Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = IR drying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2456 KB  
Article
Drying Molybdate/Iron Hydroxide Interface Leading to Both Inner- and Outer-Sphere Surface Complexes Depending on Initial Concentrations
by Romain Botella and Grégory Lefèvre
Colloids Interfaces 2025, 9(5), 59; https://doi.org/10.3390/colloids9050059 - 5 Sep 2025
Viewed by 163
Abstract
Drying is ubiquitous. However, its influence on surface speciation has been seldom studied. Through an in situ Attenuated Total Reflection–Infrared (ATR-IR) spectroscopy analysis of the drying of molybdate solutions on a lepidocrocite particle film, the change in surface speciation is followed. No formation [...] Read more.
Drying is ubiquitous. However, its influence on surface speciation has been seldom studied. Through an in situ Attenuated Total Reflection–Infrared (ATR-IR) spectroscopy analysis of the drying of molybdate solutions on a lepidocrocite particle film, the change in surface speciation is followed. No formation polymolybdates nor precipitate are observed upon drying at pH 8. An in situ washing of the dried solid/solution interface unveils the existence of surface outer-sphere and inner-sphere complexes. Decreasing the molybdate concentration highlights a saturation effect of the surface upon drying. Moreover, the careful analysis of substrate IR bands showed non-uniform drying which is an important insight to understand dehydration chemistry. The remaining molybdate ions at the surface as inner-sphere complexes are present as binuclear monodentate complexes stabilized by sodium. Full article
(This article belongs to the Special Issue Ten Years Without Nikola Kallay)
Show Figures

Graphical abstract

27 pages, 10300 KB  
Article
Investigation of Fenbendazole Solubility Using Particle Size Reduction Methods in the Presence of Soluplus®
by Amirhossein Karimi, Pedro Barea, Óscar Benito-Román, Beatriz Blanco, María Teresa Sanz, Clement L. Higginbotham and John G. Lyons
Pharmaceutics 2025, 17(9), 1163; https://doi.org/10.3390/pharmaceutics17091163 - 4 Sep 2025
Viewed by 410
Abstract
Background/Objectives: Fenbendazole is a potential cancer treatment and a proven antiparasitic in veterinary applications. However, its poor water solubility limits its application. In this study, potential fenbendazole solubility enhancement was investigated through size reduction methods. The effect of the presence of Soluplus [...] Read more.
Background/Objectives: Fenbendazole is a potential cancer treatment and a proven antiparasitic in veterinary applications. However, its poor water solubility limits its application. In this study, potential fenbendazole solubility enhancement was investigated through size reduction methods. The effect of the presence of Soluplus® on solubility was investigated as well. Methods: Solubility enhancement was explored using microfluidization and ultrasonication techniques. These techniques were applied to fenbendazole alone and in combination with Soluplus®. UV–Vis spectroscopy was used to determine solubility. Possible chemical reactions were checked using Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) was conducted to analyze the physical structure and crystallinity of the samples. Scanning electron microscopy (SEM) was also utilized for characterization of the effect of the treated formulations and the size reduction method on morphology. The elements present in samples were identified with energy-dispersive X-ray spectroscopy (EDX) combined with SEM. A comparison of crystalline structure between the products was performed via X-ray powder diffraction (XRPD). Dynamic light scattering (DLS) was also used to measure the samples’ average particle size at different stages. Results: Both ultrasonication and microfluidization led to marginal increases in the solubility of neat fenbendazole. In contrast, formulations processed in the presence of Soluplus® demonstrated a greater enhancement in solubility. However, solubility improvement was not retained in the dried samples. The post-drying samples, irrespective of the presence of Soluplus®, showed nearly the same solubility as neat fenbendazole. Conclusions: Size-reduction methods, particularly when combined with Soluplus®, improved the solubility of fenbendazole. However, drying appeared to reverse these gains, regardless of the method used. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

16 pages, 2837 KB  
Article
Effects of Drying Methods on Drying Characteristics and Physicochemical Quality of Turnip Slices (Brassica rapa L.)
by Fan Yang, Jingshou Zhang, Arun S. Mujumdar, Parag Prakash Sutar, Xiaokang Yi, Xufeng Wang, Can Hu, Jiabao Ni and Hongwei Xiao
Processes 2025, 13(9), 2773; https://doi.org/10.3390/pr13092773 - 29 Aug 2025
Viewed by 639
Abstract
To identify the optimal drying methods for turnip slices, vacuum freeze-drying (VFD), air impingement drying (AID), infrared-assisted hot air drying (IR-HAD), and conventional hot air drying (HAD) were evaluated. The physicochemical properties of dried samples were comprehensively assessed under varied drying conditions. The [...] Read more.
To identify the optimal drying methods for turnip slices, vacuum freeze-drying (VFD), air impingement drying (AID), infrared-assisted hot air drying (IR-HAD), and conventional hot air drying (HAD) were evaluated. The physicochemical properties of dried samples were comprehensively assessed under varied drying conditions. The results demonstrated that AID achieved the shortest drying time (240 min). At identical temperatures, AID samples exhibited significantly lower total color difference (ΔE) compared with IR-HAD and HAD, alongside superior retention of total phenols and enhanced antioxidant activity. VFD yielded the highest quality attributes, including optimal rehydration capacity, maximal phenol retention, and the strongest antioxidant activity (DPPH: 16.56 ± 0.26 μmol Trolox/g; FRAP: 13.99 ± 0.04 μmol Trolox/g). SEM analysis revealed that VFD produced a loose, porous microstructure, explaining its enhanced rehydration. Overall, both AID (efficiency) and VFD (quality) show promise for industrial turnip processing. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

22 pages, 1528 KB  
Article
Physical–Chemical Assessment and Antimicrobial Activity of Chlortetracycline-Loaded Collagen Sponges
by Graţiela Teodora Tihan, Camelia Ungureanu, Ileana Rău, Roxana Gabriela Zgârian, Răzvan Constantin Barbaresso, Mădălina Georgiana Albu Kaya, Cristina-Elena Dinu-Pîrvu and Mihaela Violeta Ghica
Materials 2025, 18(17), 4029; https://doi.org/10.3390/ma18174029 - 28 Aug 2025
Viewed by 503
Abstract
Collagen-based biomaterials are increasingly explored in dentistry for their ability to deliver drugs locally and support healing. In this study, we developed chlortetracycline-loaded collagen sponges aimed at preventing postoperative infections. Five formulations were prepared by lyophilization, each with the same collagen-to-drug ratio but [...] Read more.
Collagen-based biomaterials are increasingly explored in dentistry for their ability to deliver drugs locally and support healing. In this study, we developed chlortetracycline-loaded collagen sponges aimed at preventing postoperative infections. Five formulations were prepared by lyophilization, each with the same collagen-to-drug ratio but different glutaraldehyde (GA) concentrations: 0%, 0.25%, 0.5%, 0.75%, and 1% (w/w) relative to dry collagen. The sponges were characterized using FT-IR and UV–VIS–NIR spectroscopy, and their swelling capacity, enzymatic stability, and drug release kinetics were evaluated. Antibacterial activity was tested against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. Statistical differences between formulations were assessed using one-way ANOVA followed by Tukey’s post hoc test (p < 0.05). All sponges released the antibiotic rapidly within the first 60 min, followed by a sustained release for up to 10 h. The non-crosslinked sponge showed the highest antimicrobial effect, while the 0.25% GA formulation offered a good balance between stability and bioactivity. While higher cross-linking enhanced structural stability, it progressively reduced antimicrobial efficacy, highlighting a crucial design trade-off. These findings underline the need to fine-tune cross-linking conditions to achieve both durability and strong antimicrobial action in collagen-based drug delivery systems for dental applications. Full article
Show Figures

Figure 1

31 pages, 5205 KB  
Article
Analysis of Thermal and Catalytic Pyrolysis Processes in Belém: A Socioeconomic Perspective
by Fernanda Paula da Costa Assunção, Jéssica Cristina Conte da Silva, Fernando Felipe Soares Almeida, Marcelo Costa Santos, Simone Patrícia Aranha da Paz, Douglas Alberto Rocha de Castro, Jorge Fernando Hungria Ferreira, Neyson Martins Mendonça, Mel Safira Cruz do Nascimento, José Almir Rodrigues Pereira, Aline Christian Pimentel Almeida, Sergio Duvoisin Junior, Luiz Eduardo Pizarro Borges and Nélio Teixeira Machado
Energies 2025, 18(17), 4532; https://doi.org/10.3390/en18174532 - 27 Aug 2025
Viewed by 521
Abstract
This study aims to assess the by-products generated through the thermal and catalytic pyrolysis of the organic matter and paper fractions of municipal solid waste (MSW) in different socioeconomic regions, through the yields of reaction products (bio-oil, biochar, H2O, and gas), [...] Read more.
This study aims to assess the by-products generated through the thermal and catalytic pyrolysis of the organic matter and paper fractions of municipal solid waste (MSW) in different socioeconomic regions, through the yields of reaction products (bio-oil, biochar, H2O, and gas), acid value and chemical composition of bio-oils, and characterization of biochar, on a laboratory scale. The organic matter and paper segregated from the gravimetric composition of the total waste sample were subjected to drying, crushing, and sieving pre-treatment. The experiments were carried out at 450 °C and 1.0 atmosphere, and at 400 °C and 475 °C and 1.0 atmosphere, using a basic catalyst, Ca(OH)2, at 10.0% by mass, in discontinuous mode. The bio-oil was characterized by acidity value and the chemical functions present in the bio-oil identified by FT-IR, NMR, and composition by GC-MS. The biochar was characterized by SEM/EDS and XRD. The bio-oil yield increased with the addition of the catalyst and the pyrolysis temperature. For catalytic pyrolysis, bio-char and gas yields increased slightly with the Ca(OH)2 content, while bio-oil and H2O phases remained constant. The GC-MS of the liquid reaction products identified the presence of hydrocarbons and oxygenates, as well as nitrogen-containing compounds, including amides and amines. The acidity of the bio-oil decreased with the addition of the basic catalyst in the process. The concentration of hydrocarbons in the bio-oil appeared with the addition of the catalyst in the catalytic pyrolysis process as the catalytic deoxygenation of fatty acid molecules occurred, through decarboxylation/decarbonylation, producing aliphatic and aromatic hydrocarbons, introducing the basic catalyst into the thermal process. Full article
Show Figures

Figure 1

17 pages, 3151 KB  
Article
Towards a Consensus for the Analysis and Exchange of TFA as a Counterion in Synthetic Peptides and Its Influence on Membrane Permeation
by Vanessa Erckes, Alessandro Streuli, Laura Chamera Rendueles, Stefanie Dorothea Krämer and Christian Steuer
Pharmaceuticals 2025, 18(8), 1163; https://doi.org/10.3390/ph18081163 - 5 Aug 2025
Viewed by 1018
Abstract
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as [...] Read more.
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as a cleavage agent and ion-pairing reagent, respectively, resulting in peptides being obtained as TFA salts. Although TFA has excellent properties for peptide production, numerous studies highlight the negative impact of using peptides from TFA salts in biological assays. Methods: Investigated peptides were synthesized via SPPS and the TFA counterion was exchanged for Cl via freeze-drying in different concentrations of HCl. Detection and quantification of residual TFA were carried out via FT-IR, 19F-NMR, and HPLC using an evaporative light-scattering detector (ELSD). A liposomal fluorescence assay was used to test for the influence of the counterion on the peptides’ passive membrane permeability. Results: All TFA detection methods were successfully validated according to ICH guidelines. TFA removal with 10 mM HCl was determined to be the optimal condition. No impact on peptide purity was observed at all HCl concentrations. Influences on permeability coefficients depending on peptide sequence and salt form were found. Conclusions: This study presents a systematic investigation of the removal of TFA counterions from synthetic peptides and their replacement with Cl counterions. Detected counterion contents were used to understand the impact of sequence differences, especially positive charges, on the amount and potential localization of counterions. Our findings emphasize the importance of counterion quantification and specification in assays with synthetic peptides. Full article
Show Figures

Graphical abstract

23 pages, 1784 KB  
Article
Study on the Adsorption Characteristics of Spirulina Dry Powder Biomass for Rare Earth Element Praseodymium(III): Adsorption Isotherms, Kinetics, and Thermodynamics Analysis
by Zhenxiang Hu, Caixia Zhang and Qing Shu
Separations 2025, 12(8), 195; https://doi.org/10.3390/separations12080195 - 25 Jul 2025
Viewed by 497
Abstract
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under [...] Read more.
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under optimized conditions (pH = 5, adsorbent dosage = 2.0 g/L, initial Pr3+ concentration = 100 mg/L, and adsorption time = 60 min), the removal efficiency of Pr3+ reached 79.0%. FT-IR and XPS characterization confirmed the participation of various functional groups on the Spirulina surface in the adsorption process. When 0.1 mol/L HNO3 was used as the desorption agent, the desorption rate of Pr3+ from Spirulina reached 91.7%, demonstrating excellent regeneration performance. At different temperatures (298–318 K), the adsorption data were fitted using Langmuir, Freundlich, Dubinin–Radushkevich, and Redlich–Peterson models. Among them, the Langmuir model (R2 ranged from 0.993 to 0.999) provided the best fit, and the adsorption capacity of Spirulina for Pr3+ was in the range of 51.10 to 55.31 mg/g. Kinetic studies revealed that the pseudo-second-order model (R2 = 0.999) best described the adsorption process, with a rate constant of 0.054 g/(mg·min) (R2 was 0.999) at an initial Pr3+ concentration of 300 mg/L, indicating chemisorption-controlled behavior. Thermodynamic parameter analysis showed that within the experimental temperature range, ΔG0 < 0 and ΔS0 > 0, confirming that the adsorption process was spontaneous and endothermic. This study provides a novel technical approach for the green recovery of rare earth elements and highlights the potential of Spirulina biomass in rare earth resource recycling. Full article
Show Figures

Graphical abstract

18 pages, 6787 KB  
Article
Analysis of the Intermittent Characteristics of Streamflow in Taiwan
by Xi Fang, Hsin-Yu Chen and Hsin-Fu Yeh
Water 2025, 17(14), 2090; https://doi.org/10.3390/w17142090 - 13 Jul 2025
Viewed by 482
Abstract
More than half of the world’s rivers are intermittent, and climate change is increasing their intermittency, affecting water resources and ecosystems. In Taiwan, steep topography and uneven rainfall have led to increased intermittency in some areas, reflecting changes in hydrological conditions. Using streamflow [...] Read more.
More than half of the world’s rivers are intermittent, and climate change is increasing their intermittency, affecting water resources and ecosystems. In Taiwan, steep topography and uneven rainfall have led to increased intermittency in some areas, reflecting changes in hydrological conditions. Using streamflow data, this study applied intermittency ratio (IR), modified 6-month dry period seasonality (SD6), and trend analysis, as well as watershed properties and climate indices. Results showed that 92% of stations had low flows for less than 20% of the time. The dry season was mainly from November to April, and intermittency was spatially affected mainly by upstream soil moisture, moderately by potential evapotranspiration and infiltration, and less by actual evapotranspiration and catchment area. Intermittency increased in the east and decreased in the west. It was negatively correlated with upstream soil moisture and strongly associated with rainfall frequency, especially the proportion of days with precipitation less than 1 mm. These patterns highlight regional differences in river responses to climate. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 2518 KB  
Article
Injectable PEG-PCL-PEG Copolymers for Skin Rejuvenation: In Vitro Cell Studies to in Vivo Collagen Induction
by Seunghwa Lee, Aram Kim, Jimo Koo, Yunsik Kim, Sunglim Choi and Jin Cheol Cho
Polymers 2025, 17(14), 1892; https://doi.org/10.3390/polym17141892 - 8 Jul 2025
Viewed by 746
Abstract
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers [...] Read more.
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers were synthesized and structurally characterized using gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H-NMR), and Fourier transform infrared (FT-IR) spectroscopy. An optimized precipitation and drying protocol effectively reduced residual solvents, as confirmed by gas chromatography (GC). Idebenone was incorporated as an antioxidant to prevent skin aging, while hyaluronic acid (HA), L-arginine, and glycerin were included to promote collagen regeneration. In vitro assays demonstrated that idebenone-loaded samples exhibited prolonged intracellular antioxidant activity with low cytotoxicity. The collagen-promoting formulation, containing HA, glycerin, and L-arginine, enhanced the expression of transforming growth factor-β (TGF-β) and type III collagen (COL3) while suppressing inflammatory genes, suggesting a favorable environment for extracellular matrix remodeling. In vivo evaluation corroborated these outcomes, showing angiogenesis, collagen reorganization, and progressive dermal thickness. Histological analysis further confirmed sustained matrix regeneration and tissue integration. These results highlight the potential of PEG-PCL-PEG-based injectables as a multifunctional platform for collagen regeneration, offering a promising strategy for both cosmetic and clinical applications. Full article
(This article belongs to the Special Issue Polyester-Based Materials: 3rd Edition)
Show Figures

Figure 1

23 pages, 18015 KB  
Article
Interaction Mechanisms in «Portland Cement—Functional Polymer Mineral Additives» Binder Produced by Different Methods
by Valeria Strokova, Svetlana Bondarenko, Irina Markova, Natalia Kozhukhova, Nikita Lukyanenko and Danil Potapov
Materials 2025, 18(13), 3178; https://doi.org/10.3390/ma18133178 - 4 Jul 2025
Viewed by 397
Abstract
The construction industry is the main consumer of mineral resources. At the same time, the Portland cement (PC) industry occupies a leading position, using expensive, high-quality raw materials. This is due to the high rate of construction in different areas (industrial, civil, road [...] Read more.
The construction industry is the main consumer of mineral resources. At the same time, the Portland cement (PC) industry occupies a leading position, using expensive, high-quality raw materials. This is due to the high rate of construction in different areas (industrial, civil, road construction, etc.). The widespread application of PC is due primarily to the strength and durability of composite materials based on it. Taking into account their specific purpose, PC-based composites are usually optimized to achieve specified characteristics and rational use of raw materials. To reduce PC consumption and justify the possibility of its use in complex binders, this manuscript analyzes the composition of a functional polymer–mineral additive; the nature and mechanisms of its interaction with PC depend on the method of introducing the additive (dry mixing/joint grinding of the clinker–gypsum mixture with the additive at the stage of binder preparation). Based on the data of XRD, IR, and SEM analysis, as well as taking into account patent information, the composition of the additive was clarified. The combined application of the above methods allowed us to establish the uniformity of the additive distribution in the binder depending on the introduction method and to evaluate the effect of each additive component and its mutual impact on the processes occurring during cement hydration. As a result, it was established that the most effective introduction method is combined grinding. A phenomenological model of the structure formation of additives containing cement paste is proposed. The binder production by the combined grinding method promotes the intensification of the processes occurring during hydration, as evidenced by the data of qualitative and quantitative XRD, IR, and DTA analysis, differential scanning calorimetry (DSC), and TGA analysis. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Figure 1

18 pages, 6422 KB  
Article
Sugarcane Bagasse Fast Pyrolysis: Pilot Plant Challenges
by Sophya de Andrade Dias, Nahieh Toscano Miranda, Rubens Maciel Filho, Leandro Alcoforado Sphaier and York Castillo Santiago
Processes 2025, 13(7), 2116; https://doi.org/10.3390/pr13072116 - 3 Jul 2025
Viewed by 1678
Abstract
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and [...] Read more.
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and adopting renewable fuel alternatives. Therefore, this work aimed to produce bio-oil through sugarcane bagasse fast pyrolysis. The methodology is based on fast pyrolysis operation in a fluidized bed reactor (pilot plant) as a thermochemical method for bio-oil production. This research required the conditioning of the raw material for system feeding, along with optimizing key variables, operating temperature, airflow, and sugarcane bagasse feed rate, to achieve improved yields compared to previous studies conducted in this pilot plant. The sugarcane bagasse was conditioned through drying and milling, followed by characterization using various analytical methods, including calorific value, thermogravimetric analysis (TGA), particle size analysis by laser diffraction (Mastersizer—MS), and ultimate analysis (determining carbon, hydrogen, nitrogen, sulfur, and oxygen by difference). The bio-oil produced showed promising yield results, with a maximum estimated value of 61.64%. Fourier Transform Infrared Spectroscopy (FT-IR) analysis confirmed the presence of aromatic compounds, as well as ester, ether, carboxylic acid, ketone, and alcohol functional groups. Full article
(This article belongs to the Special Issue Advances in Gasification and Pyrolysis of Wastes)
Show Figures

Figure 1

23 pages, 4608 KB  
Article
Step-by-Step Analysis of a Copper-Mediated Surface-Initiated Atom-Transfer Radical Polymerization Process for Polyacrylamide Brush Synthesis Through Infrared Spectroscopy and Contact Angle Measurements
by Leonardo A. Beneditt-Jimenez, Isidro Cruz-Cruz, Nicolás A. Ulloa-Castillo and Alan O. Sustaita-Narváez
Polymers 2025, 17(13), 1835; https://doi.org/10.3390/polym17131835 - 30 Jun 2025
Viewed by 530
Abstract
Polymer brushes (PBs) are transformative surface-modifying nanostructures, yet their synthesis via controlled methods like copper-mediated surface-initiated atom-transfer radical polymerization (Cu0-SI-ATRP) faces reproducibility challenges due to a lack of understanding of parameter interdependencies. This study systematically evaluates the Cu0-SI-ATRP process [...] Read more.
Polymer brushes (PBs) are transformative surface-modifying nanostructures, yet their synthesis via controlled methods like copper-mediated surface-initiated atom-transfer radical polymerization (Cu0-SI-ATRP) faces reproducibility challenges due to a lack of understanding of parameter interdependencies. This study systematically evaluates the Cu0-SI-ATRP process for polyacrylamide brushes (PAM-PBs), aiming to clarify key parameters that influence the synthesis process. This evaluation followed a step-by-step characterization that tracked molecular changes through infrared spectroscopy (IR) and surface development by contact angle (CA) through two different mixing methods: ultrasonic mixing and process simplification (Method A) and following literature-based parameters (Method B). Both methods, consisting of surface activation, 3-aminopropyltriethoxysilane (APTES) deposition, bromoisobutyryl bromide (BiBB) anchoring, and polymerization, were analyzed by varying parameters like concentration, temperature, and time. Results showed ultrasonication during surface activation enhanced siloxane (1139→1115 cm−1) and amine (1531 cm−1) group availability while reducing APTES concentration to 1 Vol% without drying sufficed for BiBB anchoring. BiBB exhibited insensitivity to concentration but benefited from premixing, evidenced by sharp C–Br (~1170 cm−1) and methyl (3000–2800 cm−1) bands. Additionally, it was observed that PAM-PBs improved with Method A, which had reduced variance in polymer fingerprint regions compared to Method B. Adding to the above, CA measurements gave complementary step-by-step information along the modifications of the surface, revealing distinct wettability behaviors between bulk PAM and synthesized PAM-PBs (from 51° to 37°). As such, this work identifies key parameter influence (e.g., mixing, BiBB concentration), simplifies steps (drying omission, lower APTES concentration), and demonstrates a step-by-step, systematic parameter decoupling that reduces variability. In essence, this detailed parameter analysis addresses the PAM-PBs synthesis process with better reproducibility than the previously reported synthesis method and achieves the identification of characteristic behaviors across the step-by-step process without the imperative need for higher-cost characterizations. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Mexico)
Show Figures

Graphical abstract

16 pages, 678 KB  
Article
High Methoxyl Pectin–Tomato Paste Edible Films Formed Under Different Drying Temperatures
by Georgia Palavouzi, Charalampos Oikonomidis, Marianthi Zioga, Christos Pappas and Vasiliki Evageliou
Polysaccharides 2025, 6(3), 55; https://doi.org/10.3390/polysaccharides6030055 - 20 Jun 2025
Viewed by 673
Abstract
Pectin–tomato paste edible films with potential antioxidant activity were studied. Initially, the films were formed by drying at 40 °C in the presence and absence of glycerol. The effect of drying temperature on several physicochemical, mechanical, and optical properties of glycerol films formed [...] Read more.
Pectin–tomato paste edible films with potential antioxidant activity were studied. Initially, the films were formed by drying at 40 °C in the presence and absence of glycerol. The effect of drying temperature on several physicochemical, mechanical, and optical properties of glycerol films formed after drying at 40, 50, and 60 °C was investigated. Finally, films formed at different drying conditions (namely F40, F50, and F60) sharing the same antioxidant activity (44.28–45.53%) were studied in terms of their surface pH; solubility; folding endurance; antimicrobial, dynamic mechanical, and barrier properties; contact angle; and FT-IR. Their thickness, weight, opacity, strength, stiffness, and antioxidant activity (AA) [a*] increased with increasing tomato paste content, whereas [L*] decreased. The moisture content was statistically affected by both the presence of glycerol and the drying temperature. AA decreased as drying temperature increased. Overall, the thickness varied from 45 to 182.31 μm, weight from 0.27 to 1.24 g, moisture content from 20.74 to 56.66%, stress from 189 to 959 kPa, Young’s modulus from 86 to 382 kPa, and AA from 16.9 to 53%. In the last step, F60 was less hydrophilic, had a greater density, and better barrier properties, whereas F50 was stiffer and the least strong. Our findings provide information regarding the selection of an optimum drying temperature for pectin-based films with antioxidant properties. Full article
Show Figures

Figure 1

17 pages, 3077 KB  
Article
Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs
by Petra Party, Zsófia Ilona Piszman and Rita Ambrus
Pharmaceuticals 2025, 18(6), 923; https://doi.org/10.3390/ph18060923 - 19 Jun 2025
Viewed by 783
Abstract
Background/Objectives: Chronic lung diseases are among the leading causes of death worldwide. In the treatment of these diseases, non-steroidal anti-inflammatory drugs can be effective. We have previously developed an excipient formulation alongside a modern manufacturing protocol, which we aim to further investigate. We [...] Read more.
Background/Objectives: Chronic lung diseases are among the leading causes of death worldwide. In the treatment of these diseases, non-steroidal anti-inflammatory drugs can be effective. We have previously developed an excipient formulation alongside a modern manufacturing protocol, which we aim to further investigate. We have chosen two new model drugs, meloxicam (MX) and its water-soluble salt, meloxicam-potassium (MXP). The particles in dry powder inhaler (DPI) formulation were expected to have a spherical shape, fast drug release, and good aerodynamic properties. Methods: The excipients were poloxamer-188, mannitol, and leucine. The samples were prepared by spray drying, preceded by solution preparation and wet grinding. Particle size was determined by laser diffraction, shape by scanning electron microscopy (SEM), crystallinity by powder X-ray diffraction (PXRD), interactions by Fourier-transform infrared spectroscopy (FT-IR), in vitro drug dissolution by paddle apparatus, and in vitro aerodynamic properties by Andersen cascade impactor and Spraytec® device. Results: We achieved the proper particle size (<5 μm) and spherical shape according to laser diffraction and SEM. The XRPD showed partial amorphization. FT-IR revealed no interaction between the materials. During the in vitro dissolution tests, more than 90% of MX and MXP were released within the first 5 min. The best products exhibited an aerodynamic diameter of around 4 µm, a fine particle fraction around 50%, and an emitted fraction over 95%. The analysis by Spraytec® supported the suitability for lung targeting. Conclusions: The developed preparation process and excipient system can be applied in the development of different drugs containing DPIs. Full article
(This article belongs to the Special Issue Recent Advances in Inhalation Therapy)
Show Figures

Graphical abstract

14 pages, 2818 KB  
Article
Microencapsulation of Lactiplantibacillus plantarum BXM2 in Bamboo Shoot-Derived Nanocellulose Hydrogel to Enhance Its Survivability
by Yajuan Huang, Qiao Guan, Yirui Wu, Chaoyang Zheng, Lingyue Zhong, Wen Xie, Jiaxin Chen, Juqing Huang, Qi Wang and Yafeng Zheng
Gels 2025, 11(6), 465; https://doi.org/10.3390/gels11060465 - 18 Jun 2025
Viewed by 529
Abstract
This study presents a novel approach for enhancing the survivability of Lactiplantibacillus plantarum BXM2 using bamboo shoot-derived nanocellulose hydrogels. Nanocellulose hydrogels, composed of cellulose nanofibers (CNFs), cellulose nanocrystals (CNCs), and polyvinyl alcohol (PVA), were developed as protective matrices for probiotics. Fourier transform infrared [...] Read more.
This study presents a novel approach for enhancing the survivability of Lactiplantibacillus plantarum BXM2 using bamboo shoot-derived nanocellulose hydrogels. Nanocellulose hydrogels, composed of cellulose nanofibers (CNFs), cellulose nanocrystals (CNCs), and polyvinyl alcohol (PVA), were developed as protective matrices for probiotics. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the successful formation of hydrogen-bonded networks between PVA and nanocelluloses, while scanning electron microscopy (SEM) revealed that the ternary PVA-CNF-CNC hydrogel exhibited a dense, hierarchical porous structure, effectively encapsulating probiotics with an encapsulation efficiency of 92.56 ± 0.53%. Under simulated gastrointestinal digestion, the encapsulated probiotics maintained 8.04 log CFU/g viability, significantly higher than that of free bacteria (3.54 log CFU/mL). The hydrogel also enhanced heat tolerance (6.58 log CFU/mL at 70 °C) and freeze-drying survival (86.92% viability), outperforming binary systems. During 60-day storage at 4 °C and 25 °C, encapsulated probiotics retained viability above the critical threshold (≥6 log CFU/unit), whereas free cells declined rapidly. These findings highlight the potential of PVA-CNF-CNC hydrogel as an efficient delivery system to improve probiotic stability in food applications. Full article
Show Figures

Figure 1

Back to TopTop