Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,549)

Search Parameters:
Keywords = HepG2 cell line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2692 KB  
Article
Chemical Composition and Biological Activities of the Essential Oils from Different Parts of Rosa bracteata J.C.Wendl
by Shiyu Song, Yifang Chen, Hongrui Chen, Qinglei Han and Pengxiang Lai
Molecules 2025, 30(19), 4021; https://doi.org/10.3390/molecules30194021 - 8 Oct 2025
Abstract
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, [...] Read more.
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, leaves, and flowers of Rosa bracteata for the first time. The chemical composition of the essential oils obtained through hydro-distillation was characterized by means of gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID). Thirty-seven, thirty-six, and forty-two constituents were identified from leaf oil (LEO), stem oil (SEO), and flower oil (FEO), representing 96.3%, 95.9%, and 97.4% of the total oil constituents, respectively. The LEO was mainly composed of 1-pentadecene, α-cadinol, and hexadecanoic acid. However, the main identified components of SEO were (E)-nerolidol, phytol, and benzyl benzoate, and the main components of the flower oil were ethyl octanoate, octanoic acid, and α-cadinol. All of the EOs exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria with MIC values ranging from 40.00 to 640.00 μg/mL. In addition, the checkerboard method demonstrates potent synergistic effects of Rosa bracteata EOs when combined with commercial antibiotics (chloramphenicol and streptomycin). In the MTT test, SEO (IC50: 37.91 ± 2.10 to 51.15 ± 6.42 μg/mL) showed stronger cytotoxic activity against four cancer cell lines (MCF-7, A549, HepG2, and HCT-116) during the incubation time of 48 h in comparison to the EOs isolated from the other plant parts. Overall, these findings reveal the chemical composition and significant bioactivity of R. bracteata EOs for the first time, suggesting their potential as promising natural agents for therapeutic applications, especially in combination therapies to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Evaluation of Essential Oils)
Show Figures

Figure 1

10 pages, 1320 KB  
Communication
Chemical Constituents from the Vietnamese Mangrove Avicennia marina: Two New Iridoid Glycosides and Their Cytotoxicity Against Cancer Cell Lines
by Ngo Van Hieu, Le Ba Vinh, Pham Thi Mai, Le Ngoc Hung, Nguyen Tien Dat, Lai Ha Phuong, Tran Phương Anh, Do Thanh Tuan, Nguyen Viet Phong, Truong Thi Thu Hien and Hoang Le Tuan Anh
Int. J. Mol. Sci. 2025, 26(19), 9694; https://doi.org/10.3390/ijms26199694 - 5 Oct 2025
Viewed by 171
Abstract
Avicennia marina, commonly known as the grey mangrove, is a salt-tolerant species widely distributed in coastal and estuarine ecosystems. Traditionally, it has been used in folk medicine to treat skin diseases, rheumatism, and ulcers due to its anti-inflammatory and antimicrobial properties. However, [...] Read more.
Avicennia marina, commonly known as the grey mangrove, is a salt-tolerant species widely distributed in coastal and estuarine ecosystems. Traditionally, it has been used in folk medicine to treat skin diseases, rheumatism, and ulcers due to its anti-inflammatory and antimicrobial properties. However, comprehensive studies on the chemical constituents and their pharmacological effects remain limited. The dried powder of the aerial parts of A. marina (3.6 kg) was successfully extracted three times with methanol (20 L × 3, each for 2 h) using a multifunctional ultrasonic cleaner operated at 25 °C with a 50% amplitude setting. In this study, the methanolic extract of the aerial parts of A. marina led to the isolation of eight compounds, including two previously unreported iridoid glycosides—avicenosides A and B (1 and 2)—and six known compounds: techtochrysin (3), 7,4′-di-O-methyl-apigenin (4), luteolin (5), kaempferol (6), trans-caffeic acid (7), and 3,4-dihydroxybenzoic acid (8). Their chemical structures were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and compared with previously published data. Moreover, the absolute configuration of the sugar moieties in the new compounds was also identified. All isolated compounds were evaluated for their cytotoxicity against HepG2 and A549 cancer cell lines. The results indicate potential cytotoxicity of the secondary metabolites from A. marina and provide evidence of their promising role as lead compounds for the development of novel anticancer agents. Full article
Show Figures

Figure 1

22 pages, 3956 KB  
Article
Aptamer-Modified Magnetic Nanoparticles as Targeted Drug Delivery Systems for Hepatocellular Carcinoma
by Alexandra Pusta, Mihaela Tertis, Bianca Ciocan, Rodica Turcu, Izabell Crăciunescu, Victor C. Diculescu, George E. Stan, Stefan Bulat, Alina Porfire, Andreea-Elena Petru, Ionel Fizeșan, Simona Mirel and Cecilia Cristea
Pharmaceutics 2025, 17(10), 1292; https://doi.org/10.3390/pharmaceutics17101292 - 2 Oct 2025
Viewed by 326
Abstract
Background: Hepatocellular carcinoma is associated with high mortality and increasing incidence. Sorafenib, a cornerstone of therapy for advanced hepatocellular carcinoma, presents certain disadvantages, including low bioavailability and poor water solubility. This work describes a new strategy for sorafenib-targeted delivery aimed at improving [...] Read more.
Background: Hepatocellular carcinoma is associated with high mortality and increasing incidence. Sorafenib, a cornerstone of therapy for advanced hepatocellular carcinoma, presents certain disadvantages, including low bioavailability and poor water solubility. This work describes a new strategy for sorafenib-targeted delivery aimed at improving treatment efficiency and reducing side effects. Methods: Magnetic nanoparticles coated with azelaic acid were modified with aptamer molecules that specifically recognize human liver cancer cell line HepG2, ensuring specificity for the tumor tissue. The nanoparticles were further loaded with sorafenib. The obtained drug delivery system was extensively characterized using UV-Vis spectrophotometry, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Results: The drug delivery system demonstrated a higher release of sorafenib at acidic pH compared to pH 7.4. The cell internalization of the bare and aptamer-modified magnetic nanoparticles was assessed in HepG2 and human normal foreskin fibroblasts BJ cell lines, demonstrating that the aptamer significantly enhances internalization in tumor cells, while having no impact on healthy cells. Conclusions: The sorafenib-modified nanoparticles exhibited excellent cytocompatibility with BJ cells across all tested concentrations, while showing cytotoxicity towards HepG2 cells at higher concentrations, confirming the selectivity of the system. Full article
Show Figures

Graphical abstract

17 pages, 3340 KB  
Article
pH-Responsive Modified Dextran Nanogel for Liver Targeted Doxorubicin Delivery
by Amin Raeisi, Mohammad Doroudian, Banafsheh Rastegari, Soliman Mohammadi-Samani, Abbas Behzad-Behbahani and Fatemeh Farjadian
Gels 2025, 11(10), 784; https://doi.org/10.3390/gels11100784 - 1 Oct 2025
Viewed by 228
Abstract
A key obstacle to the efficacy of cancer drugs is the safe delivery of the drugs to the target site of the disease. Recent advances in nanomedicine have introduced smart hydrogel nanoparticles as promising, efficient, secure, and stimulus-responsive drug carriers. Herein, a bio-safe [...] Read more.
A key obstacle to the efficacy of cancer drugs is the safe delivery of the drugs to the target site of the disease. Recent advances in nanomedicine have introduced smart hydrogel nanoparticles as promising, efficient, secure, and stimulus-responsive drug carriers. Herein, a bio-safe pH-sensitive nanohydrogel (NG) made of polyaminoethyl methacrylamide (AEMA)-grafted dextran was used as a carrier for liver-targeted doxorubicin (DOX) delivery. Lactobionate (SL) residue was conjugated to the prepared NG as a targeting agent, and DOX was also conjugated via Schiff base linkage. The synthesized structure was analyzed using 1HNMR, FT-IR, and size exclusion chromatography. DOX release was confirmed through UV-Vis spectroscopy. A pH-responsive manner in the DOX release profile was observed in a simulated medium with pH changes. In vitro toxicity assessment was performed in HepG2 and L929 cell lines, which have demonstrated the biosafety of the prepared hydrogel and its high effectiveness as an anticancer drug delivery system. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Graphical abstract

11 pages, 12518 KB  
Article
Antitumor Potential of Bioactive Crude Extracts Derived from Actinomycetes
by Hassan K. Dhaini, Bahaa Fahed Hassanieh, Rana El Hajj and Mahmoud I. Khalil
Bacteria 2025, 4(4), 51; https://doi.org/10.3390/bacteria4040051 - 1 Oct 2025
Viewed by 159
Abstract
Marine actinomycetes constitute a vigorous source of bioactive compounds with potential anti-tumor activity. This study investigates the antitumor activity and classification of actinomycetes isolated from 32 marine soil samples collected across four seasons from Tyr City Beach, Lebanon. A total of 80 morphologically [...] Read more.
Marine actinomycetes constitute a vigorous source of bioactive compounds with potential anti-tumor activity. This study investigates the antitumor activity and classification of actinomycetes isolated from 32 marine soil samples collected across four seasons from Tyr City Beach, Lebanon. A total of 80 morphologically diverse isolates were recovered and characterized, with dominant genera including Streptomyces, Kocuria, and Micrococcus. Among these, three promising strains—Kocuria rosea, Micrococcus luteus, and Streptomyces longisporoflavus—were selected for further analysis. Crude extracts were tested against human colorectal adenocarcinoma (Caco-2) and human hepatocellular carcinoma (HepG-2) cancer cell lines using MTT and Western blot assays. At the highest concentration (8 µg/µL), the extracts reduced cell viability to 24–37% in Caco-2 and 12–25% in HepG-2. The IC50 values ranged from 1.72 to 3.53 µg/µL, depending on the extract and cell line. Western blot analysis showed dose-dependent increases in the Bax/Bcl-2 ratio, with fold changes reaching 4.35 (Kocuria), 11.39 (Micrococcus), and 14.25 (Streptomyces) in HepG-2 cells. The p53 protein expression also increased significantly, with fold changes up to 7.79 in Caco-2 and 3.0 in HepG-2 cells. These results indicate that marine actinomycetes from the Lebanese coastline hold strong potential as a source of antitumor agents targeting apoptosis pathways. Full article
Show Figures

Figure 1

22 pages, 2837 KB  
Article
Investigation of the Putative Relationship Between Copper Transport and the Anticancer Activity of Cisplatin in Ductal Pancreatic Adenocarcinoma
by Alina Doctor, Jonas Schädlich, Sandra Hauser and Jens Pietzsch
Cells 2025, 14(19), 1489; https://doi.org/10.3390/cells14191489 - 24 Sep 2025
Viewed by 413
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous cancer with a severe stromal reaction mediated by pancreatic stellate cells (PSCs), leading to increased resistance to chemotherapy and radiotherapy. Following a repurposing concept, this preclinical study investigates the potential of approved drugs, known to [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous cancer with a severe stromal reaction mediated by pancreatic stellate cells (PSCs), leading to increased resistance to chemotherapy and radiotherapy. Following a repurposing concept, this preclinical study investigates the potential of approved drugs, known to be modulators of cellular copper transport, in combination with cisplatin for therapeutic approaches in PDAC. Two major strategies were pursued: (i) inhibiting copper transporters ATP7A and B with tranilast (TR) and omeprazole (OM) to block the cellular copper and, potentially, also cisplatin efflux, and (ii) using the chelator elesclomol (ES) to elevate intracellular copper and cisplatin levels. Human cell lines PanC-1 (PDAC), HPaSteC (PSC), and their co-culture, as well as the hepatocellular carcinoma cell line HepG2 as a reference model, were used. In addition to an analysis of the expression of copper transport proteins, the dynamics of cellular copper uptake and transport were monitored using a [64Cu]CuCl2 radiotracer approach. In vitro, all drugs enhanced cellular copper uptake and/or reduced copper efflux. Moreover, all drugs contributed to the enhanced cellular anticancer activity of cisplatin, with ES being the most effective compound. The results suggest that the targeted modulation of copper transport mechanisms may offer novel adjuvant approaches for the treatment of PDAC. Full article
(This article belongs to the Collection Advances in Cell Culture and Tissue Engineering)
Show Figures

Graphical abstract

18 pages, 2168 KB  
Article
Effective Reduction in Nuclear DNA Contamination Allows Sensitive Mitochondrial DNA Methylation Determination by LC-MS/MS
by Lin Liang, Luis Alfonso González Molina, Pytrick G. Jellema, Martijn van Faassen, Laura T. A. Otten, Kevin P. Mennega, Ingrid H. Hof, D. A. Janneke Dijck-Brouwer, Amalia M. Dolga, Marianne G. Rots and Klary E. Niezen-Koning
Int. J. Mol. Sci. 2025, 26(18), 8864; https://doi.org/10.3390/ijms26188864 - 11 Sep 2025
Viewed by 552
Abstract
Mitochondria are essential organelles for cellular energy production, playing a central role in driving metabolic processes and supporting critical intracellular functions. Neurometabolic disorders encompass a wide variety of conditions characterized by mitochondrial dysfunction. Owing to their bacterial ancestry, mitochondria possess an independent genome [...] Read more.
Mitochondria are essential organelles for cellular energy production, playing a central role in driving metabolic processes and supporting critical intracellular functions. Neurometabolic disorders encompass a wide variety of conditions characterized by mitochondrial dysfunction. Owing to their bacterial ancestry, mitochondria possess an independent genome consisting of a circular DNA molecule (mtDNA), which has been reported to be subject to methylation. However, the technical challenges in the detection of mtDNA methylation have led to debates on its existence. One of the concerns is that the compactness of mtDNA can lead to suboptimal bisulfite conversion, thereby causing mtDNA methylation overestimation. To address this, liquid chromatography tandem mass spectrometry (LC-MS/MS) offers a bisulfite-independent readout; however, this method requires mtDNA samples devoid of nuclear DNA (nDNA) contamination. To diminish nDNA contamination, we isolated mtDNA from the TRIzol RNA phase. Importantly, pyrosequencing showed no significant difference in the methylation levels of mtDNA isolated from the TRIzol RNA phase compared to those from the TRIzol DNA phase, or isolated via total genomic DNA (gDNA). Across different human cell lines, LC-MS/MS detected significantly lower global methylation levels for DNA isolated from the TRIzol RNA phase than those from the TRIzol DNA or gDNA isolation. Moreover, using mtDNA isolated from the TRIzol RNA phase, LC-MS/MS validated the enhanced mtDNA methylation in HepG2 transgenic cell lines expressing mitochondrial-targeted DNA methyltransferases (means of 2.89% and 2.03% for MCviPI and MSssI transgenic cell lines, respectively), compared to two negative control cell lines (1.36 and 1.39%). When applying it to clinically relevant material, LC-MS/MS demonstrated a significantly lower global methylation level for platelet DNA isolated from the TRIzol RNA phase (mean of 1.98%) compared to gDNA isolations (mean of 4.32%). Similar findings were confirmed in mouse brain tissue, in which a significantly lower methylation level was detected in DNA isolated from the TRIzol RNA phase (1.79%) compared to that from gDNA isolation (5.12%). In conclusion, isolating mtDNA from the TRIzol RNA phase holds significant potential in future studies, particularly for the quantification of mtDNA global methylation by LC-MS/MS, a technique that is independent of bisulfite conversion and bioinformatic analysis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2858 KB  
Article
From Mushrooms to Molecules: Exploring Depsidones in Ganoderma lucidum for Antioxidant and Anticancer Applications
by Sayed H. A. Mohamed, Yehia A.-G. Mahmoud, Mohamed Y. Bediway, Sobhy E. Elsilk, Mohammed Yosri, Kamel Metwally, Nader E. Abo-Dya, Galal Yahya, Mervt Almostafa and Atef A. El-Hela
Molecules 2025, 30(17), 3650; https://doi.org/10.3390/molecules30173650 - 8 Sep 2025
Viewed by 684
Abstract
Fungi are a prolific source of diverse bioactive metabolites, yet many remain unexplored. Among these, depsidones are a rare class of compounds with significant biological potential, but they are seldom reported in mushrooms. This study investigated the medicinal fungus Ganoderma lucidum, known [...] Read more.
Fungi are a prolific source of diverse bioactive metabolites, yet many remain unexplored. Among these, depsidones are a rare class of compounds with significant biological potential, but they are seldom reported in mushrooms. This study investigated the medicinal fungus Ganoderma lucidum, known for its extensive therapeutic use in traditional medicine. Fruiting bodies were extracted using petroleum ether, ethyl acetate, n-butanol, and methanol. Extracts were screened phytochemically and assessed for total phenolic content and antioxidant activity using the DPPH assay. Ethyl acetate extract exhibited the highest phenolic yield and antioxidant potential and was subsequently evaluated for cytotoxicity against HepG2, HCT116, MCF7, and A549 cancer cell lines. It showed notable anticancer activity with minimal toxicity to normal Vero cells. UHPLC/Q-TOF-MS/MS analysis of G. lucidum ethyl acetate extract tentatively identified nine minor depsidones including mollicellin G, simplicildone I, mollicellin B, talaromyone B, simplicildone A, purpactin C, emeguisin B, mollicellin E, and simplicildone D on the basis of high-resolution negative-mode detection and characteristic MS/MS fragmentation patterns. Molecular docking revealed strong binding affinities between these compounds and cancer-related targets (AKT1, CDK2, ERK1, TNFα), with simplicildone D and mollicellin G demonstrating particularly high interactions. These findings provide mechanistic insights into the observed bioactivity and highlight G. lucidum as a promising source of therapeutic depsidones for future anticancer drug development. Full article
Show Figures

Figure 1

34 pages, 9695 KB  
Article
Anticancer Effects of Ascorbic Acid: Not All Sides Fit All
by Uche O. Arunsi, Jeremiah O. Olugbami and Adegboyega K. Oyelere
Cancers 2025, 17(17), 2877; https://doi.org/10.3390/cancers17172877 - 1 Sep 2025
Viewed by 892
Abstract
Background/Objectives: Ascorbic acid (AA)is a micronutrient with concentration-dependent anticancer properties, acting either as a reactive oxygen species (ROS) scavenger or inducer. Methods: Conventional redox-based assays such as MTS/MTT often overestimate cell proliferation due to AA’s interaction with tetrazolium salts, leading to increased [...] Read more.
Background/Objectives: Ascorbic acid (AA)is a micronutrient with concentration-dependent anticancer properties, acting either as a reactive oxygen species (ROS) scavenger or inducer. Methods: Conventional redox-based assays such as MTS/MTT often overestimate cell proliferation due to AA’s interaction with tetrazolium salts, leading to increased formazan production. To overcome this limitation, we employed the Propidium Iodide Triton X-100 (PI/TX-100) assay to evaluate AA’s cytotoxic effects across a diverse panel of cancer and normal cell lines, including prostate (22Rv1, C4-2B, DU-145, LNCaP), breast (MCF-7, MDA-MB-231, MDA-MB-453), lung (A549), liver (HepG2, SK-HEP-1, Huh7), and kidney (Vero) cells. Results: AA significantly suppressed cancer cell viability compared to normal cells (RWPE1 and Vero), with the strongest effects observed in hormone receptor-positive lines. The relative sensitivity to AA followed distinct patterns within each cancer type. Mechanistically, AA-induced cell death involved ROS generation, lipid peroxidation, cell cycle arrest, ferroptosis, apoptosis, and downregulation of pyruvate dehydrogenase kinase 1 (PDHK1). Conclusions: These findings further support the potential of AA as a selective anticancer agent and highlight the importance of assay choice in evaluating its therapeutic efficacy. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

21 pages, 1109 KB  
Article
Herbal Weight Loss Supplements Induce Metabolomic In Vitro Changes Indicative of Oxidative Stress
by Emily C. Davies, Garth L. Maker, Ian F. Musgrave and Samantha Lodge
Metabolites 2025, 15(9), 587; https://doi.org/10.3390/metabo15090587 - 1 Sep 2025
Viewed by 753
Abstract
Background/Objectives: The prevalence of obesity continues to rise globally, and with this an increase in the use of herbal weight loss supplements (WLS). At present, there is limited evidence to support the efficacy and safety of WLS, and there have been growing [...] Read more.
Background/Objectives: The prevalence of obesity continues to rise globally, and with this an increase in the use of herbal weight loss supplements (WLS). At present, there is limited evidence to support the efficacy and safety of WLS, and there have been growing reports of adverse events associated with their use. We aimed to determine those WLS that caused toxicity in vitro and to use 1H nuclear magnetic spectroscopy (NMR) to examine the metabolomic changes induced by these WLS in human hepatic and intestinal cells. Materials and Methods: This study used in vitro methods and 1H NMR spectroscopy to analyse the metabolomic changes in vitro of WLS available for purchase in Australia. Ten WLS were selected, nine WLS caused significant toxicity in HepG2 human liver cells, and of these, six met the criteria for 1H NMR analysis, which was based on a 25–50% reduction in cell viability. Results: All 10 WLS caused a significant reduction in viability of Caco-2 human intestinal cells, with seven selected for metabolic profiling. Orthogonal partial least squares discriminant analysis (O-PLS-DA) of 1H NMR spectral data was used to characterise the metabolites that differed between the untreated and treated cells and the fold changes of the metabolites were determined. The results showed alterations to key metabolites such as amino acids, glucose, carboxylic acids, and amines in all treatment groups compared to untreated controls across both cell lines. Conclusions: Collectively, these biochemical changes represent disturbances to intracellular proteins, energy metabolism, and membrane lipids suggestive of oxidative stress. This study highlights the need for further investigations into the actions of these WLS in vivo, and, as these products were regulated by the Therapeutic Goods Administration (TGA) at the time of purchase, this study suggests improved pre-market screening to ensure consumer health is protected. Full article
(This article belongs to the Special Issue Metabolic Signatures in Human Health and Disease)
Show Figures

Graphical abstract

15 pages, 1384 KB  
Article
Metabolism of Cannabidiol in Respiratory-Associated Cells and HepG2-Derived Cells and Molecular Docking of Cannabidiol and Its Metabolites with CYP Enzymes and Cannabinoid Receptors
by Krittawan Tongkanarak, Pijush Kumar Paul, Muhammad A. Khumaini Mudhar Bintang, Roongnapa Suedee, Somchai Sawatdee and Teerapol Srichana
Int. J. Mol. Sci. 2025, 26(17), 8384; https://doi.org/10.3390/ijms26178384 - 28 Aug 2025
Viewed by 727
Abstract
Cannabidiol (CBD) has been reported in medical applications for various indications. The enzymatic metabolism of CBD is not fully understood in the different routes of administration. This research aimed to identify the CBD metabolites after incubation of CBD with derived hepatocyte cells (HepG2), [...] Read more.
Cannabidiol (CBD) has been reported in medical applications for various indications. The enzymatic metabolism of CBD is not fully understood in the different routes of administration. This research aimed to identify the CBD metabolites after incubation of CBD with derived hepatocyte cells (HepG2), bronchial epithelial cells (NCI-H358), alveolar cells (A549), and alveolar macrophage cells (NR8383). A liquid chromatography–mass spectrometry technique was developed to quantify the CBD and its metabolites. Molecular docking was employed to evaluate the binding affinity of CBD with different cytochrome P-450 (CYP-450) enzymes and further predict the implication of drug–drug interactions. CBD and major metabolites of CBD were also docked with cannabinoid receptors. The results revealed that only HepG2 cells metabolized CBD to 7-hydroxy-CBD (7-OH-CBD) and 7-carboxy-CBD (7-COOH-CBD), whereas other respiratory cell lines and alveolar macrophages were found to have mainly CBD in the incubated samples without any metabolites. The CYP2C19 and CYP3A4 enzymes were responsible for CBD conversion to hydroxylated CBD metabolites. The 7-OH-CBD and 7-COOH-CBD metabolites were found to bind to cannabinoid receptors with different affinities. The relative abundance of CBD and major metabolites may indicate the potential route of CBD administration. Full article
Show Figures

Figure 1

17 pages, 2452 KB  
Article
Novel Bio-Functional Electrospun Membranes by Chios Mastic Gum Encapsulation
by Panagiotis M. Mastorakis, Sotirios I. Marras, Costas Tsioptsias, Stephanos P. Zaoutsos, Demetres D. Leonidas, Ioannis Tsivintzelis and Anna-Maria G. Psarra
Fibers 2025, 13(9), 116; https://doi.org/10.3390/fib13090116 - 27 Aug 2025
Viewed by 629
Abstract
Pistacia lentiscus var. chia resin (Chios Mastic Gum—CMG) is a natural aromatic resin that has been utilized in traditional medicine for more than 2.5 millennia, as it exhibits a wide range of pharmacological properties. In this study, various quantities of Chios Mastic Gum [...] Read more.
Pistacia lentiscus var. chia resin (Chios Mastic Gum—CMG) is a natural aromatic resin that has been utilized in traditional medicine for more than 2.5 millennia, as it exhibits a wide range of pharmacological properties. In this study, various quantities of Chios Mastic Gum (3.5, 6.5, and 10 wt%) were encapsulated in electrospun fibers of poly-ε-caprolactone (PCL) to develop functional fibrous mats with multiple potential applications. The morphological analysis of composite membranes was conducted through scanning electron microscopy (SEM), revealing the formation of uniform fibers and incremental diameter size in samples with a higher concentration of CMG. The encapsulation efficiency was assessed by UV-Vis spectrophotometry and showed an exceptionally high loading efficiency (87–88%). The cytotoxicity of CMG-loaded nanofibers was tested in human embryonic kidney cell line HEK293 and human hepatocarcinoma cell line HepG2 using the MTT assay. In both cases, a high concentration of encapsulated CMG led to a statistically significant reduction in cell viability. Full article
Show Figures

Graphical abstract

29 pages, 5104 KB  
Article
Synthesis, Structure, DNA/BSA Binding, DNA Cleaving, Cytotoxic and SOD Mimetic Activities of Copper(II) Complexes Derived from Methoxybenzylamine Schiff Base Ligands
by Lucia Lintnerová, Peter Herich, Jana Korcová, Barbora Svitková, Flóra Jozefíková and Jindra Valentová
Molecules 2025, 30(17), 3461; https://doi.org/10.3390/molecules30173461 - 22 Aug 2025
Viewed by 960
Abstract
Schiff base ligands prepared from salicylaldehyde and 2-, 3- and 4-methoxybenzylamine were used to prepare copper(II) complexes, characterized by spectral methods, elemental analysis and X-ray crystallography in the case of complex 4a derived from 2-methoxybenzylamine. The DNA cleavage activity of the prepared complexes [...] Read more.
Schiff base ligands prepared from salicylaldehyde and 2-, 3- and 4-methoxybenzylamine were used to prepare copper(II) complexes, characterized by spectral methods, elemental analysis and X-ray crystallography in the case of complex 4a derived from 2-methoxybenzylamine. The DNA cleavage activity of the prepared complexes was exceptional, with best activities of over 95% one-strand cleavage for 4c at 3 mM and full double-strand cleavage for complex 4a at 5 mM. Absorption titration studies with ct-DNA revealed good binding constants (at 105 M−1) with a decrease of up to 56% light absorption. Meanwhile, the EB–DNA displacement method and viscosity studies revealed groove binding as a possible binding mode. For BSA binding studies, all three complexes showed KBSA values in the optimal range for reversible BSA binding (104 M−1). The copper(II) complexes showed significant cytotoxic effects (67–96% at 1 mM) in mitochondrial activity monitoring assays. Cytotoxicity was confirmed against cancer cell lines (A549 and HepG2) and HEL cells. The complexes 4a and 4c exhibited high activity against HepG2 cancer cells (IC50 < 22 μM), comparable to cisplatin. The radical scavenging activity was determined by the INT method with the best IC50 for 4c (189 ± 11 μM). Overall, complexes 4a and 4c with a methoxy group in the ortho and para positions show high potential in most determined activities, but mainly as DNA cleavers and as cytotoxic agents with selectivity against HepG2 cells. Full article
Show Figures

Graphical abstract

10 pages, 509 KB  
Article
Transcriptional Regulation of CYP2E1: Promoter Methylation in In Vitro Models and Human Liver Disease Samples
by Nina Komaniecka, Mateusz Kurzawski, Sylwia Szeląg-Pieniek, Joanna Łapczuk-Romańska, Mariola Post, Urszula Adamiak-Giera and Marek Droździk
Genes 2025, 16(8), 990; https://doi.org/10.3390/genes16080990 - 21 Aug 2025
Viewed by 709
Abstract
Background/Objectives: DNA methylation is a critical epigenetic mechanism involved in gene expression regulation. This study examines promoter methylation of CYP2E1 in healthy liver, intestinal mucosa, as well as pathological liver samples, alongside in in vitro cell models. Methods: First, in tissue samples from [...] Read more.
Background/Objectives: DNA methylation is a critical epigenetic mechanism involved in gene expression regulation. This study examines promoter methylation of CYP2E1 in healthy liver, intestinal mucosa, as well as pathological liver samples, alongside in in vitro cell models. Methods: First, in tissue samples from the liver, duodenum, jejunum, and colon of healthy organ donors, CYP2E1 promoter methylation was quantified using the EpiTect Methyl II PCR System, while gene expression was determined by quantitative real-time PCR. Then, in vitro experiments were performed using HepG2 and Caco-2 cell lines. Cells were treated with 5-Aza-2′-deoxycytidine to induce demethylation, with subsequent analysis of CYP2E1 mRNA levels. Subsequently, promoter methylation was assessed via pyrosequencing, while gene expression was quantified using quantitative real-time PCR. Results: The analysis revealed statistically significant differences in the methylation patterns of the CYP2E1 promoter between healthy liver and gastrointestinal tissues. In cell lines, treatment with 5-Aza-2′-deoxycytidine resulted in increased CYP2E1 mRNA levels and demonstrated a strong negative correlation between promoter methylation and gene expression. However, in liver disease samples, differential methylation did not consistently translate into decreased CYP2E1 expression. Conclusions: Although in vitro experiments support a regulatory role of promoter methylation in controlling CYP2E1 expression, the clinical data indicate that additional factors may contribute to gene regulation in liver pathology. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Graphical abstract

21 pages, 1838 KB  
Article
In Vitro Shoot Cultures of Micromeria graeca: Micropropagation and Evaluation of Methanolic Extracts for Anticancer and Antimicrobial Activity
by Branka Uzelac, Mirjana Janjanin, Dijana Krstić-Milošević, Gordana Tovilović-Kovačević, Đurđica Ignjatović, Tatjana Mihajilov-Krstev and Dragana Stojičić
Plants 2025, 14(16), 2592; https://doi.org/10.3390/plants14162592 - 20 Aug 2025
Viewed by 685
Abstract
Micromeria graeca (L.) Benth. ex Rchb. (Lamiaceae) is a promising medicinal plant valued for its antioxidant, anti-hyperglycemic, anti-hypertensive, antimicrobial, and anti-aflatoxigenic properties. It is rich in phenolic and flavonoid compounds, supporting its traditional use for digestive, respiratory, cardiovascular, and dermatological conditions. Plant tissue [...] Read more.
Micromeria graeca (L.) Benth. ex Rchb. (Lamiaceae) is a promising medicinal plant valued for its antioxidant, anti-hyperglycemic, anti-hypertensive, antimicrobial, and anti-aflatoxigenic properties. It is rich in phenolic and flavonoid compounds, supporting its traditional use for digestive, respiratory, cardiovascular, and dermatological conditions. Plant tissue culture facilitates controlled in vitro propagation to study plant growth and bioactive properties. The effects of activated charcoal and varying subculture intervals on multiplication and biomass production in M. graeca shoot cultures were investigated. The phenolic composition of methanolic extracts from in vitro-grown plants was characterized using high-performance liquid chromatography (HPLC), identifying rosmarinic, caffeic, and syringic acids as the primary phenolic compounds. Antimicrobial activity against selected microbial strains was evaluated using a micro-well dilution assay. Anticancer activity of selected extracts was assessed in human hepatocellular carcinoma cell line HepG2, with flow cytometry (Annexin-V/PI staining) used to analyze cell death mechanisms, and compared to pure rosmarinic acid (RA). Activated charcoal showed no beneficial effects on multiplication or biomass production, but significantly increased phenolic acid content (up to 4-fold). RA dominated the phenolic profiles, with other phenolic acids present in lower amounts. Methanolic extracts exhibited negligible antimicrobial activity compared to reference antibiotics and fungicide. Extracts from 4-week-old shoot cultures displayed modest anti-hepatoma activity (IC50 values of CV assay ranging from 193 to 274 µg mL−1), inducing HepG2 cell apoptosis via oxidative stress, independent of RA. Our results suggest that the metabolic output of M. graeca shoot cultures and consequently their biological activity can be modulated by varying in vitro culture conditions. These findings underscore the potential of their methanolic extracts for biotechnological production and therapeutic applications. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

Back to TopTop