Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,217)

Search Parameters:
Keywords = Infrared Spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1844 KB  
Article
Infrared Drying of Banana Slices: Quality Evaluation Using Spectral and Microstructural Analysis
by Melih Atmaca and Mehmet Burak Büyükcan
Appl. Sci. 2025, 15(17), 9632; https://doi.org/10.3390/app15179632 (registering DOI) - 1 Sep 2025
Abstract
This study evaluates the drying kinetics of banana slices sliced at various infrared powers and measurable values, as well as the spectral and microstructural changes that some physical quality parameters present. Banana slices were dried at 300, 400, and 500 W (894, 1190 [...] Read more.
This study evaluates the drying kinetics of banana slices sliced at various infrared powers and measurable values, as well as the spectral and microstructural changes that some physical quality parameters present. Banana slices were dried at 300, 400, and 500 W (894, 1190 and 1410 W/m2 infrared radiation intensity) medium wavelength infrared (MWIR). In addition, banana samples were sliced to be 6–8 and 10 mm. The drying processes were terminated when the samples reached approximately 30% moisture level. After drying, banana samples’ quality values, such as color, shrinkage, and water loss were evaluated. FT-NIR (Fourier Transform-Near Infrared) spectroscopy and microstructure measurements were performed. For banana slices dried at different powers with medium-wavelength infrared, the shortest drying time is for 6 mm thick products and can be operated in the range of 33–36 min−1. When the color values were examined, it was determined that the lowest total color changes occurred at 500 W drying power. In shrinkage measurements, samples dried at 500 W power were observed at the highest frosting. In water loss analyses, statistically similar results were obtained at 500 W drying power for various thicknesses. While the microstructural configurations of sliced banana samples were observed to be smoother during drying, samples dried at 300 W power were detected in a tighter form during drying and they were combined more regularly at 500 W power. FT-NIR spectral measurements were again expressed independently of the reflection values due to the wide pore range in high-power infrared drying (500 W). Full article
(This article belongs to the Section Food Science and Technology)
15 pages, 7285 KB  
Article
Biomass-Derived Magnetic Fe3O4/Biochar Nanoparticles from Baobab Seeds for Sustainable Wastewater Dye Remediation
by Samah Daffalla
Int. J. Mol. Sci. 2025, 26(17), 8499; https://doi.org/10.3390/ijms26178499 (registering DOI) - 1 Sep 2025
Abstract
This work presents the synthesis and application of magnetic Fe3O4 nanoparticles supported on baobab seed-derived biochar (Fe3O4/BSB) for removing Congo red (CR) dye from aqueous solutions through an oxidative process. The biochar support offered a porous [...] Read more.
This work presents the synthesis and application of magnetic Fe3O4 nanoparticles supported on baobab seed-derived biochar (Fe3O4/BSB) for removing Congo red (CR) dye from aqueous solutions through an oxidative process. The biochar support offered a porous structure with a surface area of 85.6 m2/g, facilitating uniform dispersion of Fe3O4 nanoparticles and efficient oxidative activity. Fourier-transform infrared (FT–IR) spectroscopy analysis confirmed surface fictionalization after Fe3O4 incorporation, while scanning electron microscopy (SEM) images revealed a rough, porous morphology with well-dispersed nanoparticles. Thermogravimetric analysis (TGA) demonstrated enhanced thermal stability, with Fe3O4/BSB retaining ~40% of its mass at 600 °C compared to ~15–20% for raw baobab seeds. Batch experiments indicated that operational factors such as pH, nanoparticles dosage, and initial dye concentration significantly affected removal efficiency. Optimal CR removal (94.2%) was achieved at pH 4, attributed to stronger electrostatic interactions, whereas efficiency declined from 94.1% to 82.8% as the initial dye concentration increased from 10 to 80 mg/L. Kinetic studies showed that the pseudo-second-order model accurately described the oxidative degradation process. Reusability tests confirmed good stability, with removal efficiency decreasing only from 92.6% to 80.7% after four consecutive cycles. Overall, Fe3O4/BSB proves to be a thermally stable, magnetically recoverable, and sustainable catalyst system for treating dye-contaminated wastewater. Full article
18 pages, 1507 KB  
Article
A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation
by Andjela Stefanović, Muhammad Yasir, Gerard Tobías-Rossell, Stefania Sandoval Rojano, Dušan Sredojević, Dejan Kepić, Duška Kleut, Warda Saeed, Miloš Milović, Danica Bajuk-Bogdanović and Svetlana Jovanović
Molecules 2025, 30(17), 3579; https://doi.org/10.3390/molecules30173579 (registering DOI) - 1 Sep 2025
Abstract
The presence of secondary electromagnetic waves (EMWs) results in EMW pollution and a large need for EMW-shielding materials. Therefore, new, lightweight, flexible, chemically resistant, and durable EMW shielding materials are demanded, while graphene and its derivatives meet the above-mentioned requirements. Among graphene derivatives, [...] Read more.
The presence of secondary electromagnetic waves (EMWs) results in EMW pollution and a large need for EMW-shielding materials. Therefore, new, lightweight, flexible, chemically resistant, and durable EMW shielding materials are demanded, while graphene and its derivatives meet the above-mentioned requirements. Among graphene derivatives, N-doped graphene exhibits promising electrical properties for shielding applications, although achieving sufficient N-incorporation in the graphene sheets remains a challenge. Herein, we produced graphene oxide using the modified Hummers’ method (GO) and the electrochemical exfoliation of highly ordered pyrolytic graphite. These two GO samples were thermally treated at 500 °C and 800 °C under a pure NH3 gas for 1 h. UV-Vis, infrared, and Raman spectroscopies and X-ray diffraction, elemental, and thermogravimetric analyses were used to investigate the structural properties of modified GO. One of the highest levels of N-doping of GO was measured (11.25 ± 0.08 at%). The modification under a NH3 atmosphere leads to simultaneous N-doping and reduction of graphene, resulting in the formation of electrically conductive and EMW shielding materials. Density functional theory (DFT) revealed the effect of heteroatoms on the energy band gap of GO. The cluster corresponding to N-doped rGO had a reduced bandgap of 0.77 eV. Full article
23 pages, 3485 KB  
Article
Analysis of the Effect of the Tablet Matrix on the Polymorphism of Ibuprofen, Naproxen, and Naproxen Sodium in Commercially Available Pharmaceutical Formulations
by Edyta Leyk, Marcin Środa, Gracjan Maślanka, Patrycja Nowaczyk, Amelia Orzołek, Hanna Grodzka, Aleksandra Kurek, Olaf Knut, Julia Michalak, Jonatan Płachciak and Alina Plenis
Methods Protoc. 2025, 8(5), 99; https://doi.org/10.3390/mps8050099 (registering DOI) - 1 Sep 2025
Abstract
Pharmaceutical formulations, in addition to the medicinal substance(s), contain added excipients that make it possible to create a pharmaceutical product that exhibits required properties in terms of mechanical, physical, chemical, and microbiological stability. Additionally, these substances can act as release modifiers or improve [...] Read more.
Pharmaceutical formulations, in addition to the medicinal substance(s), contain added excipients that make it possible to create a pharmaceutical product that exhibits required properties in terms of mechanical, physical, chemical, and microbiological stability. Additionally, these substances can act as release modifiers or improve bioavailability parameters. Literature data indicate that excipients, especially polymeric ones, can also affect the polymorphism of the active substance, resulting in drug bioavailability enhancement or reduction. This influence can be evaluated using thermal and spectroscopic methods. In the study, differential scanning calorimetry (DSC), vibrational spectroscopic studies (Fourier transform infrared spectroscopy, FTIR), Raman spectroscopy, and X-ray diffraction (XRD) assay of ibuprofen, naproxen, and naproxen sodium standards and pharmaceutical preparations containing these medicinal substances in their compositions were carried out. DSC results indicated that a sharp melting peak was observed on the DSC curves of the standards, confirming their crystalline form. DSC results obtained for pharmaceutical formulations also indicated that the enthalpy of melting is sometimes lower than calculated from the percentage of active ingredients in the formulations. In addition, the melting peak is often broadened and shifted toward lower temperatures, suggesting the influence of excipients on the polymorphism of drug substances. The FTIR and Raman spectra of pharmaceutical formulations contained all characteristics of the active substances. XRD analysis was also performed. Therefore, possible chemical interactions between the components of the preparations have been excluded. At the same time, FTIR and Raman spectroscopy results as well as XRD assay showed a reduction in the height of signals corresponding to the crystalline API form, confirming the possibility of reducing API crystallinity in pharmaceutical formulations. Full article
(This article belongs to the Special Issue Analytical Methods in Natural Sciences and Archaeometry)
15 pages, 2116 KB  
Article
A Fundamental Study on the Selective Flotation Separation of Magnesite and Quartz Using an Eco-Friendly Collector PKO-H: A Performance and Adsorption Mechanism Study
by Lifeng Ma, Hailiang Zhang, Guosong Zhang, Ziheng Fan and Panxing Zhao
Minerals 2025, 15(9), 933; https://doi.org/10.3390/min15090933 (registering DOI) - 1 Sep 2025
Abstract
To achieve efficient desilication and improve the grade of magnesite, an environmentally friendly surfactant, cocamidopropyl dimethylamine (PKO-H), was employed as a collector for the flotation separation of magnesite and quartz. The flotation performance and adsorption mechanism of PKO-H was systematically investigated through flotation [...] Read more.
To achieve efficient desilication and improve the grade of magnesite, an environmentally friendly surfactant, cocamidopropyl dimethylamine (PKO-H), was employed as a collector for the flotation separation of magnesite and quartz. The flotation performance and adsorption mechanism of PKO-H was systematically investigated through flotation experiments, Fourier-transform infrared spectroscopy (FTIR), contact angle measurements, zeta potential analysis, and molecular simulations. The flotation results demonstrated that PKO-H exhibited excellent selectivity, achieving a MgO recovery rate of 98.8% and a concentrate grade of 45.7% in artificially mixed mineral samples. Contact angle measurements, FTIR spectra, zeta potential analysis, and molecular simulations revealed that the adsorption of PKO-H on quartz is primarily driven by electrostatic attraction. In contrast, due to electrostatic repulsion, the interaction between PKO-H and magnesite is weak, preventing stable adsorption. This study establishes PKO-H as a sustainable and efficient collector for magnesite beneficiation and provides new insights into interfacial mechanisms for the design of eco-friendly flotation reagents. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 1046 KB  
Article
Time-Domain Analysis of Low- and High-Frequency Near-Infrared Spectroscopy Sensor Technologies for Characterization of Cerebral Pressure–Flow and Oxygen Delivery Physiology: A Prospective Observational Study
by Amanjyot Singh Sainbhi, Nuray Vakitbilir, Tobias Bergmann, Kevin Y. Stein, Rakibul Hasan, Noah Silvaggio, Mansoor Hayat, Jaewoong Moon and Frederick A. Zeiler
Sensors 2025, 25(17), 5391; https://doi.org/10.3390/s25175391 (registering DOI) - 1 Sep 2025
Abstract
Cerebrovascular reactivity, cerebral autoregulation (CA), and oxygen delivery can be measured continuously and in a non-invasive fashion using cerebral near-infrared spectroscopy (NIRS). Although the literature is limited surrounding the difference between signals acquired and derived from low (<100 Hz) and high sampling rates [...] Read more.
Cerebrovascular reactivity, cerebral autoregulation (CA), and oxygen delivery can be measured continuously and in a non-invasive fashion using cerebral near-infrared spectroscopy (NIRS). Although the literature is limited surrounding the difference between signals acquired and derived from low (<100 Hz) and high sampling rates (≥100 Hz). As part of a prospective observational study, we preliminarily explored and assessed the difference in the information provided by two NIRS systems using regional cerebral oxygen saturation and cerebral oximetry index signals at low and high sampling rates. The raw data in two frequencies (down-sampled to 1 Hz using the mean and up-sampled to 250 Hz) were decimated to focus on slow-wave vasogenic fluctuations associated with CA. Then, the data were analyzed using various statistical methods such as the absolute signal difference, Pearson correlation, Bland–Altman agreement, Cross-correlation function, optimal time-series autocorrelative structure, time-series impulse response function, and Granger causality relationships. The results of the various statistical analyses indicated that the signals obtained using high-frequency NIRS were different from signals obtained from low-frequency NIRS of the same cerebral region. Hence, high-frequency NIRS systems may possibly contain better signal features compared to NIRS systems with low sampling rates, but further work is required to assess high-frequency NIRS in other healthy and cranial trauma populations. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Laser Spectroscopy and Sensing)
Show Figures

Figure 1

22 pages, 3151 KB  
Article
Comparative Removal of Hexavalent Chromium from Aqueous Solution Using Plant-Derived and Industrial Zirconia Nanoparticles
by Guojie Weng, Weidong Li, Fengyue Qin, Menglu Dong, Shuangqi Yue, Jiechang Weng and Sajid Mehmood
Processes 2025, 13(9), 2794; https://doi.org/10.3390/pr13092794 - 1 Sep 2025
Abstract
This study presents a plant-fabricated nanoparticle system of zirconia (ZrO2) using Sonchus asper plant extract, compared with conventionally synthesized ZrO2, for their efficacy in Cr(VI) removal from aqueous solutions. The nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy [...] Read more.
This study presents a plant-fabricated nanoparticle system of zirconia (ZrO2) using Sonchus asper plant extract, compared with conventionally synthesized ZrO2, for their efficacy in Cr(VI) removal from aqueous solutions. The nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) for elemental composition, Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis. The plant-fabricated ZrO2 exhibited mesoporosity and enhanced surface functionality, attributed to bioactive compounds from Sonchus asper, which improved adsorption performance via increased surface area and residual organic functional groups. Batch adsorption experiments showed that Cr(VI) removal was optimized at 100 mg/L Cr(VI), 300 mg/L adsorbent dosage, pH 5, and 30 min reaction time at 25 °C. Adsorption followed the Langmuir isotherm and pseudo-second-order kinetics models. According to Langmuir model fitting, the maximum adsorption capacity (qmax) reached 142.24 mg/g for PF-ZrO2 NPs and 133.11 mg/g for conventional ZrO2 NPs, indicating the superior adsorption performance of the green-synthesized material. This work highlights the sustainable potential of plant-fabricated ZrO2 nanoparticles as cost-effective and environmentally friendly nano-adsorbents for heavy metal remediation, contributing to the achievement of UN SDG No. 6 by providing clean water solutions. Full article
Show Figures

Figure 1

23 pages, 4587 KB  
Article
Highly Efficient Graphene Oxide/Zinc Oxide/Lignin Catalyst for Photocatalytic Degradation of Methylene Blue and Gentian Violet
by Tamanna Yakub, Anupama Asthana, Sunita Sanwaria, Ajaya Kumar Singh and Sónia A. C. Carabineiro
Nanomaterials 2025, 15(17), 1342; https://doi.org/10.3390/nano15171342 - 1 Sep 2025
Abstract
This study presents a comprehensive investigation of a novel graphene oxide/zinc oxide/lignin (GO/ZnO/lignin) nanocomposite for the photocatalytic degradation of methylene blue (MB) and gentian violet (also known as crystal violet, CV) dyes in aqueous solutions. The nanocomposite was synthesized through a hydrothermal method [...] Read more.
This study presents a comprehensive investigation of a novel graphene oxide/zinc oxide/lignin (GO/ZnO/lignin) nanocomposite for the photocatalytic degradation of methylene blue (MB) and gentian violet (also known as crystal violet, CV) dyes in aqueous solutions. The nanocomposite was synthesized through a hydrothermal method and thoroughly characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the successful incorporation of functional groups from all components, while XRD patterns revealed a well-crystallized structure with characteristic peaks. SEM micrographs showed a uniform, hierarchical morphology and EDX analysis verified the elemental composition and distribution. Under ultraviolet (UV) irradiation, the nanocomposite exhibited remarkable photocatalytic degradation efficiency (~97%) for both MB and CV. Key operational parameters were systematically evaluated, including pH (2–10), catalyst dosage (0.005–0.04 g/20 mL), and initial dye concentration (10–20 ppm). Optimal performance was achieved at pH 10, with a catalyst dosage of 0.03–0.04 g/20 mL and lower dye concentrations. The enhanced photocatalytic activity can be attributed to the synergistic effects coming from GO’s electron transport capabilities, ZnO’s strong photocatalytic activity and lignin’s additional degradation sites. Furthermore, the nanocomposite demonstrated excellent reusability, retaining nearly 60% of its degradation capacity after four cycles, outperforming its individual components. These results highlight the potential of this composite material for sustainable wastewater treatment applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

23 pages, 4074 KB  
Article
Characterization of Steel Industry Byproducts as Precursors in Alkali-Activated Binders
by Madson Lucas de Souza, Abcael Ronald Santos Melo, Laura Prévitali, Lucas Feitosa de Albuquerque Lima Babadopulos, Juceline Batista dos Santos Bastos and Iuri Sidney Bessa
Buildings 2025, 15(17), 3119; https://doi.org/10.3390/buildings15173119 - 1 Sep 2025
Abstract
The civil construction and infrastructure sectors are known for their high environmental impact. Most of this impact is related to the carbon dioxide (CO2) emissions from Portland cement. As a sustainable alternative, alkali-activated binders (AABs) are explored for their potential to [...] Read more.
The civil construction and infrastructure sectors are known for their high environmental impact. Most of this impact is related to the carbon dioxide (CO2) emissions from Portland cement. As a sustainable alternative, alkali-activated binders (AABs) are explored for their potential to replace traditional binders. This research focused on AAB formulations using steel industry byproducts, such as Baosteel’s slag short flow (BSSF), coke oven ash (CA), blast furnace sludge (BFS), and centrifuge sludge (CS), as well as fly ash (FA) from a thermoelectric plant. Byproducts were characterized through laser granulometry, Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM), followed by the formulation of AABs with different precursor ratios. After 28 days, the compressive strength was obtained for each formulation. Based on the compressive strength tests, two binary mixtures were selected for microstructural and chemical analyses through XRF, FTIR, and SEM. CA demonstrated the greatest potential for use in binary AABs based on BSSF, as it presented a higher source of aluminosilicates and smaller particle sizes. The formulations containing BSSF and CA achieved compressive strengths of up to 9.8 MPa, while the formulations with BSSF and FA reached 23.5 MPa. SEM images revealed a denser, more cohesive matrix in the FA-based AAB, whereas CA-based AABs showed incomplete precursor dissolution and higher porosity, which contributed to the lower mechanical strength of CA-based AABs. These findings highlight the critical role of precursor selection in developing sustainable AABs from industrial byproducts and demonstrate how different formulations can be tailored for specific applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3143 KB  
Article
Antidiabetic Activity of Silver Nanoparticles Biosynthesized with Stenocereus queretaroensis Flower Extract
by Angélica Sofía González-Garibay, Iván Moisés Sánchez-Hernández, Omar Ricardo Torres-González, Ana Del Socorro Hernández-Aviña, Ariadna Abigail Villarreal-Amézquita and Eduardo Padilla-Camberos
Pharmaceuticals 2025, 18(9), 1310; https://doi.org/10.3390/ph18091310 - 1 Sep 2025
Abstract
Background/Objectives: Diabetes mellitus (DM) is one of the most common metabolic disorders, with a continually increasing population incidence. One of the main therapeutic approaches for this condition involves the inhibition of alpha-amylase and alpha-glucosidase—key enzymes involved in carbohydrate breakdown. Silver nanoparticles have exhibited [...] Read more.
Background/Objectives: Diabetes mellitus (DM) is one of the most common metabolic disorders, with a continually increasing population incidence. One of the main therapeutic approaches for this condition involves the inhibition of alpha-amylase and alpha-glucosidase—key enzymes involved in carbohydrate breakdown. Silver nanoparticles have exhibited inhibitory activity against both enzymes, suggesting their potential in regulating postprandial blood glucose levels. This study aimed to evaluate the antidiabetic potential of silver nanoparticles biosynthesized with Stenocereus queretaroensis flower extract. Methods: The flower extract was prepared and, following a qualitative and quantitative phytochemical analysis, was utilized in the reaction to biosynthesize S. queretaroensis flower extract nanoparticles (SAgNPs). The SAgNPs were characterized using UV–visible spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectrophotometry (FTIR). The antidiabetic potential of the biosynthesized SAgNPs was evaluated in vitro using alpha-amylase and alpha-glucosidase inhibitory assays, while an animal model was used for postprandial hypoglycemic activity in healthy mice. Results: The phytochemical analyses showed the presence of phenolic compounds and flavonoids like sinapic acid, p-coumaroyl tyrosine, procyanidin dimer β1, and dihydroquercetin in the flower extract. The SAgNPs were found to be rough and spherical in shape, with an average size of 99.5 nm. The inhibition of alpha-amylase and alpha-glucosidase by SAgNPs exhibited an IC50 of 4.92 µg/mL and 0.68 µg/mL, respectively. The animal model results suggested that SAgNPs at 100 mg/kg caused a significant decrease in the postprandial glucose level; this effect is likely attributable to delayed carbohydrate digestion, as supported by the in vitro findings. Conclusions: S. queretaroensis-synthesized silver nanoparticles may constitute a promising option for antidiabetic therapy. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Figure 1

15 pages, 3786 KB  
Article
Nanocomposites from β-Pinene and α-Pinene Copolymer: Synthesis, Characterization, and Antioxidant Evaluation
by Hodhaifa Derdar, Zakaria Cherifi, Geoffrey Robert Mitchell, Artur Mateus, Meziane Zerrouki, Naima Hammoudi, Khaldoun Bachari, Redouane Chebout, Fouzia Touahra, Abdelghani Bouchama, Amine Harrane and Rachid Meghabar
Polymers 2025, 17(17), 2378; https://doi.org/10.3390/polym17172378 - 31 Aug 2025
Abstract
In this study, we present a novel and straightforward approach for the synthesis of copolymers and nanocomposites based on α- and β-pinene, employing an eco-friendly and cost-effective nano-reinforcing filler. The copolymers (α-co-β-P) were produced through cationic copolymerization, using AlCl3 as a catalyst. [...] Read more.
In this study, we present a novel and straightforward approach for the synthesis of copolymers and nanocomposites based on α- and β-pinene, employing an eco-friendly and cost-effective nano-reinforcing filler. The copolymers (α-co-β-P) were produced through cationic copolymerization, using AlCl3 as a catalyst. The structural characterization of the resulting copolymer was validated through FT-IR, 1H-NMR spectroscopy, and differential scanning calorimetry (DSC). The molecular weight of the obtained polymer is determined by Gel Permeation Chromatography (GPC) analysis and is about 4500 g/mol. Nanocomposites (α-co-β-P/Clay 2, 5, 8, and 10% by weight of nano-clay) were synthesized by combining clay and α-co-β-P copolymer in solution using ultrasonic irradiation. This ultrasound-assisted method was employed to enhance and assess the structural, morphological, and thermal properties of the pure copolymer. The morphology of the resultant nanocomposites was characterized using infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) revealed that the nanocomposites exhibit a higher degradation temperature compared to the pure copolymer. The analyses provided evidence of the chemical modification of nano-clay layers and their uniform dispersion in the α-co-β-P copolymer matrix. Exfoliated structures were achieved for lower clay concentration (2% by weight), while intercalated structures and immiscible regions were observed for higher clay concentrations (5, 8, and 10% by weight). The antioxidant activity of α-pinene, β-pinene, and the obtained nanocomposites were studied using DPPH (2,2-diphenyl-1-picrylhydrazyl) as a model free-radical. The results demonstrate a significant antioxidant potential of the nanocomposites, showcasing their ability to effectively neutralize free-radicals. Finally, a novel procedure was devised for the rapid synthesis of copolymers and nanocomposites using α- and β-pinene. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

23 pages, 78930 KB  
Article
Alkali Cation Effects on Compressive Strength of Metakaolin–Low-Calcium Fly Ash-Based Geopolymers
by Yan Li and Hongguang Wang
Materials 2025, 18(17), 4080; https://doi.org/10.3390/ma18174080 (registering DOI) - 31 Aug 2025
Abstract
Considering the current requirement for high temperatures and the significant energy consumption in the preparation of geopolymer-based cements, this paper presents a study on the compressive strength of metakaolin-based geopolymers containing various low-calcium fly ash admixtures, prepared at room temperature (25 ± 2 [...] Read more.
Considering the current requirement for high temperatures and the significant energy consumption in the preparation of geopolymer-based cements, this paper presents a study on the compressive strength of metakaolin-based geopolymers containing various low-calcium fly ash admixtures, prepared at room temperature (25 ± 2 °C). The physical properties and microstructure of the geopolymers were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The type of alkaline cations, phase transformation, evolution of characteristic functional groups, and hydration characteristics of the microstructures were analyzed, and the hydration mechanism is discussed. The experimental results indicated that the fly ash content had a more significant impact on compressive strength than the alkaline cation type (Na+/K+). The optimal formulation (20% fly ash with 20% KOH activator) reached a compressive strength of 76.70 MPa at 28 days, which was around 6% higher than that of the NaOH-activated counterpart (72.34 MPa). Crystalline phase analysis in the transformation of mullite and microstructure analysis indicated that the increase in compressive strength could be attributed to the effective filling of the matrix interface by chemically inert fillers and the dense N-A-S-H and C-(A)-S-H multi-dimensional gel structures. These experiments prove the feasibility of using fly ash and metakaolin to prepare geopolymer materials with high compressive strength at room temperature. Full article
(This article belongs to the Section Construction and Building Materials)
17 pages, 1886 KB  
Article
Early Detection of Wheat Fusarium Head Blight During the Incubation Period Using FTIR-PAS
by Gaoqiang Lv, Jiaqi Li, Didi Shan, Fei Liu, Hanping Mao and Weihong Sun
Agronomy 2025, 15(9), 2100; https://doi.org/10.3390/agronomy15092100 - 30 Aug 2025
Abstract
The apparent normalcy of wheat during the incubation period of Fusarium head blight (FHB) makes early diagnosis challenging. This study employed Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) to conduct layer-by-layer scanning of wheat leaves during the disease outbreak stage and performed a differential [...] Read more.
The apparent normalcy of wheat during the incubation period of Fusarium head blight (FHB) makes early diagnosis challenging. This study employed Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) to conduct layer-by-layer scanning of wheat leaves during the disease outbreak stage and performed a differential spectral analysis. Spectral information was collected from five sites (D0~D4) on diseased leaves at reducing distances from the lesion caused by the Fusarium graminearum pathogen. The results revealed that the disease caused an increase in spectral similarity between deeper and shallower layers. The spectra of leaves, after removing the D0 background, showed a correlation of 83.5% to that of the pathogen, and the similarity increased at sites closer to the lesion, suggesting that the original spectra captured a large amount of hidden information related to the pathogen. With the threshold for the absorption intensity ratio of R1650/1050 for background-subtracted spectra set at 0.5, the optimal overall accuracy and F1-score were 86.0% and 0.89 for diagnosing outbreak-stage samples, respectively, while for incubation-period samples, they were 82.5% and 0.83. These results elucidate the mechanism of using FTIR-PAS to diagnose FHB during its incubation period, providing a theoretical and technical foundation for detecting disease information in other crops. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 2991 KB  
Article
A Novel Pattern Recognition Method for Non-Destructive and Accurate Origin Identification of Food and Medicine Homologous Substances with Portable Near-Infrared Spectroscopy
by Wei Liu, Ziqin Zhang, Yang Liu, Liwen Jiang, Pao Li and Wei Fan
Molecules 2025, 30(17), 3565; https://doi.org/10.3390/molecules30173565 (registering DOI) - 30 Aug 2025
Viewed by 45
Abstract
In this study, a novel pattern recognition method named boosting–partial least squares–discriminant analysis (Boosting-PLS-DA) was developed for the non-destructive and accurate origin identification of food and medicine homologous substances (FMHSs). Taking Gastrodia elata, Aurantii Fructus Immaturus, and Angelica dahurica as examples, [...] Read more.
In this study, a novel pattern recognition method named boosting–partial least squares–discriminant analysis (Boosting-PLS-DA) was developed for the non-destructive and accurate origin identification of food and medicine homologous substances (FMHSs). Taking Gastrodia elata, Aurantii Fructus Immaturus, and Angelica dahurica as examples, spectra of FMHSs from different origins were obtained by portable near-infrared (NIR) spectroscopy without destroying the samples. The identification models were developed with Boosting-PLS-DA, compared with principal component analysis (PCA) and partial least squares–discriminant analysis (PLS-DA) models. The model performances were evaluated using the validation set and an external validation set obtained one month later. The results showed that the Boosting-PLS-DA method can obtain the best results. For the analysis of Aurantii Fructus Immaturus and Angelica dahurica, 100% accuracies of the validation sets and external validation sets were obtained using Boosting-PLS-DA models. For the analysis of Gastrodia elata, Boosting-PLS-DA models showed significant improvements in external validation set accuracies compared to PLS-DA, reducing the risk of overfitting. Boosting-PLS-DA method combines the high robustness of ensemble learning with the strong discriminative capability of discriminant analysis. The generalizability will be further validated with a sufficiently large external validation set and more types of FMHSs. Full article
(This article belongs to the Special Issue Application of Spectroscopy for Drugs)
Show Figures

Figure 1

29 pages, 4671 KB  
Article
Hybrid 2-Quinolone–1,2,3-triazole Compounds: Rational Design, In Silico Optimization, Synthesis, Characterization, and Antibacterial Evaluation
by Ayoub El-Mrabet, Abderrahim Diane, Rachid Haloui, Hanae El Monfalouti, Ashwag S. Alanazi, Mohamed Hefnawy, Mohammed M. Alanazi, Youssef Kandri-Rodi, Souad Elkhattabi, Ahmed Mazzah, Amal Haoudi and Nada Kheira Sebbar
Antibiotics 2025, 14(9), 877; https://doi.org/10.3390/antibiotics14090877 (registering DOI) - 30 Aug 2025
Viewed by 48
Abstract
Background/Objectives: The rise in antibiotic resistance presents a serious and urgent global health challenge, emphasizing the need to develop new therapeutic compounds. This study focuses on the design and evaluation of a novel series of hybrid molecules that combine the 2-quinolone and [...] Read more.
Background/Objectives: The rise in antibiotic resistance presents a serious and urgent global health challenge, emphasizing the need to develop new therapeutic compounds. This study focuses on the design and evaluation of a novel series of hybrid molecules that combine the 2-quinolone and 1,2,3-triazole pharmacophores, both recognized for their broad-spectrum antimicrobial properties. Methods: A library of 29 candidate molecules was first designed using in silico techniques, including QSAR modeling, ADMET prediction, molecular docking, and molecular dynamics simulations, to optimize antibacterial activity and drug-like properties. The most promising compounds were then synthesized and characterized by ¹H and ¹³C NMR APT, mass spectrometry (MS), Fourier-transform infrared (FT-IR) spectroscopy, and UV-Vis spectroscopy. Results: Antibacterial evaluation revealed potent activity against both Gram-positive and Gram-negative bacterial strains, with minimum inhibitory concentration (MIC) values ranging from 0.019 to 1.25 mg/mL. Conclusions: These findings demonstrate the strong potential of 2-quinolone–triazole hybrids as effective antibacterial agents and provide a solid foundation for the development of next-generation antibiotics to combat the growing threat of bacterial resistance. Full article
Back to TopTop