Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (876)

Search Parameters:
Keywords = HPLC chemical analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1681 KB  
Article
Natural Deep Eutectic Solvent (NaDES) Extraction, HPLC-DAD Analysis, and Antioxidant Activity of Chilean Ugni molinae Turcz. Fruits
by Javier Antileo-Laurie, Verónica Olate-Olave, Valentina Fehrmann-Riquelme, Camila Anabalón-Alvarez, Luis Cid-Carrillo, Javier Campanini-Salinas, Carlos Fernández-Galleguillos and Luisa Quesada-Romero
Antioxidants 2025, 14(10), 1234; https://doi.org/10.3390/antiox14101234 (registering DOI) - 14 Oct 2025
Abstract
The demand for sustainable methods to extract bioactive compounds from native fruits is increasing. We evaluated the potential of natural deep eutectic solvents (NaDES) combined with ultrasound-assisted extraction (UAE) to recover phenolic compounds from Ugni molinae Turcz. (murta), a Chilean fruit with recognized [...] Read more.
The demand for sustainable methods to extract bioactive compounds from native fruits is increasing. We evaluated the potential of natural deep eutectic solvents (NaDES) combined with ultrasound-assisted extraction (UAE) to recover phenolic compounds from Ugni molinae Turcz. (murta), a Chilean fruit with recognized ethnopharmacological and antioxidant value. Seven choline chloride-based NaDESs (M1-M7) were assessed and compared with conventional methanol: formic acid extraction (M8). The choline chloride: 1,2-propanediol system (1:2, M2) achieved the highest recovery of total phenolics (64.87 mg GAE/g) and flavonoids (35.38 mg QE/g), together with strong antioxidant activity (DPPH IC50: 1.05 µg/mL; ORAC: 40,291 µmol TE/g). When comparing the different NaDES formulations (M1–M8), M8 displayed superior FRAP and ORAC values, although its phenolic and flavonoid yields were lower, reflecting differences in solvent selectivity. HPLC-DAD analysis further revealed that NaDES, particularly M5 (choline chloride: oxalic acid, 1:1), favored the extraction of flavonoid and anthocyanin-type compounds. Multivariate and PCA analyses showed distinct chemical profiles in NaDES extracts, forming two clusters apart from M8. Pearson correlation analysis linked antioxidant capacity with major flavonoids. Overall, NaDES combined with UAE represents an efficient, green strategy for selectively recovering bioactives, supporting applications in foods, nutraceuticals, and health products from Chilean native fruits. Full article
(This article belongs to the Special Issue Antioxidant Research in Chile—2nd Edition)
22 pages, 3371 KB  
Article
Targeted Chemical Profiling and Dereplication of Australian Plants of the Family Haemodoraceae Using a Combined HPLC-MS and HRLC(ESI)-MS Approach
by Liam Thompson, Valerie Chow, Shan Chen, Priyanka Reddy, Robert Brkljača, Colin Rix, Joseph J. Byrne, Aya C. Taki, Robin B. Gasser and Sylvia Urban
Molecules 2025, 30(20), 4044; https://doi.org/10.3390/molecules30204044 (registering DOI) - 10 Oct 2025
Viewed by 122
Abstract
Australian plants of the family Haemodoraceae have been a reliable source of new secondary metabolites, particularly those of the ‘phenylphenalenone’ class, and related chromenes and xanthones. Some of these compounds demonstrate anti-microbial properties against both Gram-negative and Gram-positive bacteria. Chemical profiling of thirty [...] Read more.
Australian plants of the family Haemodoraceae have been a reliable source of new secondary metabolites, particularly those of the ‘phenylphenalenone’ class, and related chromenes and xanthones. Some of these compounds demonstrate anti-microbial properties against both Gram-negative and Gram-positive bacteria. Chemical profiling of thirty individual ethanolic extracts from six separate species of Australian plants belonging to the family Haemodoraceae was conducted using an HPLC-MS approach reinforced by HRLC(ESI)-MS. Six of the extracts were further explored by employing HRLC(ESI)-MS and the compounds present were characterised and confirmed based on a comparison to the original data. All thirty extracts were assessed for biological activity against the parasitic nematode Haemonchus contortus in vitro. The chemical profiling methodology adopted resulted in the identification of thirty-four previously reported compounds, identifying on average 64% of the previously reported secondary metabolites across the species Haemodorum simulans, Haemodorum spicatum, Haemodorum brevisepalum and Macropidia fuliginosa. Furthermore, compounds from the phenylbenzoisoquinolindone class were detected in the bulbs of Haemodorum simulans and Haemodorum coccineum, representing the first report of the structure class in extracts of the genus Haemodorum. Extracts of the H. simulans stems, M. fuliginosa bulbs and H. distichophyllum roots and bulbs exhibited anthelmintic activity in vitro. The chemical profiling HPLC-MS methodology adopted was successful in the rapid identification of most of the previously reported secondary metabolites across the Haemodoracae species, indicating that the analytical approach was robust. This study demonstrates the effectiveness of dereplication via HPLC-MS-based chemical profiling across six Australian Haemodoraceae species, identifying numerous known and putatively novel secondary metabolites. It also reports, for the first time, anthelmintic activity in selected species and marks the first detailed phytochemical investigation of H. distichophyllum since its initial pigment analysis over 50 years ago. Full article
Show Figures

Figure 1

16 pages, 887 KB  
Article
Analysis of the Phenolic Compounds, Volatile Profile, and Evaluation of the Antioxidant Activity of 18 Different Varieties of Honey from the Italian Market
by Doaa Abouelenein, Laura Acquaticci, Eleonora Spinozzi, Agnese Santanatoglia, Gulzhan Khamitova, Ahmed M. Mustafa, Marco Cespi, Silvia Preziuso, Luca Bianchi, Filippo Maggi and Giovanni Caprioli
Plants 2025, 14(19), 3109; https://doi.org/10.3390/plants14193109 - 9 Oct 2025
Viewed by 309
Abstract
The aim of this study was to present a comprehensive analysis of honey varieties from different botanical origins, focusing on their phenolic compounds’ composition, volatile profiles, and antioxidant activity. We simultaneously identified and quantified 37 bioactive compounds, including anthocyanins, flavonols, flavones, flavan-3-ols, proanthocyanidins, [...] Read more.
The aim of this study was to present a comprehensive analysis of honey varieties from different botanical origins, focusing on their phenolic compounds’ composition, volatile profiles, and antioxidant activity. We simultaneously identified and quantified 37 bioactive compounds, including anthocyanins, flavonols, flavones, flavan-3-ols, proanthocyanidins, and phenolic acids, across various honey samples by HPLC-MS/MS. Total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (AOA) were determined using UV-Vis spectrophotometric analysis. The content of phenolic compounds quantified by HPLC-MS/MS ranged from 19.56 to 243.94 mg·kg−1, highlighting a high presence of these antioxidant compounds (mainly phenolic acids), confirmed also by the positive correlation between TPC and DPPH values. Among volatiles compounds, analyzed by HS-SPME-GC-MS, benzene acetaldehyde and furfural resulted specific for two types of honey samples (H-7 and H-9), highlighting the possibility of searching for chemical markers to characterize honeys of different specie/origin. This study enhances our understanding of the bioactive potential of honey from different botanical origins and provides a foundation for future research on its health benefits. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
Show Figures

Figure 1

18 pages, 2097 KB  
Article
Use of Metabolomics Approach in the Discovery of Active Compounds from Macroalgae Laurencia Species Against Schistosomiasis
by Amanda Beatriz Silva Soares, Patricia Aoki Miyasato, Rafaela Paula de Freitas, Adolfo Luis Almeida Maleski, Daniel Carvalho Pimenta, Pio Colepicolo, Erika Mattos Stein, Arthur Ladeira Macedo, Carlos Alexandre Carollo and Eliana Nakano
Pharmaceutics 2025, 17(10), 1294; https://doi.org/10.3390/pharmaceutics17101294 - 2 Oct 2025
Viewed by 466
Abstract
Background: Marine macroalgae has been studied by our research group as alternative sources of bioactive compounds with promising antiparasitic activity, particularly against Schistosoma mansoni. Objectives: This study aimed to employ a metabolomics-based approach to identify anthelminthic active compounds from the macroalgae [...] Read more.
Background: Marine macroalgae has been studied by our research group as alternative sources of bioactive compounds with promising antiparasitic activity, particularly against Schistosoma mansoni. Objectives: This study aimed to employ a metabolomics-based approach to identify anthelminthic active compounds from the macroalgae Laurencia aldingensis Saito and Womersley 1974 and Laurencia dendroidea J. Agardh 1852. Methods: The algae were extracted using a dichloromethane/methanol mixture, followed by liquid–liquid partitioning and sequential chromatographic fractionation using solvents of varying polarities. The resulting fractions were tested for biological activity against adult Schistosoma mansoni worms. Detailed chemical characterization of the extracts was conducted via HPLC-DAD-MS/MS, with subsequent data alignment and statistical analysis (Pearson correlation) to associate specific chemical compounds with the observed bioactivity. Results: Non-polar fractions (hexane and dichloromethane) exhibited significant anthelminthic activity, substantially reducing parasite viability and reproduction. Specific subfractions obtained from the dichloromethane fraction demonstrated notable activity. Metabolomic analysis revealed considerable chemical diversity, emphasizing the presence of bromophenols and halogenated sesquiterpenes, including potentially novel compounds with therapeutic potential against schistosomiasis. Conclusions: The metabolomics approach proved effective in identifying promising bioactive compounds from Laurencia spp. macroalgae with activity against S. mansoni. Full article
(This article belongs to the Special Issue Advances in Antiparasitic Agents)
Show Figures

Graphical abstract

24 pages, 2415 KB  
Article
Antibacterial, Antifungal, and Wound-Healing Activities and Chemical Characterization of Propolis from Apis mellifera in Michoacan, Mexico
by Ana Bertha Hernandez-Hernandez, Mario Rodriguez-Canales, Pilar Dominguez-Verano, Uriel Nava-Solis, Marco Aurelio Rodriguez-Monroy and María Margarita Canales-Martinez
Molecules 2025, 30(19), 3880; https://doi.org/10.3390/molecules30193880 - 25 Sep 2025
Viewed by 403
Abstract
The aim of this study was to evaluate the antibacterial and antifungal activities, wound-healing efficacy, and chemical characteristics of hexanic, chloroformic, and methanolic extracts of propolis from Michoacan, Mexico. Antibacterial activity was determined using Gram-positive and Gram-negative bacteria, antifungal activity was determined using [...] Read more.
The aim of this study was to evaluate the antibacterial and antifungal activities, wound-healing efficacy, and chemical characteristics of hexanic, chloroformic, and methanolic extracts of propolis from Michoacan, Mexico. Antibacterial activity was determined using Gram-positive and Gram-negative bacteria, antifungal activity was determined using yeast and filamentous fungi and wound-healing efficacy was determined using the tensiometric and histological methods in mouse skin. Antioxidant capacity, phenols, and total flavonoids were quantified. Propolis was subjected to high-performance liquid chromatography (HPLC-DAD), high-performance liquid chromatography–mass spectrometry (HPLC-TOF-MS), and gas chromatography–mass spectrometry (GC-MS). The methanolic extract showed the best antibacterial activity, and the most sensitive bacteria was Staphylococcus aureus. For antifungal activity, yeasts and filamentous fungi showed sensitivity to the methanolic extract, with Candida albicans and Trichophyton mentagrophytes being the strains with the highest sensitivity to the extract. Regarding wound-healing efficacy, when using the tensiometric method, the methanolic extract presented the highest efficacy, surpassing the positive control (Recoveron). In the histological evaluation, the methanolic extract provided more resistance to the wound and demonstrated an antioxidant capacity of 12.23 µg/mL, a total phenolic content of 580 mg GAE/g, and a total flavonoid content of 12.35 mg QE/g. In the chemical analysis, flavanols, flavones, and flavanones were identified. Full article
(This article belongs to the Special Issue Bee Products: Recent Progress in Health Benefits Studies, 2nd Edition)
Show Figures

Graphical abstract

37 pages, 2381 KB  
Article
Sequencing Analysis and Radiocarbon Dating of Yarn Fragments from Six Paracas Mantles from Bundle WK12-382
by Jaime Williams, Avi Dragun, Malak Shehab, Imani Peterkin, Ann H. Peters, Kathryn Jakes, John Southon, Collin Sauter, James Moran and Ruth Ann Armitage
Heritage 2025, 8(10), 398; https://doi.org/10.3390/heritage8100398 - 23 Sep 2025
Viewed by 433
Abstract
The Necrópolis de Wari Kayan, at the Paracas site in the coastal desert of south–central Peru, is a large archeologically excavated mortuary complex with fine textile preservation, dated approximately to 2000 BP. This study investigates loose yarns associated with textiles from Wari Kayan [...] Read more.
The Necrópolis de Wari Kayan, at the Paracas site in the coastal desert of south–central Peru, is a large archeologically excavated mortuary complex with fine textile preservation, dated approximately to 2000 BP. This study investigates loose yarns associated with textiles from Wari Kayan tomb 12 (bundle 382), collected by the late Dr. Anne Paul in 1985 at what is now the Museo Nacional de Arqueología Antropología e Historia del Perú (MNAAHP). Sequencing multiple state-of-the-art analyses, including direct analysis in real time mass spectrometry (DART-MS), high performance liquid chromatography (HPLC) with diode array detection, and accelerator mass spectrometry, on the same small sample, seeks to “squeeze out every drop” of information. Six mantles from the outer layer include different sets of color hues and values, representing either different time periods or different producer groups. Plasma oxidation at low temperature (<100 °C) prepared carbon dioxide for AMS radiocarbon analysis. Fibers remaining after oxidation were combusted for light-stable isotope analysis. The sequential analysis results in fiber and dye composition, radiocarbon age, and stable isotope fractionation values may suggest fiber origin, continuing and updating a project started over 40 years ago. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
36 pages, 6718 KB  
Article
Transylvanian Grape Pomaces as Sustainable Sources of Antioxidant Phenolics and Fatty Acids—A Study of White and Red Cultivars
by Veronica Sanda Chedea, Liliana Lucia Tomoiagă, Mariana Ropota, Gabriel Marc, Floricuta Ranga, Maria Doinița Muntean, Alexandra Doina Sîrbu, Ioana Sorina Giurca, Maria Comșa, Ioana Corina Bocsan, Anca Dana Buzoianu, Hesham Kisher and Raluca Maria Pop
Antioxidants 2025, 14(10), 1152; https://doi.org/10.3390/antiox14101152 - 23 Sep 2025
Viewed by 481
Abstract
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP [...] Read more.
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP samples from Transylvanian cultivars. Polyphenolic content was determined using the Folin–Ciocalteu method and high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC–DAD–ESI MS) analysis. Fatty acid composition was analyzed using gas chromatography with flame ionization detection (GC–FID). Antioxidant capacity was assessed using five methods, which included the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2′-azino-bis (3-ethylbenzothialzoline-6-sulfonic acid) (ABTS) radical scavenging, ferric-reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), and reducing power (RP) assays. Additionally, all extracts were analyzed by Fourier transform infrared (FTIR) spectroscopy to identify the presence of functional groups and chemical bonds associated with bioactive compounds. The results showed that Neuburger (NE), Radames (RA), and Regent (RE) cultivars had the highest phenolic concentrations, particularly of catechin, epicatechin, and procyanidin dimers. NE and Feteascǎ Regalǎ (FR) exhibited the greatest radical scavenging and electron transfer activities across multiple antioxidant assays. Rose Blaj (RB) and Astra (AS) displayed the most favorable fatty acid profiles, with high unsaturated-to-saturated fatty acid (UFA/SFA) and hypocholesterolemic-to-hypercholesterolemic fatty acid (H/H) ratios, as well as low atherogenicity (AI) and thrombogenicity (TI) indices, suggesting cardioprotective potential. Additionally, RB and NE cultivars also demonstrated a strong chelation of Cu2+ and Fe2+ ions, enhancing their antioxidant efficacy by mitigating metal-catalyzed oxidative stress. These findings underscore the potential of GP, particularly from NE, RB, RA, and AS cultivars, the last three of which were homologated in Transylvania at SCDVV Blaj, as valuable sources of health-promoting compounds for use in food, nutraceuticals, and other health-related applications. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

19 pages, 20956 KB  
Article
Analysis of Potential Q-Markers for Salt-Processed Alismatis Rhizoma in Diuresis Based on Fingerprinting Technology and Network Analysis
by Lin Yan, Zemin Ou, Yun Wang, Yan Tong, Jinyu Wang and Dewen Liu
Curr. Issues Mol. Biol. 2025, 47(9), 783; https://doi.org/10.3390/cimb47090783 - 21 Sep 2025
Viewed by 356
Abstract
Introduction: The ability of salt-processed Alismatis Rhizoma (SAR) (Alisma plantago-aquqtica L.) to nourish Yin and promote urination is stronger than that of Alismatis Rhizoma (AR). However, there are few studies focused on evaluating the quality of its medicinal materials. Objectives: This study [...] Read more.
Introduction: The ability of salt-processed Alismatis Rhizoma (SAR) (Alisma plantago-aquqtica L.) to nourish Yin and promote urination is stronger than that of Alismatis Rhizoma (AR). However, there are few studies focused on evaluating the quality of its medicinal materials. Objectives: This study aimed to identify potential quality markers (Q-markers) for SAR, thereby providing a more reliable basis for its quality control and clinical application. Methods: Q-markers were identified through fingerprinting and chemical pattern recognition analysis of 15 batches of SAR. The diuretic effects of these markers were then verified by network analysis and molecular docking. Results: HPLC fingerprints of 15 SAR batches were established, with similarity analysis showing values > 0.85 (0.852–0.990). Chemical pattern recognition identified six critical compounds contributing to SAR quality: alisol F, alisol C 23-acetate, alisol A, alisol A 24-acetate, alisol B 23-acetate, and an alisol O isomer (VIP > 1.0). Network analysis revealed 76 overlapping targets between these compounds and diuretic-related diseases, with core targets including non-receptor tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), which were identified through protein–protein interaction (PPI) network analysis, with degrees of 27, 24, and 22, respectively. Key pathways involved were the EGFR tyrosine kinase inhibitor resistance pathway, calcium signaling pathway, tumor necrosis factor signaling pathway, etc. Molecular docking confirmed strong binding interactions between the Q-markers and the hub targets, particularly alisol B 23-acetate with MAPK1 (−60.10 kcal·mol−1) and alisol A 24-acetate with EGFR (−46.14 kcal·mol−1) and SRC (−48.86 kcal·mol−1). The diuretic effects of SAR are likely mediated through anti-inflammatory actions and regulation of water–sodium balance via multi-target and multi-pathway mechanisms. Conclusion: This study provides a robust foundation for quality control and clinical application of SAR, though further in vivo validation is warranted. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

21 pages, 1197 KB  
Article
Sensory and Chemical Characterization of Upcycled Pomace- and Whey-Based Piquette Beverages
by Dean G. Hauser, Rahul Sen, Scott R. Lafontaine, Chris Gerling, Luann M. Preston-Wisley, Timothy A. Demarsh and Samuel D. Alcaine
Foods 2025, 14(18), 3240; https://doi.org/10.3390/foods14183240 - 18 Sep 2025
Viewed by 589
Abstract
Upcycling, or utilizing materials that would otherwise go to waste, enables the creation of novel products that offer sustainability advantages and generate additional value. This study evaluates the feasibility of producing alcoholic beverages using yogurt acid whey (YAW) and grape pomace (GP), byproducts [...] Read more.
Upcycling, or utilizing materials that would otherwise go to waste, enables the creation of novel products that offer sustainability advantages and generate additional value. This study evaluates the feasibility of producing alcoholic beverages using yogurt acid whey (YAW) and grape pomace (GP), byproducts of the dairy and wine industries, respectively, and compares them to commercial grape pomace beverages (piquettes) in terms of sensory attributes and chemical composition. Two YAW-GP piquettes were produced, and five commercial piquettes were obtained. Sugars and organic acids were quantified using HPLC-RID, and semi-quantitative volatile composition was determined using HS-SPME-GC-MS/MS. Descriptive analysis was conducted using a trained panel of 11 individuals. The YAW products had higher ratings for dairy, salty, acidic, and umami attributes, and lower ratings for bitterness, sweetness, red fruit, dried fruit, and overall fruity characteristics. YAW beverages were higher in titratable acidity (TA), lactose, lactic acid, citric acid, galactose, hexanoic acid, 3-methylpentanol, 1-octanol, and 1-octen-3-ol, and lower in ethanol and linalool. The commercial products were differentiated based on ethanol content, red fruit, dried fruit, fruitiness, chemical, and barnyard aromas. These results can be used to understand the breadth of chemical and organoleptic signatures of this new beverage category, which can be leveraged by stakeholders interested in entering the market. Full article
(This article belongs to the Special Issue Application of Fermentation Biotechnology in Food Science)
Show Figures

Figure 1

22 pages, 1091 KB  
Article
Phytochemical Composition and Antioxidant Activity of a Viscum album Mother Tincture
by Paola Imbimbo, Carolina Fontanarosa, Angela Amoresano, Daria Maria Monti, Gennaro Battaglia, Marcello Nicoletti, Michele Spinelli, Gerhard Schaller and Vincenzo Rocco
Plants 2025, 14(17), 2762; https://doi.org/10.3390/plants14172762 - 4 Sep 2025
Viewed by 689
Abstract
In the last decades, extracts of Viscum album L., commonly known as European mistletoe, have attracted increasing interest for their immunomodulatory, anti-inflammatory and antioxidant activities. Nowadays, they are mainly used in complementary cancer treatments. A targeted LC-MRM-MS was selected to determine the chemical [...] Read more.
In the last decades, extracts of Viscum album L., commonly known as European mistletoe, have attracted increasing interest for their immunomodulatory, anti-inflammatory and antioxidant activities. Nowadays, they are mainly used in complementary cancer treatments. A targeted LC-MRM-MS was selected to determine the chemical composition and the activities of a V. album homeopathic mother tincture (MT#39998). Results showed a complex chemical composition, which was compared with that of other similar extracts. The LC-MRM-MS data were confirmed and complemented by HPLC analysis. Viscotoxins content was evaluated because of their cytotoxicity. MT#39998 was tested for its cytotoxic and antioxidant effect, before and after viscotoxins removal. The composition of MT#39998 in viscotoxins was similar to that of other products already present in the market and its safety was confirmed by estimation of LD50 based on in vitro IC50 values (LD50 was >2 g/kg). The aim of this study is to report a case study on a plant extract. The study was based on the chemical composition, including the metabolome, and on the pharmacological data, including toxicity and antioxidant activities, to validate the current utilization. Full article
Show Figures

Figure 1

10 pages, 1555 KB  
Communication
Isolation and Quantification of L-Tryptophan from Protaetia brevitarsis seulensis Larvae as a Marker for the Quality Control of an Edible Insect Extract
by Hye Jin Yang and Wei Li
Insects 2025, 16(9), 905; https://doi.org/10.3390/insects16090905 - 29 Aug 2025
Viewed by 705
Abstract
Protaetia brevitarsis seulensis (Kolbe, 1886) larvae have traditionally been used in East Asian medicine and have recently attracted attention as functional food ingredients because of their pharmacological potential. However, chemical investigations remain limited, and no marker compounds have been established for quality control. [...] Read more.
Protaetia brevitarsis seulensis (Kolbe, 1886) larvae have traditionally been used in East Asian medicine and have recently attracted attention as functional food ingredients because of their pharmacological potential. However, chemical investigations remain limited, and no marker compounds have been established for quality control. This study aimed to isolate and identify a primary constituent from the 70% ethanol extract of P. brevitarsis (PBE) and to develop an analytical method for its quantification. Among the solvent-partitioned fractions, the n-butanol fraction (PBE-B) exhibited a major peak in HPLC analysis. The compound was purified through a combination of vacuum liquid chromatography (VLC), medium-pressure liquid chromatography (MPLC), and recycling preparative HPLC. Its structure was identified as L-tryptophan based on HR-ESI-MS and NMR spectroscopy. Quantitative analysis was conducted using HPLC-DAD under optimized analytical conditions, employing a Thermo Scientific™ Acclaim™ Polar Advantage II column and an acidified mobile phase (0.1% formic acid in water and methanol) to improve resolution. The method demonstrated excellent linearity (r2 > 0.9999), and the L-tryptophan content in PBE was determined to be 1.93 ± 0.05 μg/mg. The analyte was well separated with minimal interference, supporting the reproducibility of the method. These results indicate that L-tryptophan is a promising candidate Q-marker for the quality control of P. brevitarsis extracts. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

16 pages, 2296 KB  
Article
Functional Genomic and Phenotypic Analysis of Lactiplantibacillus pentosus P7 Isolated from Pickled Mustard Greens Reveals Capacity for Exopolysaccharide, B-Vitamin, and Lactic Acid Production
by Ngoc Tung Quach, Hoang Duc Le, Ngoc Anh Ho, Van Khanh Nguyen, Manh Van Le, Thi Hong Ha Nguyen, Xuan Khoi Tran, Ngoc Minh Truong, Linh Thi Khanh Pham, Bich Ngoc Pham, Hoang Ha Chu and Nhat Huy Chu
Appl. Sci. 2025, 15(17), 9486; https://doi.org/10.3390/app15179486 - 29 Aug 2025
Viewed by 508
Abstract
Lactiplantibacillus pentosus is a lactic acid bacterium frequently detected in various fermented foods; however, the genomic traits related to its biotechnological potential have been underexplored. In this study, 34 catalase-negative isolates were obtained from pickled mustard greens, among which strain P7 exhibited the [...] Read more.
Lactiplantibacillus pentosus is a lactic acid bacterium frequently detected in various fermented foods; however, the genomic traits related to its biotechnological potential have been underexplored. In this study, 34 catalase-negative isolates were obtained from pickled mustard greens, among which strain P7 exhibited the highest exopolysaccharide (EPS) yield (781.9 ± 14.7 mg/L) and was capable of growing in a chemically defined medium lacking riboflavin. Whole-genome sequencing revealed a 3,749,478 bp circular chromosome with 46.5% G + C content and 3389 protein-coding genes. A phylogenomic analysis identified P7 as L. pentosus. Functionally, 1 mg/mL EPS extracted from P7 demonstrated strong antioxidant activity, with DPPH and hydroxyl radical scavenging capacities of 89.8 ± 4.6% and 76.5 ± 9.5%, respectively. The use of 0.2 mg/mL EPS also protected Saccharomyces cerevisiae cells from oxidative stress. A comparative genomic analysis indicated the presence of nearly complete biosynthetic pathways for riboflavin, folate, and pyridoxine. High-performance liquid chromatography (HPLC) confirmed the production of 23.8 ± 0.4 µg/mL riboflavin, 36.6 ± 0.6 µg/mL folic acid, and 0.42 ± 0.02 µg/mL pyridoxine in the culture supernatant, which have not been previously reported. Additionally, strain P7 produced 91.2 ± 12.3 g/L of lactic acid after 24 h of incubation. These results support the potential of L. pentosus P7 as a candidate for industrial applications in the production of EPS, B-group vitamins, and lactic acid. Full article
Show Figures

Figure 1

14 pages, 283 KB  
Article
Chemical Composition of Thymus Species from Bulgarian Flora
by Yoana Rosenova, Petya Boycheva, Stanislav Dyankov, Zoya Dzhakova, Velina Dzhoglova, Stela Todorova, Stanislava Ivanova and Iliya Slavov
Diversity 2025, 17(9), 596; https://doi.org/10.3390/d17090596 - 25 Aug 2025
Viewed by 611
Abstract
The present study investigated the chemical composition of the main components of five commonly occurring Thymus species in Bulgaria: T. sibthorpii Benth., T. pulegioides L., T. glabrescens Willd. (syn. T. odoratissimus Mill.), T. callieri Borbas ex Velen. (syn. T. roegneri K. Koch), and [...] Read more.
The present study investigated the chemical composition of the main components of five commonly occurring Thymus species in Bulgaria: T. sibthorpii Benth., T. pulegioides L., T. glabrescens Willd. (syn. T. odoratissimus Mill.), T. callieri Borbas ex Velen. (syn. T. roegneri K. Koch), and T. zygioides Griseb. The phytochemical profiling of the Thymus species was performed using GC-MS for the analysis of essential oils and HPLC for the identification and quantification of phenolic compounds in the ethanolic extracts. Linalool was the dominant essential oil constituent in T. sibthorpii (48.17%), T. pulegioides (50.96%), and T. callieri (38.08%) while thymol prevailed in T. glabrescens (35.35%). A novel chemotype was observed in T. zygioides. The HPLC analysis confirmed rosmarinic acid as the major phenolic acid across all species. Rutin was the predominant flavonoid in four species whereas T. sibthorpii exhibited a remarkably high concentration of (+)-catechin. Overall, the high chemical diversity within the Thymus genus was confirmed. Due to the variability of compounds among plant species, the findings of the present study suggest that, along with essential oils, phenolic components may also contribute to the chemotaxonomic classification of the Thymus genus and influence the pharmacological activity of the species, which requires further study. Full article
Show Figures

Graphical abstract

15 pages, 2322 KB  
Article
Bulgarian Mavrud Wine Under Nanofiltration and Reverse Osmosis: Evaluating the Composition After the Process
by Apostol G. Apostolov, Irene Tsibranska, Dragomir Yankov, Maria Dencheva-Zarkova and Julia Genova
Chemistry 2025, 7(4), 134; https://doi.org/10.3390/chemistry7040134 - 21 Aug 2025
Viewed by 525
Abstract
This work presents new results and conclusions on nanomembrane filtration and reverse osmosis of Mavrud red wine, produced in Bulgaria. The experiments were focused on lowering the alcohol content while preserving the valuable substances in the wine. Commercially available nanomembranes were used (Alfa [...] Read more.
This work presents new results and conclusions on nanomembrane filtration and reverse osmosis of Mavrud red wine, produced in Bulgaria. The experiments were focused on lowering the alcohol content while preserving the valuable substances in the wine. Commercially available nanomembranes were used (Alfa Laval NF99HF, Alfa Laval RO99, NADIR NP030P). Two modes of nanofiltration (concentration mode and diafiltration mode, including constant volume diafiltration and two-step diafiltration) and reverse osmosis were employed for this study. The nanofiltration membranes (Alfa Laval NF99HF, NADIR NP030P) used for wine dealcoholization showed high separation effectiveness. Several wine components were recognized as indicators to be monitored during the process: carboxylic acids (citric, tartaric, malic, succinic, acetic); monosaccharides (glucose, fructose); alcohol (ethanol). The monitoring of the named compounds was performed with an HPLC-RID system on an H-charged ion exclusion analytical column. Based on the analysis of the collected samples, it could be stated that the alcohol content in the wine was lowered from 11.8% to 4.3 vol% of ethanol, when the sequential diafiltration mode of operation is used. Content change depends on the type of molecule; for example, in most cases the citric acid is strongly retained (Rej > 90%) by the membrane, whereas the acetic acid could permeate significantly (Rej < 20%). The obtained results present valuable information about the changes in the composition of the Mavrud wine which will aid in the preservation of the chemical composition and valuable substances in the event of future full or partial dealcoholization of this wine variety. Full article
Show Figures

Figure 1

18 pages, 1918 KB  
Article
Sustainable Degradation of Acetaminophen by a Solar-Powered Electro-Fenton Process: A Green and Energy-Efficient Approach
by Sonia Herrera-Chávez, Silvia Gutierrez, Miguel A. Sandoval, Enric Brillas, Martin Pacheco-Álvarez and Juan M. Peralta-Hernández
Processes 2025, 13(8), 2633; https://doi.org/10.3390/pr13082633 - 20 Aug 2025
Viewed by 2001
Abstract
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), [...] Read more.
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), and solar photo-electro-Fenton (SPEF), for the degradation and mineralization of ACTP in aqueous media using boron-doped diamond (BDD) electrodes. Reactions were conducted under varying operational parameters, including current densities (15–60 mA cm−2), initial ACTP concentrations (10–30 mg L−1), and Fe2+ dosages. In the SPEF system, natural sunlight was utilized as the source of UV-A irradiation (30–35 W m−2). Among the evaluated processes, SPEF exhibited the highest degradation efficiency, achieving up to 97% ACTP removal and 78% chemical oxygen demand (COD) reduction within 90 min. High-performance liquid chromatography (HPLC) analysis identified phenol and catechol as major intermediates, suggesting a degradation pathway involving hydroxylation, aromatic ring cleavage, and subsequent oxidation into low-molecular-weight carboxylic acids. Kinetic modeling revealed pseudo-first-order behavior, with a maximum rate constant of 0.0865 min−1 under optimized conditions determined via Box–Behnken experimental design. Additionally, SPEF demonstrated enhanced energy efficiency (~0.052 kWh gCOD−1) and improved oxidant regeneration under solar radiation, highlighting its potential as an environmentally friendly and cost-effective alternative for pharmaceutical wastewater treatment. These results support the implementation of SPEF as a sustainable strategy for mitigating the environmental impact of emerging contaminants, especially in regions with high solar availability and limited technological resources. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

Back to TopTop