Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = Human Brain Endothelial Cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1095 KB  
Article
In Vitro Model of the Human Blood–Brain Barrier to Explore HTLV-1 Immunopathogenesis
by Ana Beatriz Guimarães, Lucas Bernardo-Menezes, Elisa Azevedo, Almerinda Agrelli, Poliana Silva, Marília Sena, Waldecir Araújo Júnior, George Diniz, Wyndly Daniel Gaião, Claudio Rodrigues, Marton Cavalcante, Lúcio Roberto Castellano, Joelma Souza, Paula Magalhães, Antonio Carlos Vallinoto and Clarice Morais
Curr. Issues Mol. Biol. 2025, 47(10), 818; https://doi.org/10.3390/cimb47100818 - 3 Oct 2025
Viewed by 256
Abstract
Cellular components and inflammatory mediators involved in the transmigration of HTLV-1-infected cells across the blood–brain barrier (BBB) are not fully understood. This study proposes a BBB model to identify the immunological mechanisms associated with HTLV-1 pathogenesis. PBMCs from individuals with HTLV-1-associated Myelopathy/Tropical Spastic [...] Read more.
Cellular components and inflammatory mediators involved in the transmigration of HTLV-1-infected cells across the blood–brain barrier (BBB) are not fully understood. This study proposes a BBB model to identify the immunological mechanisms associated with HTLV-1 pathogenesis. PBMCs from individuals with HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) (n = 4) or HTLV-1-infected individuals without HAM/TSP (n = 4) were isolated. An indirect cell co-culture was performed between human brain microvascular endothelial (hBMEC) cells and neuroblastoma (SH-SY5Y) cells. PBMCs from healthy individuals (n = 4) were used as a negative control, and MT-2 cells were used as a positive control. Supernatants and cells were collected to quantify inflammatory cytokines and assess cell death after 24, 48, and 72 h. Multiple comparisons were performed using the Kruskal–Wallis test, followed by Fisher’s LSD post hoc analysis. We observed that the production of cytokines IL-6, IL-8, IL-1β, TNF, IL-10, and IL-12p70, as well as the rate of neuronal death, was higher in co-cultures mimicking HAM/TSP carriers compared to HTLV-1-infected individuals without HAM/TSP and controls. Our results suggest that the HAM/TSP condition induces the release of IL-6, IL-8, IL-1β, TNF, IL-10, and IL-12p70, along with the infiltration of mononuclear cells, which may lead to neuronal death. Full article
Show Figures

Figure 1

19 pages, 6473 KB  
Article
Identification of Variable Lymphocyte Receptors That Target the Human Blood–Brain Barrier
by Moriah E. Katt, Elizabeth A. Waters, Benjamin D. Gastfriend, Brantley R. Herrin, Max D. Cooper and Eric V. Shusta
Pharmaceutics 2025, 17(9), 1179; https://doi.org/10.3390/pharmaceutics17091179 - 10 Sep 2025
Viewed by 559
Abstract
Background/Objectives: Receptor-mediated transcytosis utilizing the native transporters at the blood–brain barrier (BBB) is a growing strategy for the delivery of therapeutics to the brain. One of the major challenges in identifying appropriate human transcytosis targets is that there is a species-specific transporter [...] Read more.
Background/Objectives: Receptor-mediated transcytosis utilizing the native transporters at the blood–brain barrier (BBB) is a growing strategy for the delivery of therapeutics to the brain. One of the major challenges in identifying appropriate human transcytosis targets is that there is a species-specific transporter expression profile at the BBB, complicating translation of successful preclinical candidates into humans. In an effort to overcome this obstacle and identify proteins capable of binding human-relevant BBB ligands, we generated and screened a BBB-targeting library against human-induced pluripotent stem cell-derived brain microvascular endothelial-like cells (iPSC-derived BMEC-like cells). As targeting molecules, we used lamprey antibodies, known as variable lymphocyte receptors (VLRs), and generated a VLR library by immunizing lamprey with iPSC-derived BMEC-like cells, and inserting the resultant VLR repertoire into the yeast surface display system. Methods: The yeast displayed VLR library was then panned against human iPSC-derived BMEC-like cells and lead VLRs were validated using human in vitro models and mouse and human ex vivo brain tissue sections. Results: Finally, brain uptake for a set of VLRs was validated in mice. Of the 15 lead VLR candidates, 14 bound to human BBB antigens, and 10 bound to the murine BBB. Pharmacodynamic testing using the neuroactive peptide neurotensin indicated that the lead candidate, VLR2G, could cross the mouse BBB after intravenous injection and deliver sufficient neurotensin payload to generate a pharmacological response and lower systemic body temperature. Conclusions: Together, these results demonstrate the application of a novel screening technique capable of identifying a VLR with human relevance that can cross the BBB and deliver a payload. Full article
(This article belongs to the Special Issue Advancements and Innovations in Antibody Drug Conjugates)
Show Figures

Figure 1

14 pages, 1689 KB  
Article
Crossing Barriers: PEGylated Gold Nanoparticles as Promising Delivery Vehicles for siRNA Delivery in Alzheimer’s Disease
by Elżbieta Okła, Marcin Hołota, Sylwia Michlewska, Serafin Zawadzki, Katarzyna Miłowska, Javier Sánchez-Nieves, Rafael Gómez, Francisco Javier De la Mata, Maria Bryszewska and Maksim Ionov
Biomedicines 2025, 13(9), 2108; https://doi.org/10.3390/biomedicines13092108 - 29 Aug 2025
Viewed by 632
Abstract
Background: The proportion of people suffering from neurodegenerative conditions, such as Alzheimer’s disease (AD), is increasing in the population year on year. Despite the constant effort of researchers, these conditions remain incurable and can only be managed by alleviation or delaying of [...] Read more.
Background: The proportion of people suffering from neurodegenerative conditions, such as Alzheimer’s disease (AD), is increasing in the population year on year. Despite the constant effort of researchers, these conditions remain incurable and can only be managed by alleviation or delaying of symptoms. The lack of suitable treatment is caused by constricted access to the brain, limited by the brain-blood barrier. The aim of this work was to investigate two pegylated gold nanoparticles as potential carriers of therapeutic siRNA and their impact on the cellular functions of Human Brain Endothelial Cells. Methods and Results: Nanoparticles AuNP14a and AuNP14b complexed with siRNA were internalized by HBEC-5i cells and located in the cytoplasm. The genotoxicity assay proved that the nucleus was not affected and complexed nanoparticles did not cause DNA damage. The reactive oxygen species formation and mitochondrial membrane potential changes were measured and showed an adaptive response of cells after compound administration. Results obtained in a cytotoxicity assay conducted on astrocytes and pericytes, which are components of the blood–brain barrier, confirmed the biosafety of tested nanoparticles. Conclusions: In summary, it was shown that AuNP14a and AuNP14b are promising candidates as nanocarriers for therapeutic nucleic acids through biological barriers. Full article
(This article belongs to the Special Issue Recent Advances in Targeted Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 3925 KB  
Communication
Identifying Angiogenic Factors in Pediatric Choroid Plexus Papillomas
by Nurfarhanah Bte Syed Sulaiman, Sofiah M. Y. Sng, Khurshid Z. Merchant, Lee Ping Ng, David C. Y. Low, Wan Tew Seow and Sharon Y. Y. Low
NeuroSci 2025, 6(3), 76; https://doi.org/10.3390/neurosci6030076 - 11 Aug 2025
Viewed by 726
Abstract
(1) Background: Choroid plexus papillomas (CPPs) are rare brain tumors that tend to occur in very young children. Mechanisms of CPP development remain unelucidated. Separately, the process of angiogenesis has been implicated in other primary brain tumors. We hypothesize that angiogenesis is a [...] Read more.
(1) Background: Choroid plexus papillomas (CPPs) are rare brain tumors that tend to occur in very young children. Mechanisms of CPP development remain unelucidated. Separately, the process of angiogenesis has been implicated in other primary brain tumors. We hypothesize that angiogenesis is a hallmark of CPP biology. This study aims to identify and validate angiogenic factors in CPPs. (2) Methods: Cerebrospinal fluid (CSF) and CPP tumor samples are collected. A multiplex immunoassay panel is used to identify differentially expressed cytokines in the CSF samples. Concurrently, patient-derived primary cell cultures and their supernatants are derived from CPP samples. Targeted proteome blot arrays and human umbilical vein endothelial cell (HUVEC) angiogenesis assays are used for validation studies. (3) Results: CSF profiling showed higher expressions of VEGF-A, MCP-1, MMP-1, TNF-α, and CD40L in CPP patient samples versus non-tumor controls. Next, assessment via online protein–protein network platforms reports that these cytokines are associated with endothelial cell regulation. Using an angiogenesis-focused approach, CPP-derived cell lines and supernatants showed similarly higher expressions of VEGF, MCP-1, and MMP-1. Next, sprouting of nodes and tubule formation were observed in HUVEC angiogenesis assay cultures when conditioned CPP cell culture media was added. (4) Conclusions: This proof-of-concept study demonstrates potential to explore angiogenesis in CPP. Full article
Show Figures

Figure 1

27 pages, 6405 KB  
Article
PDMS Membranes Drilled by Proton Microbeam Writing: A Customizable Platform for the Investigation of Endothelial Cell–Substrate Interactions in Transwell-like Devices
by Vita Guarino, Giovanna Vasco, Valentina Arima, Rosella Cataldo, Alessandra Zizzari, Elisabetta Perrone, Giuseppe Gigli and Maura Cesaria
J. Funct. Biomater. 2025, 16(8), 274; https://doi.org/10.3390/jfb16080274 - 28 Jul 2025
Viewed by 2010
Abstract
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering [...] Read more.
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering of the pore pattern. In this context, we propose the fabrication of a transwell-like device pursued by combining the proton beam writing (PBW) technique with wet etching onto thin layers of polydimethylsiloxane (PDMS). The resulting transwell-like device incorporates a PDMS membrane with finely controllable pore patterning that was used to study the arrangement and migration behavior of HCMEC/D3 cells, a well-established human brain microvascular endothelial cell model widely used to study vascular maturation in the brain. A comparison between commercial polycarbonate membranes and the PBW-holed membranes highlights the impact of the ordering of the pattern and porosity on cellular growth, self-organization, and transmigration by combining fluorescent microscopy and advanced digital processing. Endothelial cells were found to exhibit distinctive clustering, alignment, and migratory behavior close to the pores of the designed PBW-holed membrane. This is indicative of activation patterns associated with cytoskeletal remodeling, a critical element in the angiogenic process. This study stands up as a novel approach toward the development of more biomimetic barrier models (such as organ-on-chips). Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

17 pages, 1525 KB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 834
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

16 pages, 14493 KB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 702
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

17 pages, 6355 KB  
Article
Regulation of Hindbrain Vascular Development by rps20 in Zebrafish
by Xinyu Shen, Zhaozhi Wen, Shunze Deng, Yuxuan Qiu, Weijie Ma, Xinyue Dong, Jie Gong, Yu Zhang, Dong Liu and Bing Xu
Cells 2025, 14(14), 1070; https://doi.org/10.3390/cells14141070 - 13 Jul 2025
Viewed by 827
Abstract
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies [...] Read more.
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies to alleviate aging-associated neurological diseases. In this study, we investigated the role of aging-related genes in brain vascular development using zebrafish as an in vivo model. By thoroughly analyzing scRNA-seq datasets of mid- and old-aged brain vascular endothelial cells (human/mouse), we found ribosomal protein S20 (rps20) significantly down-regulated during aging. qPCR analysis and whole-mount in situ hybridization validated a high expression of rps20 during early zebrafish development, which progressively decreased in adult and aged zebrafish brains. Functional studies using the CRISPR/Cas9-mediated knockout of rps20 revealed an impaired growth of central arteries in the hindbrain and a marked increased intracranial hemorrhage incidence. Mechanistically, qPCR analysis demonstrated a significant downregulation of vegfa, cxcl12b, and cxcr4a, key signaling molecules required for hindbrain vascular development, in rps20-deficient embryos. In conclusion, our findings demonstrate that rps20 is essential for proper brain vascular development and the maintenance of vascular homeostasis in zebrafish, revealing a novel mechanism by which aging-related genes regulate brain vascular development. This study provides new insights that may aid in understanding and treating aging-associated vascular malformations and neurological pathologies. Full article
Show Figures

Figure 1

32 pages, 5511 KB  
Article
Development of Carbohydrate Polyelectrolyte Nanoparticles for Use in Drug Delivery Systems that Cross the Blood–Brain Barrier to Treat Brain Tumors
by Vladimir E. Silant’ev, Mikhail E. Shmelev, Andrei S. Belousov, Fedor O. Trukhin, Nadezhda E. Struppul, Aleksandra A. Patlay, Anna K. Kravchenko, Sergey P. Shchava and Vadim V. Kumeiko
Polymers 2025, 17(12), 1690; https://doi.org/10.3390/polym17121690 - 18 Jun 2025
Cited by 1 | Viewed by 723
Abstract
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among [...] Read more.
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among materials capable of binding drug molecules and successfully crossing the BBB. Biopolymeric nanoparticles (NPs) demonstrate excellent biocompatibility and have the remarkable ability to modify the environment surrounding tumor cells, thereby potentially improving cellular uptake of delivery agents. In our research, nanoscale polyelectrolyte complexes (PECs) ranging in size from 56 to 209 nm were synthesized by ionic interaction of the oppositely charged polysaccharides pectin and chitosan. The structural characteristics of these complexes were carefully characterized by infrared (FTIR) and Raman spectroscopy. The immobilization efficiency of antitumor drugs was comprehensively evaluated using UV spectrophotometry. The cytotoxicity of the NPs was evaluated in the U87-MG cell line. The preliminary data indicate a significant decrease in the metabolic activity of these tumor cells. Important details on the interaction of the NPs with an endothelial layer structurally similar to the BBB were obtained by simulating the BBB using a model based on human blood vessels. Our studies allowed us to establish a significant correlation between the kinetic parameters of drug immobilization and the ratio of biopolymer concentrations in the initial compositions, which provides valuable information for future optimization of drug delivery system design. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

18 pages, 741 KB  
Review
Cardiovascular Toxicity of Metal-Based Nanoparticles
by Eun-Hye Kim, Sehyeon Park and Ok-Nam Bae
Int. J. Mol. Sci. 2025, 26(12), 5816; https://doi.org/10.3390/ijms26125816 - 17 Jun 2025
Viewed by 1773
Abstract
The rapid development of nanotechnology has led to increased human exposure to metal-based nanoparticles (MNPs) through inhalation, ingestion, and dermal contact, raising growing concerns on their potential health effects. Due to their nanoscale size and unique physicochemical properties, the MNPs can translocate from [...] Read more.
The rapid development of nanotechnology has led to increased human exposure to metal-based nanoparticles (MNPs) through inhalation, ingestion, and dermal contact, raising growing concerns on their potential health effects. Due to their nanoscale size and unique physicochemical properties, the MNPs can translocate from the initial exposure sites to the circulatory system and accumulate in the body. This review focuses on MNP-induced cardiovascular toxicity, highlighting its biodistribution, cytotoxic mechanisms, and pathological impact associated with various cardiovascular diseases. MNPs disrupt endothelial function, promote oxidative stress, and induce apoptosis and ferroptosis in cardiovascular cells. Furthermore, MNPs increase endothelial permeability, impair blood–brain barrier integrity, and enhance procoagulant activity, thereby contributing to vascular and cardiac dysfunction. The particles and their released metal ions play a synergistic role in mediating these toxic effects. Here, we focused on the effects of nano-sized particles while incorporating recent in vitro and in vivo studies that address the cardiovascular impacts and mechanisms of MNP-induced toxicity. This comprehensive review will help understand and explain the potentially toxic effects of MNPs on the cardiovascular system. Full article
Show Figures

Figure 1

18 pages, 3851 KB  
Article
Protective Effects of Extracts from Green Leaves and Rhizomes of Posidonia oceanica (L.) Delile on an In Vitro Model of the Human Blood–Brain Barrier
by Giulia Abruscato, Manuela Mauro, Marie-Christine Boucau, Vincenzo Arizza, Mirella Vazzana, Lucie Dehouck, Fabien Gosselet, Claudio Luparello and Pietra Candela
Biology 2025, 14(6), 699; https://doi.org/10.3390/biology14060699 - 14 Jun 2025
Viewed by 3143
Abstract
Posidonia oceanica (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood–brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts [...] Read more.
Posidonia oceanica (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood–brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts from its green leaves (GLEs) and rhizomes (REs) to protect the BBB using a human in vitro model consisting of brain-like endothelial cells co-cultured with brain pericytes. The model was exposed to TNFα, with or without GLEs or REs. We assessed NO production, endothelial permeability, expression of IL-6, NLRP3, ICAM-1, VCAM-1, CLAUDIN-5, and VE-CADHERIN, and the localization of junctional proteins. TNFα increased NO and IL-6 release, upregulated ICAM-1, VCAM-1, and NLRP3, and impaired BBB integrity by altering junctional protein levels and distribution. Co-treatment with GLEs or REs reduced the production of NO, the expression of NLRP3 and adhesion molecules and restored tight and adherens junction integrity. IL-6 levels remained unaffected. These findings suggest that P. oceanica’s extracts may help preserve BBB function and mitigate inflammation-induced damage. While further studies are needed to assess their bioavailability and in vivo efficacy, these natural compounds represent promising candidates for developing preventive strategies against neuroinflammatory disorders. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Figure 1

23 pages, 8153 KB  
Article
SARS-Cov-2 Replication in a Blood–Brain Barrier Model Established with Human Brain Microvascular Endothelial Cells Induces Permeability and Disables ACE2-Dependent Regulation of Bradykinin B1 Receptor
by Sharton Vinicius Antunes Coelho, Gabriela Lisboa e Souza, Bruno Braz Bezerra, Luan Rocha Lima, Isadora Alonso Correa, Dalziza Victalina de Almeida, Rodrigo Pacheco da Silva-Aguiar, Ana Acácia S. Pinheiro, Pierre Sirois, Celso Caruso-Neves, Luciana Jesus da Costa, Julio Scharfstein and Luciana Barros de Arruda
Int. J. Mol. Sci. 2025, 26(12), 5540; https://doi.org/10.3390/ijms26125540 - 10 Jun 2025
Cited by 1 | Viewed by 1567
Abstract
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), [...] Read more.
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), a proinflammatory peptide that induces microvascular leakage via B2R. Under inflammatory conditions, BK is converted to Des-Arg-BK (DABK), which activates B1R, a receptor upregulated in inflamed tissues. DABK is degraded by ACE2, the main SARS-CoV-2 receptor; thus, viral binding and ACE2 downregulation may lead to DABK/B1R imbalance. Here, we investigated these interactions using human brain microvascular endothelial cells (HBMECs), as a model of the BBB. Since endothelial cell lines express low levels of ACE2, HBMECs were modified with an ACE2-carrying pseudovirus. SARS-CoV-2 replication was confirmed by RNA, protein expression, and infectious particles release. Infection upregulated cytokines and endothelial permeability, enhancing viral and leukocyte transmigration. Additionally, viral replication impaired ACE2 function in HBMECs, amplifying the response to DABK, increasing nitric oxide (NO) production, and further disrupting endothelial integrity. Our findings reveal a mechanism by which SARS-CoV-2 impacts the BBB and highlights the ACE2/KKS/B1R axis as a potential contributor to long COVID-19 neurological symptoms. Full article
Show Figures

Figure 1

12 pages, 1810 KB  
Article
Examining Stromal Cell Interactions in an In Vitro Blood–Brain Barrier Model with Human Umbilical Vein Endothelial Cells
by Andrea Margari, Simon Konig, Vignesh Jayarajan, Silvia Rizzato, Giuseppe Maruccio and Emad Moeendarbary
Cells 2025, 14(11), 759; https://doi.org/10.3390/cells14110759 - 22 May 2025
Cited by 1 | Viewed by 1085
Abstract
Understanding the function of the blood–brain barrier (BBB) in health and disease, as well as improving drug delivery across the BBB, remains a critical priority in neuroscience research. However, current in vitro models of the BBB have become increasingly complex and challenging to [...] Read more.
Understanding the function of the blood–brain barrier (BBB) in health and disease, as well as improving drug delivery across the BBB, remains a critical priority in neuroscience research. However, current in vitro models of the BBB have become increasingly complex and challenging to implement. In this study, we present a simplified microfluidic BBB model in which human umbilical vein endothelial cells (HUVECs) are cultured as a monolayer along a fibrin gel containing human pericytes and astrocytes. Remarkably, within just three days, the 3D co-culture significantly enhanced barrier formation and upregulated the expression of tight-junction proteins in HUVECs. These findings demonstrate that HUVECs, which have been extensively used for over 50 years to study vascular endothelium due to their ease of isolation and culture, can adapt their phenotype towards that of BBB endothelial cells under appropriate conditions. This microfluidic BBB model offers a valuable tool for drug development and for advancing our understanding of BBB physiology in both health and disease contexts. Full article
(This article belongs to the Collection Emerging Topics in Vascular Endothelial Cell Biology)
Show Figures

Figure 1

25 pages, 12805 KB  
Article
From the Gut to the Brain: Transcriptomic Insights into Neonatal Meningitis Escherichia coli Across Diverse Host Niches
by Lekshmi K. Edison and Subhashinie Kariyawasam
Pathogens 2025, 14(5), 485; https://doi.org/10.3390/pathogens14050485 - 15 May 2025
Viewed by 1268
Abstract
Neonatal Meningitis-causing Escherichia coli (NMEC) is the leading cause of neonatal meningitis and exhibits remarkable adaptability to diverse host environments. Understanding its transcriptional responses across different host niches is crucial for deciphering pathogenesis and identifying potential therapeutic targets. We performed a comparative transcriptomic [...] Read more.
Neonatal Meningitis-causing Escherichia coli (NMEC) is the leading cause of neonatal meningitis and exhibits remarkable adaptability to diverse host environments. Understanding its transcriptional responses across different host niches is crucial for deciphering pathogenesis and identifying potential therapeutic targets. We performed a comparative transcriptomic analysis of NMEC RS218, the prototype strain of NMEC, under four distinct host-mimicking conditions: colonic fluid (CF), serum (S), human brain endothelial cells (HBECs), and cerebrospinal fluid (CSF). Differential gene expression analysis was conducted to assess metabolic shifts, virulence factor regulation, and niche-specific adaptation strategies, in which RS218 demonstrated niche-specific transcriptional reprogramming. In CF, genes associated with biofilm formation, motility, efflux pumps, and cell division regulation were upregulated, aiding gut colonization. The serum environment triggered the expression of siderophore-mediated iron acquisition, enterobactin biosynthesis, and heme utilization genes, facilitating immune evasion and bacterial persistence. In HBECs, NMEC upregulated genes linked to nucleoside metabolism, membrane remodeling, pilus organization, and blood–brain barrier (BBB) traversal. In CSF, genes related to oxidative stress resistance, chemotaxis, DNA repair, biofilm formation, and amino acid biosynthesis were enriched, reflecting NMEC’s adaptive mechanisms for survival under nutrient-depleted conditions. Energy-intensive pathways were consistently downregulated across all niches, highlighting the need for an energy conservation strategy. This study provides novel insights into NMEC’s adaptive strategies across different host environments, emphasizing its metabolic flexibility, virulence regulation, and immune evasion mechanisms, offering potential targets for therapeutic intervention. Full article
Show Figures

Figure 1

15 pages, 3262 KB  
Article
Profiling Tight Junction Protein Expression in Brain Vascular Malformations
by Leire Pedrosa, Alejandra Mosteiro, Luis Reyes, Sergio Amaro, Sebastián Menéndez-Girón, Mateo Cortés Rivera, Carlos J. Domínguez, Anna M. Planas, Ramon Torné and Ana Rodríguez-Hernández
Int. J. Mol. Sci. 2025, 26(10), 4558; https://doi.org/10.3390/ijms26104558 - 9 May 2025
Viewed by 782
Abstract
Recent studies suggest that blood–brain barrier (BBB) disruption plays a key role in the clinical course and bleeding risk of brain arteriovenous malformations (bAVMs). The tight junctions (TJs) are complex endothelial transmembrane proteins with a significant physical contribution to BBB disruption. In this [...] Read more.
Recent studies suggest that blood–brain barrier (BBB) disruption plays a key role in the clinical course and bleeding risk of brain arteriovenous malformations (bAVMs). The tight junctions (TJs) are complex endothelial transmembrane proteins with a significant physical contribution to BBB disruption. In this study, we hypothesized that bAVMs display a different TJ pattern than other vascular malformations and normal brain tissue. We studied the expression of claudin-5 and occludin as essential factors for functional TJs. Human specimens of surgically resected cavernomas (CCMs) (n = 9), bAVMs (n = 17), and perilesional brain parenchyma (6 from CCMs and 16 from bAVM patients) were analyzed via immunofluorescence staining, transmission electron microscopy (TEM), and Western blot tests. Compared to perilesional parenchyma, bAVMs showed a significant decrease in TJ protein expression, and these alterations were more apparent in ruptured bAVMs than in unruptured bAVMs or CCMs. TEM images provided evidence of disrupted connectivity between endothelial cells of bAVMs. This is the first clinical investigation that studies the expression of TJs in human bAVMs and their surrounding parenchyma. Despite the limitations of the sample size, we found significant differences in the expression and composition of TJs in bAVMs when compared to surrounding parenchyma and other vascular lesions such as CCMs. These results add further evidence to the role of BBB disruption in the clinical course of bAVM. A deeper understanding of these mechanisms may lead to the development of new therapeutic targets and management strategies for bAVMs. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop