA production in Shiraia mycelium cultures. Full article
(This article belongs to the Special Issue Natural Products Biosynthesis: Present and Perspectives)
Show Figures

Graphical abstract

Back to TopTop