Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = KIF3A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1314 KB  
Article
Genome-Wide Identification of MicroRNAs and Immune-Related Proteins Provides Insights into Antiviral Adaptations in Common Vampire Bat
by Yicheng Yan, Tianyi Liu, Xiaopeng He, Mingdao Mu and Zhiyuan Yang
Animals 2025, 15(21), 3063; https://doi.org/10.3390/ani15213063 - 22 Oct 2025
Viewed by 253
Abstract
Bats are natural reservoirs for diverse viruses, yet they rarely develop disease, suggesting unique antiviral adaptations. In this study, we performed a comprehensive genome-wide analysis in the common vampire bat (Desmodus rotundus), integrating comparative genomics, functional annotation, microRNA (miRNA) discovery, target [...] Read more.
Bats are natural reservoirs for diverse viruses, yet they rarely develop disease, suggesting unique antiviral adaptations. In this study, we performed a comprehensive genome-wide analysis in the common vampire bat (Desmodus rotundus), integrating comparative genomics, functional annotation, microRNA (miRNA) discovery, target prediction, and network-based analyses. Comparative genomic analysis revealed that Phyllostomus discolor exhibits the highest protein homology (97.4%) with D. rotundus. Alignment of interferon regulatory factors (IRFs) indicated strong conservation of IRF1, IRF5, and IRF8, while IRF4 and IRF7 showed divergence, reflecting bat-specific modulation of interferon signaling. Functional annotation of previously uncharacterized proteins identified immune-related elements, including toll-like receptor 4, syncytin-1, and endogenous retroviral sequences, highlighting the integration of viral components into host immunity. We further identified 19 novel miRNAs in D. rotundus, with high-confidence target genes such as SOD2, TRIM28, and FGFR1 involved in antiviral defense, apoptosis regulation, and oxidative stress response. Functional enrichment analyses revealed processes associated with wound healing, apoptosis suppression, infection response, and longevity. Network entropy analysis highlighted central regulatory hubs, including MYC, BCL2, and KIF1B, influencing cell cycle, survival, and immune balance. Collectively, these results demonstrate that D. rotundus employs an integrated regulatory network combining conserved immune factors, lineage-specific gene divergence, and miRNA-mediated fine-tuning to achieve viral tolerance without pathology. This study expands our understanding of bat antiviral biology and provides candidate molecular targets for future functional and translational research. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2253 KB  
Article
Ferroptosis-Linked Six-Gene Panel Enables Machine Learning-Assisted Diagnosis and Therapeutic Guidance in Lung Adenocarcinoma
by Faris Alrumaihi
Biology 2025, 14(9), 1280; https://doi.org/10.3390/biology14091280 - 17 Sep 2025
Viewed by 567
Abstract
Lung adenocarcinoma (LUAD) remains the most common subtype of non-small-cell lung cancer and a major cause of cancer mortality, with many patients lacking actionable mutations or durable responses to targeted or immune therapies. Here, we report an integrative analysis of TCGA LUAD transcriptomes [...] Read more.
Lung adenocarcinoma (LUAD) remains the most common subtype of non-small-cell lung cancer and a major cause of cancer mortality, with many patients lacking actionable mutations or durable responses to targeted or immune therapies. Here, we report an integrative analysis of TCGA LUAD transcriptomes (n = 598) seeded from a curated ferroptosis gene catalogue, yielding a compact six-gene signature (AQP4, CDCA3, HJURP, KIF20A, PLK1, UHRF1) with diagnostic, prognostic, and therapeutic relevance. The signature was consistently dysregulated in tumours versus normal lung and stratified patients into high- and low-risk groups with distinct survival outcomes (log-rank p < 0.0001), outperforming conventional staging when incorporated into multivariable models. Across ten machine learning algorithms, the panel achieved near-perfect tumour-normal classification (AUC 0.99–1.00), highlighting its translational potential for early detection. Functional analyses linked the signature to cell-cycle, angiogenic, and immune modulation, while exploratory drug-gene correlations identified PLK1 and other candidates as potential therapeutic targets. Together, these findings establish a biologically anchored six-gene panel that complements existing mutation-based classifiers and provides a framework for advancing diagnostic precision, prognostic refinement, and biomarker-guided therapeutic strategies in LUAD. Full article
(This article belongs to the Special Issue Ferroptosis: Mechanisms and Human Disease)
Show Figures

Graphical abstract

38 pages, 2078 KB  
Review
Kinesin Spindle Protein (KIF11) in Mitosis and Cancer
by João P. N. Silva, Patrícia M. A. Silva and Hassan Bousbaa
Int. J. Mol. Sci. 2025, 26(18), 8975; https://doi.org/10.3390/ijms26188975 - 15 Sep 2025
Viewed by 975
Abstract
Kinesin spindle protein (KSP), also known as KIF11, is a member of the kinesin superfamily of motor proteins that plays a pivotal role in mitosis by regulating spindle assembly, chromosome alignment, and segregation. Its motor activity, which is essential for the proper organization [...] Read more.
Kinesin spindle protein (KSP), also known as KIF11, is a member of the kinesin superfamily of motor proteins that plays a pivotal role in mitosis by regulating spindle assembly, chromosome alignment, and segregation. Its motor activity, which is essential for the proper organization of microtubules during mitosis, is crucial for maintaining genomic stability. KSP overexpression has been observed in several cancer types, where it promotes uncontrolled cell proliferation, making it a promising target for cancer therapy. This review provides a comprehensive analysis of the molecular mechanisms underlying KSP function, including its structural features, ATPase activity, and interactions with other mitotic proteins. Additionally, we review the regulation of KSP through post-translational modifications, such as phosphorylation, as well as the therapeutic strategies currently being explored to inhibit its activity in cancer treatment. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

29 pages, 26904 KB  
Article
Development and Validation of a Centrosome Amplification-Related Prognostic Model in Pancreatic Cancer: Multi-Omics Guided Risk Stratification and Tumor Microenvironment
by Yuan Sun, Tao Hu, Yan Li and Ming Li
Cancers 2025, 17(18), 2983; https://doi.org/10.3390/cancers17182983 - 12 Sep 2025
Viewed by 745
Abstract
Background: Centrosome amplification, a hallmark of cell cycle dysregulation, drives carcinogenesis through aneuploidy induction and invasive phenotype acquisition. In pancreatic adenocarcinoma—a malignancy characterized by profound genomic instability—the molecular circuitry of centrosome amplification remains enigmatic. Critical gaps persist in understanding its spatiotemporal dynamics in [...] Read more.
Background: Centrosome amplification, a hallmark of cell cycle dysregulation, drives carcinogenesis through aneuploidy induction and invasive phenotype acquisition. In pancreatic adenocarcinoma—a malignancy characterized by profound genomic instability—the molecular circuitry of centrosome amplification remains enigmatic. Critical gaps persist in understanding its spatiotemporal dynamics in tumor microenvironment remodeling and therapy resistance. Methods: This study integrated centrosome amplification-related genes from TCGA and Genecards, established a prognostic risk model through univariate Cox regression–LASSO penalized Cox regression–multivariate Cox regression analyses, and validated it using GEO datasets. Single-cell sequencing analyses dissected transcriptional heterogeneity and intercellular communication networks, while spatially resolved transcriptomics unveiled spatiotemporal expression patterns and molecular regulatory mechanisms of core genes. With further experimental validation via PCR analysis of patient-derived tissue samples confirming key gene expression patterns. Results: This study identified 23 centrosome amplification-related prognostic genes in pancreatic adenocarcinoma, establishing IFI27, KIF20A, KLK10, SPINK7, and TOP2A as highly specific diagnostic and prognostic biomarkers. The constructed signature was established as an independent prognostic indicator correlating with aggressive clinicopathological characteristics and chemoresistance. Mechanistically linked to enhanced DNA repair capacity and accelerated cell cycle progression, also synergizes with KRAS mutational profiles. Tumor microenvironment analysis revealed significant associations with immunosuppressive. Single-cell resolution demonstrated cellular specificity of IFI27/KLK10 in ductal epithelial cells and fibroblasts, with intercellular communication networks exhibiting multidimensional regulatory features. Spatially resolved transcriptomics delineated tumor-region-specific expression patterns of core genes. While PCR validation on matched tumor/normal tissues confirmed significant differential expression of IFI27, KIF20A, KLK10, and TOP2A. Conclusions: This study deciphers the multidimensional clinic–molecular network orchestrated by centrosome amplification in PDAC, revealing its dual-pathogenic mechanism in fueling tumor aggressiveness through coordinated induction of genomic instability and immunosuppressive microenvironment reprogramming. These findings establish a translational framework for developing centrosome dynamics-based prognostic stratification and molecularly targeted therapeutic strategies. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

13 pages, 2042 KB  
Article
CDCA8 and TROAP as Prognostic Biomarkers of Postoperative Metastatic Progression in Clear Cell Renal Cell Carcinoma
by Mingyu Kim, Geehyun Song, Jaeyoung Joung, Hokyung Seo, Hyungho Lee and Jinsoo Chung
Cancers 2025, 17(18), 2975; https://doi.org/10.3390/cancers17182975 - 11 Sep 2025
Viewed by 478
Abstract
Objectives: Clear cell renal cell carcinoma (ccRCC) may later metastasize despite curative surgery. This study asked whether transcriptomic alterations detectable at nephrectomy are associated with subsequent metastatic progression, and whether such signals retain prognostic relevance in overt metastatic disease. Methods: Bulk RNA sequencing [...] Read more.
Objectives: Clear cell renal cell carcinoma (ccRCC) may later metastasize despite curative surgery. This study asked whether transcriptomic alterations detectable at nephrectomy are associated with subsequent metastatic progression, and whether such signals retain prognostic relevance in overt metastatic disease. Methods: Bulk RNA sequencing was performed in 30 ccRCC patients without metastasis at surgery; 4 developed distant metastasis during follow-up. Differential expression, enrichment, and network analyses identified hub genes, which were screened by ROC analysis with bootstrap optimism correction. External validation used TCGA-KIRC focusing on patients metastatic at baseline (M1) to evaluate overall and disease-specific survival with multivariable Cox models (per-SD expression, adjusted for age, sex, and stage); Kaplan–Meier curves were shown for visualization only. Results: Fifty-nine DEGs distinguished patients who later metastasized from those who remained metastasis-free, with enrichment in mitotic and chromosomal-segregation pathways. Five hub genes (BASP1, CDCA8, KIF2C, LMNB1, TROAP) showed high discrimination in the discovery set (optimism-corrected AUC ~0.92–0.93). In TCGA-M1, CDCA8, and TROAP were consistently associated with worse survival and remained significant in multivariable models. Conclusions: Dysregulation of mitotic control may underlie latent metastatic competence in ccRCC. CDCA8 and TROAP emerge as candidate prognostic biomarkers, linking postoperative metastatic progression in an initially M0 cohort with survival in metastatic disease. These hypothesis-generating findings warrant validation in larger, prospective cohorts. Full article
(This article belongs to the Special Issue Genitourinary Malignancies)
Show Figures

Figure 1

22 pages, 4280 KB  
Article
The Role of MCM7 and Its Hosted miR-106b-25 Cluster in Renal Cancer Progression
by Katarzyna M. Głuchowska and Bartłomiej Hofman
Int. J. Mol. Sci. 2025, 26(17), 8618; https://doi.org/10.3390/ijms26178618 - 4 Sep 2025
Viewed by 1101
Abstract
Renal cancer is among the deadliest human malignancies. MCM7, a cell cycle-regulating protein, is frequently overexpressed in cancers and is associated with hyperproliferation and cancer progression. miR-25-3p, miR-93-5p, and miR-106b-5p form the miR-106b-25 cluster, located within the MCM7 gene, and have previously been [...] Read more.
Renal cancer is among the deadliest human malignancies. MCM7, a cell cycle-regulating protein, is frequently overexpressed in cancers and is associated with hyperproliferation and cancer progression. miR-25-3p, miR-93-5p, and miR-106b-5p form the miR-106b-25 cluster, located within the MCM7 gene, and have previously been reported as upregulated in RCC. This study investigates whether miRNAs from the miR-106b-25 cluster regulate common target genes, enhance one another’s effect, and act synergistically with MCM7 to promote tumor progression. Tissue samples from clear cell RCC (ccRCC) and paired controls were analysed to assess MCM7 expression and genes targeted by the miR-106b-25 cluster. Findings were further validated using the TCGA-KIRC dataset. Functional studies in RCC-derived cell lines were conducted to evaluate the effects of miRNAs on target gene expression, as well as MCM7, and the combined contributions of MCM7 and the miR-106b-25 cluster to renal cancer progression. We demonstrate that MCM7 is upregulated at both transcript and protein levels in RCC, contributing to cancer progression by regulating cell proliferation and caspase-3/7 activity. Furthermore, we identified cancer-related genes aberrantly expressed in ccRCC (BRMS1L, CPEB3, DNAJB9, KIF3B, NFIB, PTPRJ, RBL2) and targeted by members of the miR-106b-25 cluster, suggesting that their dysregulation may be driven by these miRNAs. Inhibition of the miR-106b-25 cluster increases caspase-3/7 activity. These findings demonstrate that both MCM7 and the miR-106b-25 cluster contribute to renal cancer progression. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases: 2nd Edition)
Show Figures

Figure 1

14 pages, 1838 KB  
Article
Association of Obesity-Related Genetic Variants with Android Fat Patterning and Cardiometabolic Risk in Women
by Débora Sá, Maria Isabel Mendonça, Francisco Sousa, Gonçalo Abreu, Matilde Ferreira, Eva Henriques, Sónia Freitas, Mariana Rodrigues, Sofia Borges, Graça Guerra, António Drumond, Ana Célia Sousa and Roberto Palma dos Reis
Genes 2025, 16(9), 1019; https://doi.org/10.3390/genes16091019 - 28 Aug 2025
Viewed by 813
Abstract
Background/Objectives: The location and distribution of excess fat, rather than overall adiposity, are stronger predictors of cardiometabolic risk and are commonly assessed using the waist-to-hip ratio (WHR). Fat distribution in women has a heritable component, yet the genetic factors that influence it remain [...] Read more.
Background/Objectives: The location and distribution of excess fat, rather than overall adiposity, are stronger predictors of cardiometabolic risk and are commonly assessed using the waist-to-hip ratio (WHR). Fat distribution in women has a heritable component, yet the genetic factors that influence it remain poorly understood. We aim to assess the association between obesity-related polymorphisms with WHR and cardiometabolic risk in overweight and obese women. Methods: A cohort study was conducted in 512 women (56.1 ± 6.4 years; body mass index (BMI) ≥ 25 kg/m2). WHR was calculated, and participants were classified into android (WHR > 0.85) or gynoid (WHR ≤ 0.85) obesity groups. We genotyped 15 SNPs previously associated with obesity using TaqMan real-time PCR. Different genetic models (dominant, recessive, and allelic) were analysed, and bivariate and multivariate analyses were performed to compare the fat distribution groups. Results: Of the 15 SNPs studied, only 3 presented a significant association with WHR > 0.85. PSRC1 rs599839 in a dominant model (AA + GA vs. GG) with OR = 3.18 (p = 0.041), SLC30A8 rs1326634 in a recessive model (CC vs. TC + TT) (OR = 2.38; p = 0.004), both showing increased susceptibility to central obesity. KIF6 rs20455 offers protection in a recessive model (CC vs. TC + TT) with an OR of 0.47 (p = 0.043). After adjusted multivariate analysis, only SLC30A8 and diabetes remained independently associated with an increased risk of android obesity (OR = 2.50; p = 0.003 and OR = 3.63; p = 0.004, respectively). Conclusions: The SLC30A8 variant was significantly associated with android fat distribution and high cardiometabolic risk in overweight/obese women. Identifying genetic factors that influence fat distribution may help specify targeted lifestyle changes or pharmacological interventions to reduce risk. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

23 pages, 5200 KB  
Article
Genomic Insights into Tumorigenesis in Newly Diagnosed Multiple Myeloma
by Marina Kyriakou and Costas Papaloukas
Diagnostics 2025, 15(17), 2130; https://doi.org/10.3390/diagnostics15172130 - 23 Aug 2025
Viewed by 822
Abstract
Background: Multiple Myeloma (MM) is a malignant plasma cell dyscrasia that progresses through the consecutive asymptomatic, often undiagnosed, precancerous stages of Monoclonal Gammopathy of Undetermined Significance (MGUS) and Asymptomatic Multiple Myeloma (SMM). MM is characterized by low survival rates, severe complications and [...] Read more.
Background: Multiple Myeloma (MM) is a malignant plasma cell dyscrasia that progresses through the consecutive asymptomatic, often undiagnosed, precancerous stages of Monoclonal Gammopathy of Undetermined Significance (MGUS) and Asymptomatic Multiple Myeloma (SMM). MM is characterized by low survival rates, severe complications and drug resistance; therefore, understanding the molecular mechanisms of progression is crucial. This study aims to detect genetic mutations, both germline and somatic, that contribute to disease progression and drive tumorigenesis at the final stage of MM, using samples from patients presenting MGUS or SMM, and newly diagnosed MM patients. Methods: Mutations were identified through a fully computational pipeline, implemented in a Linux and RStudio environment, applied to each patient sequence, obtained through single-cell RNA-sequencing (scRNA-seq), separately. Structural and functional mutation types were identified by stage, along with the affected genes. The analysis included quality control, removal of the Unique Molecular Identifiers (UMIs), trimming, genome mapping and result visualization. Results: The findings revealed frequent germline and somatic mutations, with distinct structural and functional patterns across disease stages. Mutations in key genes were identified, pointing to molecules that may play a central role in carcinogenesis and disease progression. Notable examples include the HLA-A, HLA-B and HLA-C genes, as well as the KIF, EP400 and KDM gene families, with the first four already confirmed. Comparative analysis between the stages highlighted molecular transition events from one stage to another. Emphasis was given to novel genes discovered in newly diagnosed MM patients, that might contribute to the tumorigenesis that takes place. Conclusions: This study contributes to the understanding of the genetic basis of plasma cell dyscrasias and the transition events between the stages, offering insights that could aid in early detection and diagnosis, guide the development of personalized therapeutic strategies, and improve the understanding of mechanisms responsible for resistance to existing therapies. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

21 pages, 967 KB  
Review
Recent Advances in the Application of Cucurbitacin B as an Anticancer Agent
by Dongge Yin, Hongyue Chen, Shuting Lin, Yufei Sun, Xiaohong Jing, Rongrong Chang, Yang Feng, Xiaoxv Dong, Changhai Qu, Jian Ni and Xingbin Yin
Int. J. Mol. Sci. 2025, 26(16), 8003; https://doi.org/10.3390/ijms26168003 - 19 Aug 2025
Viewed by 1755
Abstract
Cucurbitacin B (CuB), a tetracyclic triterpenoid compound isolated from Cucurbitaceae plants, exhibits inhibitory effects on various tumor cells (e.g., liver, gastric, and colorectal cancer cells). Since the 1970s–1980s, cucurbitacin tablets containing CuB have been used as an adjuvant therapy for chronic hepatitis and [...] Read more.
Cucurbitacin B (CuB), a tetracyclic triterpenoid compound isolated from Cucurbitaceae plants, exhibits inhibitory effects on various tumor cells (e.g., liver, gastric, and colorectal cancer cells). Since the 1970s–1980s, cucurbitacin tablets containing CuB have been used as an adjuvant therapy for chronic hepatitis and primary liver cancer. CuB exerts anticancer effects through multiple mechanisms: inducing apoptosis, cell cycle arrest (G2/M or S phase), autophagy, and cytoskeleton disruption; inhibiting migration, invasion, and angiogenesis (via VEGF/FAK/MMP-9 and Wnt/β-catenin pathways); regulating metabolic reprogramming and immune responses; inducing pyroptosis, ferroptosis, and epigenetic changes; and reversing tumor drug resistance. These effects are associated with signaling pathways like JAK/STAT, PI3K/Akt/mTOR, and FOXM1-KIF20A. To improve its application potential, strategies such as structural modification (e.g., NO donor conjugation), combination therapy (with gemcitabine or cisplatin), and nanomaterial-based delivery (e.g., liposomes and exosome-mimicking nanoparticles) have been developed to enhance efficacy, reduce toxicity, and improve bioavailability. CuB shows broad-spectrum anticancer activity, but further research is needed to clarify the mechanisms underlying its cell-specific sensitivity and interactions with the immune system. This review systematically summarizes the physicochemical properties, anticancer mechanisms, and strategies for applying CuB and suggests future research directions, providing references for scientific research and clinical translation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

26 pages, 1700 KB  
Review
Multisystemic Impact of RNF213 Arg4810Lys: A Comprehensive Review of Moyamoya Disease and Associated Vasculopathies
by Eva Bagyinszky, YoungSoon Yang and Seong Soo A. An
Int. J. Mol. Sci. 2025, 26(16), 7864; https://doi.org/10.3390/ijms26167864 - 14 Aug 2025
Cited by 1 | Viewed by 1735
Abstract
The ring finger protein 213 (RNF213) Arg4810Lys variant has been previously identified as a significant risk factor for Moyamoya disease (MMD), particularly in East Asian populations. This review explores the broader impact of the Arg4810Lys mutation on various cerebrovascular conditions, including Moyamoya syndrome [...] Read more.
The ring finger protein 213 (RNF213) Arg4810Lys variant has been previously identified as a significant risk factor for Moyamoya disease (MMD), particularly in East Asian populations. This review explores the broader impact of the Arg4810Lys mutation on various cerebrovascular conditions, including Moyamoya syndrome (MMS), intracranial artery stenosis, quasi-Moyamoya syndromes, ischemic stroke, and intracranial atherosclerosis. Beyond the brain, it is also implicated in pulmonary arterial hypertension, coronary artery disease, and renal artery stenosis, emphasizing its systemic effects. Functional studies suggest that RNF213 Arg4810Lys alters angiogenic signaling, endothelial cell function, vascular remodeling, and immune response pathways, especially when influenced by environmental stressors, like hypoxia or inflammation. The gene dosage of Arg4810Lys significantly affects disease phenotypes, with homozygous carriers typically experiencing earlier onset with increased severe symptoms. The variant also exhibits incomplete penetrance and frequently co-occurs with additional genetic alterations, including trisomy, KIF1A, FLNA, and PCSK9 mutations, which complicates its pathogenicity. A comprehensive understanding of RNF213 Arg4810Lys’s systemic impact is essential to developing effective risk assessment strategies, personalized treatments, and targeted therapies for associated vascular diseases. Full article
Show Figures

Figure 1

17 pages, 2524 KB  
Article
A Model-Driven Approach to Assessing the Fouling Mechanism in the Crossflow Filtration of Laccase Extract from Pleurotus ostreatus 202
by María Augusta Páez, Mary Casa-Villegas, Vanesa Naranjo-Moreno, Neyda Espín Félix, Katty Cabezas-Terán and Alfonsina Andreatta
Membranes 2025, 15(8), 226; https://doi.org/10.3390/membranes15080226 - 29 Jul 2025
Viewed by 873
Abstract
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a [...] Read more.
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a comparative analysis with dead-end filtration models. One crossflow microfiltration (MF) and six consecutive ultrafiltration (UF) stages were implemented to concentrate laccase extracts from Pleurotus ostreatus 202 fungi. The complete pore-blocking mechanism significantly impacts the MF, UF 1000, UF 100 and UF 10 stages, with the highest related filtration constant (KbF) estimated at 12.60 × 10−4 (m−1). Although the intermediate pore-blocking mechanism appears across all filtration stages, UF 100 is the most affected, with an associated filtration constant (KiF) of 16.70 (m−1). This trend is supported by the highest purification factor (6.95) and the presence of 65, 62 and 56 kDa laccases in the retentate. Standard pore blocking occurs at the end of filtration, only in the MF and UF 1000 stages, with filtration constants (KsF) of 29.83 (s−0.5m−0.5) and 31.17 (s−0.5m−0.5), respectively. The absence of cake formation and the volume of permeate recovered indicate that neither membrane was exposed to exhaustive fouling that could not be reversed by backwashing. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

13 pages, 2351 KB  
Article
Transcriptomic Profiling Reveals Gene Expression Changes in Mouse Liver Tissue During Alveolar Echinococcosis
by Xiongying Zhang, Qing Zhang, Na Liu, Jia Liu, Huixia Cai, Cunzhe Zhao, Kemei Shi, Wen Lei, Wanli Ma, Shuai Guo, Wei Wang, Xiao Ma and Mei Wang
Genes 2025, 16(7), 839; https://doi.org/10.3390/genes16070839 - 18 Jul 2025
Viewed by 632
Abstract
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, [...] Read more.
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, there remains a dearth of knowledge concerning changes in gene expression profiles during the progression of AE. In this study, we employed transcriptome sequencing (RNA sequencing, RNA-Seq) to detect alterations in gene expression profiles in the liver tissues of mice with AE. Our aims were to understand the transcriptome differences in the liver during E. multilocularis infection and to explore the molecular mechanisms underlying the early progression of this disease. Methods: We established a mouse model of AE by intraperitoneally injecting protoscoleces of E. multilocularis. All the inoculated mice were randomly divided into four groups. Liver tissues were collected at 6, 12, 19, and 25 weeks after inoculation. Paired non-infected mouse-derived liver tissues were used as controls, and transcriptome sequencing was carried out. Results: A total of 629 differentially expressed genes (DEGs) were identified. Among them, 370 genes were upregulated and 259 genes were downregulated. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were significantly associated with immune system modulation, the cell cycle, and the fibrosis process during the pathological changes. Additionally, weighted gene co-expression network analysis (WGCNA) identified several genes, including CCNA2, BIRC5, KIF2C, OTC, TLR2, and NCKAP1L. These hub genes involved in immunoinflammatory processes may be related to E. multilocularis larvae infection. Conclusions: The findings of this research provide a theoretical foundation for a more in-depth understanding of the molecular mechanisms of AE. They offer valuable insights into the molecular mechanisms and potential key factors involved in the pathogenesis of this disease. Full article
Show Figures

Figure 1

23 pages, 6890 KB  
Article
MicroRNA Signatures in Lung Adenocarcinoma Metastases: Exploring the Oncogenic Targets of Tumor-Suppressive miR-195-5p and miR-195-3p
by Yuya Tomioka, Naohiko Seki, Keiko Mizuno, Takayuki Suetsugu, Kentaro Tsuruzono, Yoko Hagihara, Mayuko Kato, Chikashi Minemura, Hajime Yonezawa, Kentaro Tanaka and Hiromasa Inoue
Cancers 2025, 17(14), 2348; https://doi.org/10.3390/cancers17142348 - 15 Jul 2025
Viewed by 710
Abstract
Background: To improve the prognosis of patients with lung adenocarcinoma (LUAD), revolutionary treatments for metastatic lesions are essential. Methods: To identify genes closely involved in LUAD-cell-derived metastasis, we used RNA sequencing to generate microRNA (miRNA) expression signatures of brain metastatic lesions. [...] Read more.
Background: To improve the prognosis of patients with lung adenocarcinoma (LUAD), revolutionary treatments for metastatic lesions are essential. Methods: To identify genes closely involved in LUAD-cell-derived metastasis, we used RNA sequencing to generate microRNA (miRNA) expression signatures of brain metastatic lesions. Once tumor-suppressive miRNAs are identified, it will be possible to explore the numerous tumor-promoting genes that are regulated by miRNAs. Results: By comparison with a previously created LUAD signature, we identified several miRNAs whose expression was significantly suppressed in brain metastases. We focused on both strands of pre-miR-195 (miR-195-5p and miR-195-3p), which were significantly downregulated in brain metastatic tissues, and confirmed by ectopic expression assays that both strands of pre-miR-195 attenuated the aggressive phenotypes (cell proliferation, migration, and invasion) of LUAD cells. These data suggest that both strands of pre-miR-195 have tumor-suppressive functions in LUAD cells. Next, we explored the target molecules that each miRNA strand regulates in LUAD cells. We identified 159 target genes regulated by miR-195-5p and miR-195-3p, of which 12 genes (ANLN, CDC6, CDCA2, CDK1, CEP55, CHEK1, CLSPN, GINS1, KIF23, MAD2L1, OIP5, and TIMELESS) affect cell cycle/cell division and the prognosis of LUAD patients. Finally, we focused on two genes, ANLN (miR-195-5p target) and MAD2L1 (miR-195-3p target), and demonstrated their oncogenic functions and the molecular pathways they regulate in LUAD cells. Conclusions: The miRNA signature derived from lung cancer brain metastasis will be a landmark in the field, and analysis of this miRNA signature will accelerate the identification of genes involved in lung cancer brain metastasis. Full article
Show Figures

Figure 1

15 pages, 4481 KB  
Article
Nodal Expansion, Tumor Infiltration and Exhaustion of Neoepitope-Specific Th Cells After Prophylactic Peptide Vaccination and Anti-CTLA4 Therapy in Mouse Melanoma B16
by Alexandra V. Shabalkina, Anna V. Izosimova, Ekaterina O. Ryzhichenko, Elizaveta V. Shurganova, Daria S. Myalik, Sofia V. Maryanchik, Valeria K. Ruppel, Dmitriy I. Knyazev, Nadezhda R. Khilal, Ekaterina V. Barsova, Irina A. Shagina and George V. Sharonov
Int. J. Mol. Sci. 2025, 26(13), 6453; https://doi.org/10.3390/ijms26136453 - 4 Jul 2025
Cited by 1 | Viewed by 740
Abstract
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent [...] Read more.
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent database of neoantigen-specific T cell receptors (TCRs) to profile tumor-specific T cells following vaccination with a neoantigen peptide vaccine and to correlate this with the response. Mice were vaccinated prophylactically with p30 peptide encoding B16 melanoma neoantigen (K739N mutation in Kif18b gene). The B16F0 melanoma in the vaccinated mice was additionally treated by a CTLA-4 checkpoint blockade. T cells from the tumors, tumor-draining lymph nodes (tdLNs) and vaccine depots were isolated, phenotyped, sorted by subsets and sequenced for TCR repertoires. The vaccine induced the accumulation of tumor-specific CD4+ Th cells in the tdLNs, while in the tumors these cells were present and their frequencies were not changed by the vaccine. These cells also accumulated at the vaccine depots, where they were phenotypically skewed by the vaccine components; however, these effects were minor due to approximately 50-fold lower cell quantities compared to the tdLNs. Only some of the p30-specific Th cells showed tumoricidal activity, as revealed by the reverse correlation of their frequencies in the tdLNs with the tumor size. The CTLA-4 blockade did not affect the tumor growth or the frequencies of tumor-specific cells but did stimulate Th cell motility. Thus, we have shown that tumor-specific Th clones accumulate and/or expand in the tdLNs, which correlates with tumor suppression but only for some of these clones. Tumor infiltration by these clones is not correlated with the growth rate. Full article
(This article belongs to the Special Issue New Insights in Tumor Immunity)
Show Figures

Figure 1

31 pages, 705 KB  
Review
Molecular Guardians of Oocyte Maturation: A Systematic Review on TUBB8, KIF11, and CKAP5 in IVF Outcomes
by Charalampos Voros, Ioakeim Sapantzoglou, Diamantis Athanasiou, Antonia Varthaliti, Despoina Mavrogianni, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Ioannis Papapanagiotou, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Dimitris Mazis Kourakos, Sofia Ivanidou, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(13), 6390; https://doi.org/10.3390/ijms26136390 - 2 Jul 2025
Viewed by 1594
Abstract
The efficacy of in vitro fertilization (IVF) is significantly hindered by early embryonic developmental failure and oocyte maturation arrest. Recent findings in reproductive genetics have identified several oocyte-specific genes—TUBB8, KIF11, and CKAP5—as essential regulators of meiotic spindle formation and [...] Read more.
The efficacy of in vitro fertilization (IVF) is significantly hindered by early embryonic developmental failure and oocyte maturation arrest. Recent findings in reproductive genetics have identified several oocyte-specific genes—TUBB8, KIF11, and CKAP5—as essential regulators of meiotic spindle formation and cytoskeletal dynamics. Mutations in these genes can lead to significant meiotic defects, fertilization failure, and embryo arrest. The links between genotype and phenotype, along with the underlying biological mechanisms, remain inadequately characterized despite the increasing number of identified variations. This systematic review was conducted in accordance with PRISMA 2020 guidelines. Relevant papers were retrieved from the PubMed and Embase databases using combinations of the keywords “TUBB8,” “KIF11,” “CKAP5,” “oocyte maturation arrest,” “embryonic arrest,” and “IVF failure.” Studies were included if they contained clinical, genomic, and functional data on TUBB8, KIF11, or CKAP5 mutations in women undergoing IVF. Molecular data, including gene variant classifications, inheritance models, in vitro tests (such as microtubule network analysis in HeLa cells), and assisted reproductive technology (ART) outcomes, were obtained. Eighteen trials including 35 women with primary infertility were included. Over fifty different variants were identified, the majority of which can be attributed to TUBB8 mutations. TUBB8 disrupted α/β-tubulin heterodimer assembly due to homozygous missense mutations, hence hindering meiotic spindle formation and leading to early embryo fragmentation or the creation of many pronuclei and cleavage failure. KIF11 mutations resulted in spindle disorganization and chromosomal misalignment via disrupting tubulin acetylation and microtubule transport. Mutations in CKAP5 impaired bipolar spindle assembly and microtubule stabilization. In vitro validation studies showed cytoskeletal disturbances, protein instability, and dominant negative effects in transfected animals. Donor egg IVF was the sole effective treatment; however, no viable pregnancies were documented in patients with pathogenic mutations of TUBB8 or KIF11. TUBB8, KIF11, and CKAP5 are essential for safeguarding oocyte meiotic competence and early embryonic development at the molecular level. Genetic differences in these genes disrupt microtubule dynamics and spindle assembly, resulting in various aspects of oocyte maturation and fertilization. Functional validation underscores the necessity of routine genetic screening for women experiencing unresolved IVF failure, as it substantiates their causal role in infertility. Future therapeutic avenues in ART may be enhanced by tailored counseling and innovative rescue methodologies like as gene therapy. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
Show Figures

Figure 1

Back to TopTop