Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = ISSRs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6564 KB  
Article
Influence of Chlorella sorokiniana and Plant Growth Regulators During the Micropropagation of Callicarpa peichieniana
by Yiteng Zhang, Manna Guo, Jinfeng Xu, Yuping Xiong, Junyu Liu, Guohua Ma, Songjun Zeng, Kunlin Wu and Lin Fang
Horticulturae 2025, 11(9), 1016; https://doi.org/10.3390/horticulturae11091016 - 27 Aug 2025
Viewed by 426
Abstract
Callicarpa peichieniana is an important traditional Chinese medicinal plant with pharmacological benefits for digestive system diseases and wounds, as well as high ornamental value. The goal of this study is to establish an effective in vitro regeneration system in order to satisfy the [...] Read more.
Callicarpa peichieniana is an important traditional Chinese medicinal plant with pharmacological benefits for digestive system diseases and wounds, as well as high ornamental value. The goal of this study is to establish an effective in vitro regeneration system in order to satisfy the expanding market demand. Extracts from algae can enhance the proliferation and rooting effect of adventitious buds and can improve the survival rate of transplantation. This study developed an in vitro regeneration system using apical bud explants of C. peichieniana associated with Chlorella sorokiniana (an alga species). Inter simple sequence repeat (ISSR) molecular markers confirmed the genetic fidelity of the regenerated plantlets. The highest number of adventitious buds (5.00 buds) was induced from the apical buds with 0.5 mg/L 6-BA in a Murashige and Skoog (MS) medium, and the highest proliferation coefficient (5.83) was achieved with 2.0 mg/L 6-BA. A rooting rate of 100% was achieved by using 0.1 mg/L NAA, MS with 50% macroelements, and 20 g/L sucrose, averaging 6.36 roots per explant and a root length of 1.32 cm. In all micropropagation stages, C. sorokiniana coexisted and proliferated alongside C. peichieniana materials. ISSR showed that the genetic fidelity of C. peichieniana regenerated plants was 95.45%. Coconut coir/perlite = 1∶1 (v/v) was identified as the optimal transplantation substrate, achieving a 100% survival rate. The “C. peichienianaC. sorokiniana association” in vitro regeneration system established in this study not only enables the mass production of high-quality regenerated plantlets but provides new ideas and demonstrations for culturing multiple species in the same in vitro system. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

19 pages, 3537 KB  
Article
Efficient In Vitro Plantlet Regeneration from Stolon Explants and Genetic Stability Assessment Using ISSR Markers in the Ornamental Fern Hypolepis punctata
by Xinyuan Wang, Xuetong Yan, Keyuan Zheng, Hui Shen, Jianguo Cao, Qiang Zhou and Mulan Zhu
Plants 2025, 14(16), 2569; https://doi.org/10.3390/plants14162569 - 18 Aug 2025
Viewed by 388
Abstract
Hypolepis punctata, an aromatic fern with insect-resistant and ornamental potential. Up to date, no studies have reported its micropropagation, particularly using vegetative organs as explants. The optimized stolon sterilization (81.11%) employed 75% ethanol (30 s) and 15% sodium hypochlorite (12 min). The [...] Read more.
Hypolepis punctata, an aromatic fern with insect-resistant and ornamental potential. Up to date, no studies have reported its micropropagation, particularly using vegetative organs as explants. The optimized stolon sterilization (81.11%) employed 75% ethanol (30 s) and 15% sodium hypochlorite (12 min). The optimal conditions for GGB induction (75.56%) and proliferation (8.46 mm) were achieved using Murashige and Skoog (MS) medium + 2.0 mg/L 6-benzylaminopurine (BA) + 0.2 mg/L 1-naphthaleneacetic acid (NAA). The optimal plant growth regulator (PGR) formula for sporophyte regeneration was 0.5 mg/L BA + 0.1 mg/L NAA + 2 g/L activated charcoal (AC), achieving a 98.89% induction rate and 49.19 buds per explant. The 1/4 MS medium had the greatest promoting effect on biomass accumulation and leaf expansion. Optimal shoot elongation (97.78% success, 4.83 cm) was achieved in 1/4 MS + 0.5 mg/L BA + 0.1 mg/L NAA + 2 g/L AC, and optimized rooting (92.22%) was achieved using 1/4 MS + 0.5 mg/L indole-3-butyric acid (IBA) + 0.1 mg/L NAA + 2 g/L AC, producing 25.27 roots per plantlet. Crucially, ISSR analysis confirmed the genetic stability of all regenerants. This optimized protocol establishes a scalable micropropagation system, enhancing both commercial cultivation and genetic improvement potential in Hypolepis punctata. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

22 pages, 2851 KB  
Article
Propagation and Long-Term Storage of Rhaponticum carthamoides Under In Vitro Conditions
by Olesya Raiser, Damelya Tagimanova, Ainur Turzhanova, Saule Magzumova, Gulden Nagmetova, Zhanar Akhmetkarimova, Nataliya Premina, Nadezhda Filippova and Oxana Khapilina
Horticulturae 2025, 11(8), 952; https://doi.org/10.3390/horticulturae11080952 - 12 Aug 2025
Viewed by 373
Abstract
Rhaponticum carthamoides (Willd.) Iljin. (Leuzea carthamoides, Maral root), a medicinally valuable species listed in the Red Book of Kazakhstan, is known for its rich phytochemical profile. However, limited data exist on its microclonal propagation. This study aimed to optimize in vitro [...] Read more.
Rhaponticum carthamoides (Willd.) Iljin. (Leuzea carthamoides, Maral root), a medicinally valuable species listed in the Red Book of Kazakhstan, is known for its rich phytochemical profile. However, limited data exist on its microclonal propagation. This study aimed to optimize in vitro and medium-term storage conditions using biotechnological methods. Mature seeds collected from natural populations in the Kazakhstani Altai were germinated, and tissues from the seedlings were used as explants. Sterile shoots were cultured on Murashige and Skoog (MS) medium supplemented with 3.0 mg L−1 −6-benzylaminopurine and 3.0 mg L−1 kinetin. For shoot induction, MS medium supplemented with 0.5 mg L−1 meta-Topolin and using stem apices as explants yielded optimal results. Medium-term storage with chlorocholine chloride at 0.1–0.4 g/L effectively preserved regenerative capacity for further rooting. After 12 months of storage, plantlets were transferred to half-strength MS medium with 3.0 g/L activated carbon and at 2.0 or 5.0 mg L−1 indole-3-butyric acid for rooting. Regenerated plants were successfully acclimatized ex vitro. The 20-hydroxyecdysone content in field-grown plants post-storage reached 9.24 mg/mL, 2.4-fold higher than in wild plants. Inter simple sequence repeat analysis confirmed genetic stability. Our optimized protocol ensures high-yield metabolite production and genetic fidelity, enabling in vitro conservation, nursery-scale cultivation, and the restoration of R. carthamoides natural populations. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

24 pages, 6550 KB  
Article
DNA Fingerprint Profile of Zizania spp. Plant, Monitoring Its Leaves with Screening of Their Biological Activity: Antimicrobial, Antioxidant and Cytotoxicity
by Latifah A. Al Shammari
Life 2025, 15(8), 1240; https://doi.org/10.3390/life15081240 - 5 Aug 2025
Viewed by 469
Abstract
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), [...] Read more.
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), though distinct morphological and genetic traits suggested potential intraspecific variation. Phytochemical profiling identified high concentrations of bioactive compounds, including quercetin (42.1 µg/mL), β-caryophyllene (11.21%), and gallic acid (23.4 µg/mL), which are pertinent and correlated with robust biological activities. The ethanolic leaf extract exhibited significant antioxidant capacity (IC50 = 38.6 µg/mL in DPPH assay), potent antimicrobial effects against Candida albicans (C. albicans) (IC50 = 4.9 ± 0.6 µg/mL), and dose-dependent cytotoxicity against cancer cell lines. MCF-7 has the lowest IC50 (28.3 ± 1.5 µg/mL), indicating the highest potency among the tested cell lines. In contrast, HepG2 demonstrates moderate sensitivity (IC50 = 31.4 ± 1.8 µg/mL), while A549 shows the highest IC50 value (36.9 ± 2.0 µg/mL), indicating greater resistance. These findings underscore the taxonomic novelty of the specimen and its potential as a source of natural antioxidants, antimicrobials, and anticancer agents. The study highlights the importance of interdisciplinary approaches in resolving taxonomic uncertainties and unlocking the medicinal value of understudied aquatic plants. Full article
(This article belongs to the Special Issue Therapeutic Innovations from Plants and Their Bioactive Extracts)
Show Figures

Figure 1

18 pages, 5008 KB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 650
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

20 pages, 6808 KB  
Article
In Vitro Polyploidy Induction of Longshan Lilium lancifolium from Regenerated Shoots and Morphological and Molecular Characterization
by Yu-Qin Tang, Hong Zhang, Qin Qian, Shi-Yuan Cheng, Xiu-Xian Lu, Xiao-Yu Liu, Guo-Qiang Han and Yong-Yao Fu
Plants 2025, 14(13), 1987; https://doi.org/10.3390/plants14131987 - 29 Jun 2025
Viewed by 456
Abstract
Longshan Lilium lancifolium is a well-known medicinal and edible lily and has been registered as a geographical indicator in China. Polyploidization confers many advantages in lily production; however, characteristics of Longshan L. lancifolium improved by polyploidization have not been reported. Here, polyploidization was [...] Read more.
Longshan Lilium lancifolium is a well-known medicinal and edible lily and has been registered as a geographical indicator in China. Polyploidization confers many advantages in lily production; however, characteristics of Longshan L. lancifolium improved by polyploidization have not been reported. Here, polyploidization was induced in regenerated Longshan L. lancifolium shoots using colchicine, and the mutant plantlets were characterized by morphological observation, flow cytometry, and inter simple sequence repeat (ISSR) marker technology. The optimal medium for inducing shoot regeneration was Murashige and Skoog (MS) media supplemented with 0.2 mg/L of naphthaleneacetic acid (NAA) and 0.4 mg/L of thidiazuron (TDZ). The greatest mutation induction effect was obtained after soaking the regenerated shoots in 0.10% colchicine for 48 h, for an 80.00% frequency of morphological variants. Forty-one mutant plantlets were subjected to flow cytometry, identifying one homozygous polyploid, ‘JD-12’, and one chimeric polyploid, ‘JD-37’. Additionally, 68 chromosomes were found in the ‘JD-12’ root tip cells. Compared with the control, both the tissue-cultured and field-generated ‘JD-12’ plantlets presented a slight decrease in plant height, a darker green leaf color, a rougher leaf surface, and a larger bulblet diameter; furthermore, the upper epidermal and guard cells of ‘JD-12’ were much larger with a significantly lower stomatal density. The ISSR marker detection indicated a genetic variation rate of 6.10% in ‘JD-12’. These results provide a basis for lily polyploidization breeding and the cultivation of superior Longshan L. lancifolium via shoot regeneration. Full article
Show Figures

Figure 1

14 pages, 3143 KB  
Article
Characterization of a Gamma Radiation (60Co) Induced Mutant Population of Prickly Pear Cactus (Opuntia velutina F.A.C. Weber) Plants In Vitro Using ISSR Molecular Markers
by Eréndira Rubio-Ochoa, Eulogio De la Cruz-Torres, Rosa Elena Pérez-Sánchez, Héctor Eduardo Martínez-Flores, Liberato Portillo, Pedro Antonio García-Saucedo and Juan Florencio Gómez-Leyva
Horticulturae 2025, 11(7), 743; https://doi.org/10.3390/horticulturae11070743 - 27 Jun 2025
Viewed by 497
Abstract
The nopal cactus, a plant from the Cactaceae family, holds significant economic and nutritional value for Mexico. This study aimed to enhance the genetic diversity and morphological traits of Opuntia velutina, a species cultivated as a vegetable nopal. A total of 1050 in [...] Read more.
The nopal cactus, a plant from the Cactaceae family, holds significant economic and nutritional value for Mexico. This study aimed to enhance the genetic diversity and morphological traits of Opuntia velutina, a species cultivated as a vegetable nopal. A total of 1050 in vitro O. velutina explants were exposed to 15 different doses of gamma radiation from 60Co gamma, ranging from 5 to 125 Gy. The lethal dose was above 50 Gy, with an LD50 of 22.8 Gy for stimulating in vitro shoot growth. Shoots derived from doses between 5 and 50 Gy were subjected to in vitro shoot proliferation across four consecutive generations to stabilize morphological traits. Cluster analysis categorized the 178 irradiated shoots into 13 distinct morphological groups (CG1–CG13). Twenty-seven shoots exhibiting significant morphological improvements, such as a 50–100% increase in cladode length, up to a six-fold increase in shoot number, and up to a seven-fold increase in root number, were selected for molecular analysis of genetic diversity. Six primers were used with the Inter Simple Sequence Repeat (ISSR) molecular markers to examine genetic uniformity, yielding 54.5% polymorphic bands, indicating a high level of genetic variation. Both a UPGMA dendrogram and STRUCTURE-based Bayesian analysis confirmed the genetic divergence among the selected mutant lines. Overall, gamma irradiation effectively enhanced both phenotypic and genotypic diversity in O. velutina. This study corroborates that in vitro mutagenesis through gamma radiation is a viable strategy for generating novel genotypes with breeding potential within the Opuntia genus. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

12 pages, 1493 KB  
Article
Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program
by Marynor E. Ortega-Ramírez, Anuar Magaña-Álvarez, Daisy Pérez-Brito, Alberto Cortés-Velázquez, Ángel Nexticapan-Garcéz, Raúl Tapia-Tussell and Rodolfo Martín-Mex
Plants 2025, 14(12), 1888; https://doi.org/10.3390/plants14121888 - 19 Jun 2025
Viewed by 503
Abstract
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea [...] Read more.
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea was introduced to Mexico in 1971, and it is currently the fifth most utilized forest species in commercial forest plantations (CFPs). However, its genetic diversity has not been evaluated in Mexico. The objective of this research was to investigate the genetic variability of Melina in Mexico using molecular markers. This investigation was undertaken to acquire valuable insights for the implementation of effective improvement strategies. A total of 85 Melina samples were collected from various locations in southeastern Mexico between 2017 and 2022. Genetic fingerprints were obtained using ten simple primer amplification reactions (SPARs): five Directed Amplification of Minisatellite DNA regions (DAMD), and five Inter-Simple Sequence Repeats (ISSRs). The polymorphic information content (PIC) was 0.940 and 0.950 for the DAMD and ISSR, respectively, and the similarity coefficients ranged from 0.12 to 0.88, indicating a high degree of polymorphism in the species under investigation. This is the first attempt to ascertain the genetic variability of Gmelina arborea in Mexico. Full article
(This article belongs to the Special Issue Molecular Marker-Assisted Technologies for Crop Breeding)
Show Figures

Figure 1

1 pages, 127 KB  
Correction
Correction: Eimanifar et al. Using ISSR Genomic Fingerprinting to Study the Genetic Differentiation of Artemia Leach, 1819 (Crustacea: Anostraca) from Iran and Neighbor Regions with the Focus on the Invasive American Artemia franciscana. Diversity 2020, 12, 132
by Amin Eimanifar, Alireza Asem, Pei-Zheng Wang, Weidong Li and Michael Wink
Diversity 2025, 17(6), 396; https://doi.org/10.3390/d17060396 - 4 Jun 2025
Viewed by 231
Abstract
In the published publication [...] Full article
(This article belongs to the Section Animal Diversity)
25 pages, 4439 KB  
Article
Genetic Diversity and Metabolic Profile of Tibetan Medicinal Plant Saussurea obvallata
by Shengnan Zhang, Sujuan Wang, Shiyan Wang, Hao Su and Ji De
Genes 2025, 16(5), 593; https://doi.org/10.3390/genes16050593 - 17 May 2025
Viewed by 668
Abstract
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its [...] Read more.
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its genetic and chemical diversity to provide a scientific basis for the conservation and sustainable use of S. obv. Methods: Seven populations of S. obv were sampled from Xizang, China. The genetic diversity was analyzed using inter-simple sequence repeat (ISSR) markers, and metabolites were identified by ultra-high-performance liquid chromatography-tandem-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). Correlation analysis among genetic diversity, differential metabolites, and climatic factors were performed by R. Results: The genetic diversity among and within populations were both lowly and significantly correlated with geographical distance, showing a decreasing trend from east to west of the QTP. A total of 110 compounds were identified, including flavonoids, phenylpropanoids, lipids, fatty acids, terpenoids, alkaloids, etc. The metabolite contents among populations varied greatly and were related to environmental factors, mainly annual mean temperature and temperature fluctuation. The genetic diversity had little effect on the metabolic differences. Conclusions: These findings provided valuable baseline information for the conservation and pharmacological utilization of S. obv. Meanwhile, further research is necessary for the efficacy evaluation of anti-inflammatory, anti-tumor, radiation protection, and scar removal both in vitro and in vivo. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

28 pages, 5492 KB  
Article
In Vitro Propagation of Endangered Vanda coerulea Griff. ex Lindl.: Asymbiotic Seed Germination, Genetic Homogeneity Assessment, and Micro-Morpho-Anatomical Analysis for Effective Conservation
by Leimapokpam Tikendra, Asem Robinson Singh, Wagner Aparecido Vendrame and Potshangbam Nongdam
Agronomy 2025, 15(5), 1195; https://doi.org/10.3390/agronomy15051195 - 15 May 2025
Cited by 1 | Viewed by 1670
Abstract
In nature, orchid seed germination is extremely low, making in vitro asymbiotic seed germination essential for the propagation and conservation of endangered Vanda coerulea. This study optimized a micropropagation protocol and evaluated the genetic homogeneity of regenerated orchids. The synergistic effect of [...] Read more.
In nature, orchid seed germination is extremely low, making in vitro asymbiotic seed germination essential for the propagation and conservation of endangered Vanda coerulea. This study optimized a micropropagation protocol and evaluated the genetic homogeneity of regenerated orchids. The synergistic effect of kinetin (KN) with auxins in the Mitra (M) medium best supported protocorm formation and seedling development. The highest shoot multiplication (5.62 ± 0.09) was achieved with 1.2 mg L−1 KN and 0.6 mg L−1 IBA (indole-3-butyric acid) in the medium. Enhanced leaf production (4.81 ± 0.37) was observed when 3.2 mg L−1 KN was combined with 1.8 mg L−1 IAA (indole-3-acetic acid), while root development was superior when 3.2 mg L−1 KN together with 2.4 mg L−1 IAA was incorporated in the medium. Anatomical sections confirmed well-developed leaf and root structures. Genetic fidelity assessment using random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), inter-primer binding site (iPBS), and start codon targeted (SCoT) markers revealed 97.17% monomorphism (240/247 bands) and low Nei’s genetic distances (0.000–0.039), indicating high similarity among the regenerants. Dendrogram clustering was supported by a high cophenetic correlation coefficient (CCC = 0.806) and strong resolution in Principal Coordinate Analysis (PCoA) (44.03% and 67.36% variation on the first two axes). The Mantel test revealed a significant correlation between both ISSR and SCoT markers with the pooled marker data. Flow cytometry confirmed the genome stability among the in vitro-propagated orchids, with consistently low CV (FL2-A) values (4.37–4.94%). This study demonstrated the establishment of a reliable in vitro protocol for rapidly propagating genetically identical V. coerulea via asymbiotic seed germination. Full article
(This article belongs to the Special Issue Seeds for Future: Conservation and Utilization of Germplasm Resources)
Show Figures

Figure 1

16 pages, 2942 KB  
Article
In Vitro Propagation and Genetic Stability Assessment Using the ISSR Markers of Stachys byzantina K. Koch, a Promising Ornamental Species
by Stefanos Hatzilazarou, Chara Kantere, Aikaterini-Angeliki Kotoula, Athanasios Economou, Konstantinos Bertsouklis, Anastasios Darras and Stefanos Kostas
Horticulturae 2025, 11(5), 530; https://doi.org/10.3390/horticulturae11050530 - 14 May 2025
Viewed by 961
Abstract
In this study, a reliable and efficient micropropagation protocol was developed for Stachys byzantina, a valuable and promising ornamental species. For the initial in vitro cultures on the Murashige and Skoog (MS) medium, shoot tips were used as explants. The addition of [...] Read more.
In this study, a reliable and efficient micropropagation protocol was developed for Stachys byzantina, a valuable and promising ornamental species. For the initial in vitro cultures on the Murashige and Skoog (MS) medium, shoot tips were used as explants. The addition of 5 μM of kinetin (KIN) resulted in the production of multiple (6.0 shoots/explant) and elongated (3.6 cm) shoots. The MS medium supplemented with 10 μM of a-Naphthaleneacetic acid (NAA) proved efficient for the in vitro rooting (73.3%) of the microshoots. For the ex vitro rooting of the microshoots, the treatment with 0.5 g L−1 of Indole-3-butyric acid potassium salt (K-IBA), before planting in 1:1 (v/v) peat and perlite substrate and placed in a fog system, led to 86.7% rooting. The acclimatization stage was successful, and 96.7% survival was recorded for the ex vitro-rooted plantlets. Inter Simple Sequence Repeat (ISSR) markers were employed to examine the genetic uniformity of the in vitro-derived plantlets with the mother S. byzantina plants. The monomorphic banding pattern in the micropropagated plants and the mother plant confirmed the genetic uniformity of the in vitro-derived plantlets and revealed the reliability of the proposed in vitro protocol for S. byzantina. As far as we know, this is the first study on a combined micropropagation and genetic uniformity assessment of the species, the findings of which could be further used to apply new in vitro cultivation techniques or to produce elite genotypes of S. byzantina. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Figure 1

13 pages, 1936 KB  
Protocol
Rapid and Efficient DNA Extraction Protocol from Peruvian Native Cotton (Gossypium barbadense L.) Lambayeque, Peru
by Luis Miguel Serquén Lopez, Herry Lloclla Gonzales, Wilmer Enrique Vidaurre Garcia, Ricardo Leonidas de Jesus Velez Chicoma and Mendoza Cornejo Greta
Methods Protoc. 2025, 8(3), 50; https://doi.org/10.3390/mps8030050 - 7 May 2025
Viewed by 787
Abstract
Efficient extraction of high-quality DNA from plants is a critical challenge in molecular research, especially in species such as Gossypium barbadense L., native to Peru, due to the presence of inhibitors such as polysaccharides and phenolic compounds. This study presents a modified CTAB-based [...] Read more.
Efficient extraction of high-quality DNA from plants is a critical challenge in molecular research, especially in species such as Gossypium barbadense L., native to Peru, due to the presence of inhibitors such as polysaccharides and phenolic compounds. This study presents a modified CTAB-based protocol with silica columns that is designed to overcome these limitations without the need for liquid nitrogen or expensive reagents. Native cotton samples were collected in Lambayeque, Peru, and processed using a simplified procedure that optimizes the purity and concentration of the extracted DNA. Eight cultivars of G. barbadense L. with colored fibers (cream, fifo, light brown, dark brown, orange-brown, reddish, fine reddish, and white) were evaluated, yielding DNA with A260/A280 ratios between 2.14 and 2.19 and A260/A230 ratios between 1.8 and 3.14; these values are higher than those obtained with the classical CTAB method. DNA quality was validated by PCR amplification using ISSR and RAPD molecular markers, which yielded clear and well-defined banding patterns. Furthermore, the extracted DNA was suitable for advanced applications, such as Sanger sequencing, by which high-quality electropherograms were obtained. The results demonstrate that the proposed protocol is an efficient, economical, and adaptable alternative for laboratories with limited resources, allowing the extraction of high-quality DNA from Gossypium barbadense L. and other plant species. This simplified approach facilitates the development of genetic and biotechnological research, contributing to the knowledge and valorization of the genetic resources of Peruvian native cotton. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Graphical abstract

22 pages, 4531 KB  
Article
Genetic Variation and Differentiation of Himantoglossum s.s. in Greece
by Spyros Tsiftsis, Martha Charitonidou, Panagiotis Madesis and Andreas D. Drouzas
Diversity 2025, 17(5), 329; https://doi.org/10.3390/d17050329 - 3 May 2025
Viewed by 537
Abstract
The taxonomic identification of plant species is traditionally based on morphological traits, the use of which may create difficulties in cases of close-related species showing great morphological variability. In such cases, the use of DNA markers for species identification and delimitation can be [...] Read more.
The taxonomic identification of plant species is traditionally based on morphological traits, the use of which may create difficulties in cases of close-related species showing great morphological variability. In such cases, the use of DNA markers for species identification and delimitation can be of great help. Himantoglossum W.D.J.Koch (Orchidaceae) is a genus with notable morphological variability, comprising the clade hircinum-caprinum (Himantoglossum s.s.) with nine taxa, from which H. jankae, H. hircinum, H. montis-tauri, H. caprinum and H. samariense have being reported in Greece. However, a previous morphological study of Himantoglossum s.s. from all over Greece could not verify the presence of these reported species, but of only one highly diverse taxon throughout the country. Here, we studied the genetic variation and differentiation of Himantoglossum s.s. populations from the entire distribution of the genus in Greece employing ISSR markers, to further elucidate the taxonomic status of Himantoglossum s.s. in Greece. High genetic variation was revealed, both in the populations of the “core” distribution and in the peripheral/marginal ones, pointing to their evolutionary potential. This variation is mainly attributed to differences within the populations and, to a lesser extent, among them. No differentiation of the populations proposed to belong to a different taxon was found and no species-specific markers were identified that may discriminate the above populations from the rest. In addition, two cpDNA and one nDNA fragments (accD, psbA-trnH and ITS2, respectively) were sequenced in a number of individuals representative of the whole dataset. All three fragments were conserved, showing restricted polymorphism and having no correlation to the populations or to the taxa of Himantoglossum s.s. in Greece. Overall, the high genetic variation of the populations of Himantoglossum s.s. in Greece, especially of the peripheral/marginal ones, is a valuable asset towards their conservation. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

19 pages, 2442 KB  
Article
The Genetic Diversity and Phylogeography of the Iberian Endemic Steppe Plant Moricandia moricandioides (Boiss.) Heywood, Inferred from ISSR, Plastid DNA, and ITS Sequences
by Juan F. Jiménez, Esteban Salmerón-Sánchez, Juan F. Mota and Pedro Sánchez-Gómez
Diversity 2025, 17(5), 310; https://doi.org/10.3390/d17050310 - 25 Apr 2025
Viewed by 571
Abstract
Moricandia moricandiodes is an endemic species found in the south and east of the Iberian Peninsula. Five subspecies have been recognized, and all exist as fragmented populations on limestones and marls with salt and gypsum intrusions under a continental Mediterranean climate, except for [...] Read more.
Moricandia moricandiodes is an endemic species found in the south and east of the Iberian Peninsula. Five subspecies have been recognized, and all exist as fragmented populations on limestones and marls with salt and gypsum intrusions under a continental Mediterranean climate, except for one of the subspecies, which inhabits semi-arid and hotter environments. In this study, we sampled populations covering the distribution area of the species and performed a population and phylogeographic study to assess the evolutionary history of populations and the taxonomic relationships of subspecies. ISSR markers, nrITS, and plastid sequences were used in the analyses. The results revealed that, in general, southern populations showed higher genetic diversity than northern populations, suggesting that the former are located in glacial refugia. Furthermore, we did not find clear differences between subspecies, except for M. moricandioides subsp. pseudofoetida, which showed exclusive haplotypes and an exclusive ribotype. Isolation and rapid divergence are discussed as the probable causes of differentiation, whereas bottlenecks and secondary contact between populations would explain the absence of differentiation among the other subspecies. Finally, we propose a few guidelines for the conservation of M. moricandioides. Full article
Show Figures

Figure 1

Back to TopTop