Kinesin Spindle Protein (KIF11) in Mitosis and Cancer
Abstract
1. Introduction
2. Gene and Protein Regulation of KSP
2.1. Tail Domain
Modification Sites | Interacting Molecules | Modification | Functional Impacts | References |
---|---|---|---|---|
Tyr125 | SFKs | Phosphorylation | Essential for complete motor activity | [27] |
Lys146 | Unknown | Acetylation | Enhances motor performance | [28] |
Tyr 211 | SFKs | Phosphorylation | Essential for complete motor activity | [27] |
Tyr 231 | SFKs | Phosphorylation | Essential for complete motor activity | [27] |
Thr458 | Unknown | Phosphorylation | Unknown | [17] |
Lys564 | UFL1 and DDRGK1 | UFMylation | Promotes spindle localization | [29] |
Lys745 | RNF20/40 | Ubiquitination | Promotes KSP stabilization | [30] |
Lys771 | NAT10 | Acetylation | Stabilizes KSP and promotes its localization to centrosomes | [31] |
Lys890 | HDAC1 | Deacetylation | Activates KSP ATPase activity | [32] |
Lys891 | FBXO30 | Ubiquitination | Essential for mammopoiesis regulation | [11,33] |
Lys899 | FBXO30 | Ubiquitination | Essential for mammopoiesis regulation | [11,33] |
Thr926 | CDK1 | Phosphorylation | Promotes the localization and association of KSP to microtubules | [3,17,18,19,20,21] |
CDK5 | Phosphorylation | Occurs only in neurons and promotes the localization and association of KSP to microtubules | [22] | |
PTEN | Dephosphorylation | Prevents KSP hyperphosphorylation | [23] | |
PP2A | Dephosphorylation | Crucial for mitotic progression | [24] | |
Lys953 | SYVN1 | Ubiquitination | Promotes KSP degradation | [34] |
UFL1 | UFMylation | Prevents KSP ubiquitination mediated by SYVN1 and consequently its degradation | [34] | |
Ser1033 | NEK6/7 | Phosphorylation | Promotes KSP centrosome localization and motor function | [19,35] |
Lys1034 | UHRF1 | Ubiquitination | Promotes KSP interaction with TPX2 and consequently, centrosome localization | [36] |
? | TRIM8 | Ubiquitination (?) | Essential for bipolar spindle formation and cell cycle progression | [37] |
SMURF2 | Ubiquitination | Promotes KSP degradation | [38] | |
KEN box | CDH1-APC/C | Ubiquitination | Promotes KSP degradation | [39] |
D-box |
2.2. Motor Domain
2.3. Stalk Domain
3. Cell Cycle-Dependent Localization and Functional Dynamics of KSP
4. Other Functions of KSP
5. KSP in Cancer
5.1. KSP Overexpression in Cancer Across CPTAC Datasets Using UALCAN Analysis
5.2. Kinesin Spindle Protein Effects on Drug Responses
6. Targeting KSP in Cancer
6.1. KSP Inhibitors as Monotherapy
6.2. Combinatorial Approaches
6.3. Clinical Trials
Drug | Disease | Intervention | Phase | Results | NCT/References |
---|---|---|---|---|---|
Ispinesib | Metastatic or unresectable solid tumors or Hodgkin’s or non-Hodgkin’s lymphoma | Ispinesib | Phase I | Terminated with no published results | NCT00101244 |
Acute leukemia, chronic myelogenous leukemia, or advanced myelodysplastic syndromes | Ispinesib | Phase I | Completed with no results | NCT00098826 | |
Pediatric solid tumors | Ispinesib | Phase I | The recommended phase II dose was weekly 9 mg/m2 for 3 consecutive weeks | NCT00363272 [239] | |
Metastatic breast cancer | Ispinesib | Phase I/II | The trial was terminated | NCT00607841 | |
Platinum-Taxane-refractory or resistant relapsed ovarian cancer | Ispinesib | Phase II | Completed with no results | NCT00097409 | |
Advanced or metastatic NSCL cancer | Ispinesib | Phase II | Completed with no results | NCT00085813 | |
Androgen-independent prostate cancer previously treated with taxanes | Ispinesib | Phase II | Ispinesib showed lack of efficacy possibly due to low expression of KSP in the population of the study | NCT00096499 [240] | |
Metastatic hepatocellular carcinoma | Ispinesib | Phase II | Ispinesib was well tolerated but no clear clinical benefit was found | NCT00095992 [241] | |
Metastatic or recurrent malignant melanoma | Ispinesib | Phase II | No objective responses were observed but Ispinesib was well tolerated | NCT00095953 [242] | |
Advanced renal cell cancer | Ispinesib | Phase II | Ispinesib showed limited cytotoxic effect at the dose used. | NCT00354250 [243] | |
R/M HNSCC | Ispinesib | Phase II | No antitumor activity observed | NCT00095628 [245] | |
Advanced or metastatic breast cancer | Ispinesib | Phase II | In total, 4 patients responded to treatment. Nonetheless the duration of these responses was short (from 6.9 to 19 weeks). Moreover, none of the 50 patients completed treatment mostly due to disease progression | NCT00089973 | |
Advanced or metastatic colorectal cancer | Weekly Ispinesib or every three weeks | Phase II | No objective responses observed. Administration of Ispinesib at 7 mg/m2 over 1 h on days 1, 8, and 15 (repeated every 28 days) led to a progression-free survival (PFS) of 7 weeks and an overall survival (OS) of 3.6 months, while Ispinesib at 18 mg/m2 over 1 h on day 1 (repeated every 21 days) led to a PFS of 5.3 weeks and an OS of 4.5 months. Adverse events were common but tolerable since only one patient withdrew due to adverse events | NCT00103311 | |
Solid tumors | Ispinesib with Capecitabine | Phase I | No results published | NCT00119171 | |
Solid tumors | Ispinesib with Carboplatin | Phase I | Completed with no results | NCT00136578 | |
Advanced solid tumors | Ispinesib with Docetaxel | Phase I | The combinatorial approach was tolerable, and the maximum tolerated dose (MTD) was found (10 mg/m2 of Ispinesib and 60 mg/m2 of docetaxel) | NCT00169520 [244] | |
Filanesib | Advanced myeloid leukemias | Filanesib | Phase I | A MTD of 4.5 mg/m2 was determined, however low clinical activity was observed | NCT00637052 [247] |
Advanced solid tumors | Filanesib with or without Filgrastim | Phase I | Filanesib led to 7 out of 39 stable disease responses and was well tolerated | NCT00462358 [246] | |
Relapsed/refractory multiple myeloma | Filanesib, Carfilzomib, and Dexamethasone | Phase I | The combinatorial approach showed manageable toxicity but with marginal efficacy | NCT01372540 [252] | |
Relapsed/ refractory t(11;14) and 1q21 gain multiple myeloma | Filanesib in combination with Bortezomib and Dexamethasone | Phase I | An ORR of 39% and a median duration of response of 18.0 months were observed for this combination | NCT01248923 [251] | |
Recurrent/refractory multiple myeloma | Filanesib with prophylactic Filgastrim, Bortezomib, and Dexamethasone | Phase I | Manageable toxicity and durable responses were observed for this combination | NCT01248923 [250] | |
Relapsed/refractory multiple myeloma | Filanesib plus Filgrastim with or without Dexamethasone | Phase I/II | The MTD for Filanesib was 1.50 mg/m2/day. Filanesib alone led to an overall response rate (ORR) of 16%, clinical benefit rate (CBR) of 23% and OS of 19.0 months, while Filanesib with Dexamethasone showed an ORR of 15%, CBR of 20% and OS of 10.7 months | NCT00821249 [248] | |
Relapsed/refractory multiple myeloma | Filanesib, combined with Pomalidomide and Dexamethasone | Phase Ib/II | The combinatorial approach led to 51% of patients achieving partial response, PFS of 7 months and OS of 19 months. A better ORR (62% vs. 17%) and PFS (9 vs. 2 months) were observed for patients with low serum levels of alpha 1 acid glycoprotein at baseline | NCT02384083 [249] | |
Relapsed/refractory multiple myeloma | Filanesib with Filgrastim and G-CSF | Phase II | Completed with no published results | NCT02092922 | |
Advanced multiple myeloma | Carfilzomib vs. Filanesib and Carfilzomib | Phase II | Completed with no published results | NCT01989325 | |
LNP-formulated RNAi | Cancer patients with liver involvement | RNA interference therapeutic targeting VEGF and KSP | Phase I | The treatment approach was deemed safe with clinical activity | NCT00882180 [253] |
VIP943 | Advanced CD123+ hematologic malignancies | VIP943 (a CD123-targeting ADC with a KSP inhibitor) | Currently recruiting | NCT06034275 | |
Litronesib | Advanced cancer | Litronesib with or without Pegfilgrastim | Phase I | The main dose-limiting adverse effect was neutropenia as observed for other KSP inhibitors. The study also recommends two regimens for a phase II trial (21-day cycles of 6 mg/m2/day of Litronesib plus Pegfilgrastim on days 1, 2, 3 or 8 mg/m2/day of Litronesib plus Pegfilgrastim, on days 1, 5, 9) | NCT01214629 and NCT01214642 [232] |
Advanced solid tumors | Litronesib and G-CSF | Phase I | The recommended dose of LY2523355 combined with G-CSF for subsequent trials was 5 mg/m2/day, nonetheless, no objective tumor responses were reported | NCT01358019 [231] | |
Small-Cell Lung Cancer | Litronesib with or without G-CSF | Phase II | PFS, CBR, and ORR of Litronesib alone were 5.3 weeks, 23.7% and 2.6%, respectively, vs. 6.1 weeks and 26.9% for Litronesib with G-CSF, while the ORR was not calculated since no participants had complete responses or partial responses | NCT01025284 | |
Ovarian, non-small cell lung, prostate, colorectal, gastroesophageal cancers, and head and neck squamous cell carcinoma | Litronesib with Pegfilgrastim | Phase II | The PFS observed with Litronesib with Pegfilgrastim ranged from 1.25 to 2.3 months for the different types of cancer, while the percentage of patients that achieved CR, PR or stable disease ranged from 16.7% to 50%. | NCT01059643 | |
Breast cancer | Litronesib with Pegfilgrastim or Filgrastim vs. Ixabepilone | Phase II | Litronesib with Pegfilgrastim or Filgrastim led to a PFS, CBR and ORR of 1.71 months 46.2% and 3.8%, respectively, while Ixabepilone showed a PFS, CBR and ORR of 2.76 months 61.5% and 7.7%, respectively | NCT01416389 | |
SB-743921 | Relapsed or refractory lymphoma | SB-743921 with or without G-CSF | Phase I | The MTD of SB-743921 was 6 mg/m2, while with G-CSF it was 9 mg/m2. In total, 4 patients showed partial responses, while stable disease was observed for 19 of the 56 patients analyzed | NCT00343564 [237] |
AZD4877 | Solid and lymphoid malignancies | AZD4877 | Phase I | The treatment was well tolerated but no clear clinical benefit was observed | NCT00471367 [8] |
Advanced solid tumors | AZD4877 | Phase I | The regimen was tolerable and the MTD was achieved (30 mg of AZD4877 given as a 1 h iv infusion on days 1, 8, and 15 of a 28 days cycle) | NCT00389389 [9] | |
Refractory acute myeloid leukemia | AZD4877 | Phase I/II | Terminated due to lack of efficacy | NCT00486265 [234] | |
Recurrent advanced urothelial cancer | AZD4877 | Phase II | The regimen was well tolerated but with limited efficacy. No further studies are warranted | NCT00661609 [233] | |
MK-0731 | Sollokl, id tumors | MK-0731 | Phase I | The MTD for MK-0731 was 17 mg/m2/day every 21 days. Treatment was well tolerated leading to stable disease in heavily pretreated patients | NCT00104364 [10] |
EMD 534085 | Advanced solid tumors or lymphoma | EMD 534085 | Phase I | EMD 534085 MTD was 108 mg/m2/day. The treatment was well tolerated but with limited activity | [235] |
4SC-205 | Advanced malignancies | 4SC-205 | Phase I | Completed with no published results | NCT01065025 |
6.4. Resistance to Treatment
6.5. Overcoming Resistance by Combining KSP Inhibitors with Anti-Apoptotic Protein Targeting
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
γTuRCs | γ-tubulin ring complexes |
ADC | Antibody-drug conjugate |
APC/C | Anaphase promoting complex/cyclosome |
ATP | Adenosine triphosphate |
AURKA | Aurora kinase A |
BAX | BCL-2-associated X protein |
BC | Breast cancer |
BCL-2 | B-cell lymphoma 2 |
BCL-xL | BCL-extra-large |
BCRP | Breast cancer resistance protein |
cAMP | Cyclic adenosine monophosphate |
CBR | Clinical benefit rate |
CDH1 | CDC20-homolog 1 |
CDK | Cyclin-dependent kinase |
CeRNA | Competing endogenous RNA |
CHK1 | Checkpoint kinase 1 |
CircRNA | Circular RNA |
CLIP-170 | Cytoplasmic linker protein 170 |
CPTAC | Clinical Proteomic Tumor Analysis Consortium |
CRC | Colorectal cancer |
DLG1 | Disks large homolog 1 |
DNA | Deoxyribonucleic acid |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
EML4–ALK V3 | Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase variant 3 |
FAK | Focal adhesion kinase |
FBXO30 | F-box only protein 30 |
GBM | Glioblastoma |
HCC | Hepatocellular carcinoma |
HDAC1 | Histone deacetylase 1 |
HER2 | Human epidermal growth factor receptor 2 |
HNSCC | Head and neck squamous cell carcinoma |
HPV | Human Papillomavirus |
HSP70 | Heat shock protein 70 |
ID | Half-maximal inhibitory concentration |
IC50 | Inhibitor of differentiation |
ILR3α | Interleukin 3 receptor α |
JNK | c-Jun N-terminal kinase |
KAT5 | Lysine acetyltransferase 5 |
KIF | Kinesin family member |
KSP | Kinesin spindle protein |
Lis1 | Lissencephaly-1 |
LncRNA | Long non-coding RNAs |
Lys | Lysine |
MCAK | Mitotic centromere-associated kinesin |
MG53 | Mitsugumin 53 |
MM | Multiple myeloma |
MCL-1 | Myeloid cell leukemia 1 |
miR | MicroRNA |
MMP-9 | Matrix metalloproteinase 9 |
mRNA | Messenger RNA |
MTD | Maximum tolerated dose |
MYBL2 | MYB proto-oncogene like 2 |
NAT10 | N-acetyltransferase 10 |
NB | Neuroblastoma |
Nek | NIMA-related kinase |
NF-κB | Nuclear factor-κB |
NuMA | Nuclear mitotic apparatus |
ORR | Overall response rate |
OS | Overall survival |
P-GP | Permeability glycoprotein |
PAK | P21-activated kinase |
PDAC | Pancreatic ductal adenocarcinoma |
PI3K | Phosphoinositide 3-kinase |
PLK1 | Polo-like kinase 1 |
PFS | Progression free survival |
PP2A | Protein phosphatase 2A |
PRC1 | Protein regulator of cytokinesis 1 |
PTEN | Phosphatase and tensin homolog |
RNF20/40 | RING finger 20/40 |
SAC | Spindle assembly checkpoint |
Ser | Serine |
SFKs | Src family kinases |
siRNA | Small interfering RNA |
Smurf2 | SMAD-specific E3 ubiquitin protein ligase 2 |
S(MeO)TLC | S-(methoxytrityl)-L-cysteine |
SREBP2 | Sterol regulatory element-binding protein 2 |
STLC | S-trityl-L-cysteine |
SYVN1 | Synoviolin 1 |
Thr | Threonine |
TNBC | Triple negative breast cancer |
Top | Topoisomerase |
TPX2 | Targeting protein for Xklp2 |
TRAF4 | Tumor necrosis factor-receptor associated factor 4 |
TRIM | Tripartite motif |
TWEAKR | Tumor necrosis factor-like weak inducer of apoptosis receptor |
Tyr | Tyrosine |
UALCAN | University of Alabama at Birmingham cancer data analysis portal |
Ufm1 | Ubiquitin-fold modifier 1 |
UHRF1 | Ubiquitin-like with PHD and RING finger domains 1 |
VCP | Valosin-containing protein |
VEGF | Vascular endothelial growth factor |
VPS28 | Vacuolar protein sorting-associated protein 28 |
References
- Rath, O.; Kozielski, F. Kinesins and Cancer. Nat. Rev. Cancer 2012, 12, 527–539. [Google Scholar] [CrossRef]
- Bartoli, K.M.; Jakovljevic, J.; Woolford, J.L.; Saunders, W.S. Kinesin Molecular Motor Eg5 Functions during Polypeptide Synthesis. Mol. Biol. Cell 2011, 22, 3420–3430. [Google Scholar] [CrossRef]
- Liu, M.; Ran, J.; Zhou, J. Non-Canonical Functions of the Mitotic Kinesin Eg5. Thorac. Cancer 2018, 9, 904–910. [Google Scholar] [CrossRef]
- Li, Z.; Yu, B.; Qi, F.; Li, F. KIF11 Serves as an Independent Prognostic Factor and Therapeutic Target for Patients with Lung Adenocarcinoma. Front. Oncol. 2021, 11, 670218. [Google Scholar] [CrossRef]
- Pei, Y.-Y.; Li, G.-C.; Ran, J.; Wei, F.-X. Kinesin Family Member 11 Contributes to the Progression and Prognosis of Human Breast Cancer. Oncol. Lett. 2017, 14, 6618–6626. [Google Scholar] [CrossRef][Green Version]
- Hu, Z.-D.; Jiang, Y.; Sun, H.-M.; Wang, J.-W.; Zhai, L.-L.; Yin, Z.-Q.; Yan, J. KIF11 Promotes Proliferation of Hepatocellular Carcinoma among Patients with Liver Cancers. Biomed Res. Int. 2021, 2021, 2676745. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, N.; Li, J.; Kong, J.; Guan, X.; Wang, X. Eg5 Overexpression Is Predictive of Poor Prognosis in Hepatocellular Carcinoma Patients. Dis. Markers 2017, 2017, 2176460. [Google Scholar] [CrossRef]
- Gerecitano, J.F.; Stephenson, J.J.; Lewis, N.L.; Osmukhina, A.; Li, J.; Wu, K.; You, Z.; Huszar, D.; Skolnik, J.M.; Schwartz, G.K. A Phase I Trial of the Kinesin Spindle Protein (Eg5) Inhibitor AZD4877 in Patients with Solid and Lymphoid Malignancies. Investig. New Drugs 2013, 31, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.R.; Kurzrock, R.; Spratlin, J.; Burris, H.A.; Eckhardt, S.G.; Li, J.; Wu, K.; Skolnik, J.M.; Hylander-Gans, L.; Osmukhina, A.; et al. A Phase I Study to Assess the Safety, Tolerability, and Pharmacokinetics of AZD4877, an Intravenous Eg5 Inhibitor in Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2012, 69, 165–172. [Google Scholar] [CrossRef]
- Holen, K.; DiPaola, R.; Liu, G.; Tan, A.R.; Wilding, G.; Hsu, K.; Agrawal, N.; Chen, C.; Xue, L.; Rosenberg, E.; et al. A Phase I Trial of MK-0731, a Kinesin Spindle Protein (KSP) Inhibitor, in Patients with Solid Tumors. Investig. New Drugs 2012, 30, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lu, J.; Yang, Z.; Li, E.; Cao, Y.; Xie, L. Mitotic Functions and Characters of KIF11 in Cancers. Biomolecules 2024, 14, 386. [Google Scholar] [CrossRef]
- Liu, M.; Aneja, R.; Sun, X.; Xie, S.; Wang, H.; Wu, X.; Dong, J.-T.; Li, M.; Joshi, H.C.; Zhou, J. Parkin Regulates Eg5 Expression by Hsp70 Ubiquitination-Dependent Inactivation of c-Jun NH2-Terminal Kinase. J. Biol. Chem. 2008, 283, 35783–35788. [Google Scholar] [CrossRef]
- Ricci, A.; Carradori, S.; Cataldi, A.; Zara, S. Eg5 and Diseases: From the Well-Known Role in Cancer to the Less-Known Activity in Noncancerous Pathological Conditions. Biochem. Res. Int. 2024, 2024, 3649912. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, Q.; Deng, H.; Ou, S.; Liang, T.; Zhou, J. The SNHG1-Centered CeRNA Network Regulates Cell Cycle and Is a Potential Prognostic Biomarker for Hepatocellular Carcinoma. Tohoku J. Exp. Med. 2022, 258, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.-X.; Li, Y.-K.; Xu, M.-F.; Xu, C.-J.; Chen, J.; Wei, Y.-L.; She, Z.-Y. Kinesin-5 Eg5 Is Essential for Spindle Assembly, Chromosome Stability and Organogenesis in Development. Cell Death Discov. 2022, 8, 490. [Google Scholar] [CrossRef]
- Waitzman, J.S.; Rice, S.E. Mechanism and Regulation of Kinesin-5, an Essential Motor for the Mitotic Spindle. Biol. Cell 2014, 106, 1–12. [Google Scholar] [CrossRef]
- Wojcik, E.J.; Buckley, R.S.; Richard, J.; Liu, L.; Huckaba, T.M.; Kim, S. Kinesin-5: Cross-Bridging Mechanism to Targeted Clinical Therapy. Gene 2013, 531, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Cahu, J.; Olichon, A.; Hentrich, C.; Schek, H.; Drinjakovic, J.; Zhang, C.; Doherty-Kirby, A.; Lajoie, G.; Surrey, T. Phosphorylation by Cdk1 Increases the Binding of Eg5 to Microtubules In Vitro and in Xenopus Egg Extract Spindles. PLoS ONE 2008, 3, e3936. [Google Scholar] [CrossRef]
- Compe, E.; Pangou, E.; May, N.L.; Elly, C.; Braun, C.; Hwang, J.-H.; Coin, F.; Sumara, I.; Choi, K.-W.; Egly, J.-M. Phosphorylation of XPD Drives Its Mitotic Role Independently of Its DNA Repair and Transcription Functions. Sci. Adv. 2022, 8, eabp9457. [Google Scholar] [CrossRef]
- Garcia-Saez, I.; Skoufias, D.A. Eg5 Targeting Agents: From New Anti-Mitotic Based Inhibitor Discovery to Cancer Therapy and Resistance. Biochem. Pharmacol. 2021, 184, 114364. [Google Scholar] [CrossRef]
- Blangy, A.; Lane, H.A.; D’Hérin, P.; Harper, M.; Kress, M.; Niggt, E.A. Phosphorylation by P34cdc2 Regulates Spindle Association of Human Eg5, a Kinesin-Related Motor Essential for Bipolar Spindle Formation in Vivo. Cell 1995, 83, 1159–1169. [Google Scholar] [CrossRef]
- Kahn, O.I.; Sharma, V.; González-Billault, C.; Baas, P.W. Effects of Kinesin-5 Inhibition on Dendritic Architecture and Microtubule Organization. Mol. Biol. Cell 2015, 26, 66–77. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.; Ouyang, M.; Yang, F.; Hao, H.; Lamb, K.L.; Yang, J.; Yin, Y.; Shen, W.H. PTEN Regulates EG5 to Control Spindle Architecture and Chromosome Congression during Mitosis. Nat. Commun. 2016, 7, 12355. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Liang, H.; Zhao, X.; Liang, L.; Wang, G.; Yang, J.; Jin, Y.; McNutt, M.A.; Yin, Y. Protein Phosphatase 2A (PP2A) Regulates EG5 to Control Mitotic Progression. Sci. Rep. 2017, 7, 1630. [Google Scholar] [CrossRef]
- Whalley, H.J.; Porter, A.P.; Diamantopoulou, Z.; White, G.R.M.; Castañeda-Saucedo, E.; Malliri, A. Cdk1 Phosphorylates the Rac Activator Tiam1 to Activate Centrosomal Pak and Promote Mitotic Spindle Formation. Nat. Commun. 2015, 6, 7437. [Google Scholar] [CrossRef]
- Woodcock, S.A.; Rushton, H.J.; Castañeda-Saucedo, E.; Myant, K.; White, G.R.M.; Blyth, K.; Sansom, O.J.; Malliri, A. Tiam1-Rac Signaling Counteracts Eg5 during Bipolar Spindle Assembly to Facilitate Chromosome Congression. Curr. Biol. 2010, 20, 669–675. [Google Scholar] [CrossRef]
- Bickel, K.G.; Mann, B.J.; Waitzman, J.S.; Poor, T.A.; Rice, S.E.; Wadsworth, P. Src Family Kinase Phosphorylation of the Motor Domain of the Human Kinesin-5, Eg5. Cytoskeleton 2017, 74, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Muretta, J.M.; Reddy, B.J.N.; Scarabelli, G.; Thompson, A.F.; Jariwala, S.; Major, J.; Venere, M.; Rich, J.N.; Willard, B.; Thomas, D.D.; et al. A Posttranslational Modification of the Mitotic Kinesin Eg5 That Enhances Its Mechanochemical Coupling and Alters Its Mitotic Function. Proc. Natl. Acad. Sci. USA 2018, 115, E1779–E1788. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, Y.; Han, W.; Wei, L.; Huang, H.; Zhu, Y.; Xiao, Q.; Wang, Z.; Huang, W.; Duan, R. Eg5 UFMylation Promotes Spindle Organization during Mitosis. Cell Death Dis. 2024, 15, 544. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Huo, D.; Gao, J.; Wu, H.; Ye, Z.; Liu, Z.; Zhang, K.; Shan, L.; Zhou, X.; Wang, Y.; et al. Ubiquitin Ligase RNF20/40 Facilitates Spindle Assembly and Promotes Breast Carcinogenesis through Stabilizing Motor Protein Eg5. Nat. Commun. 2016, 7, 12648. [Google Scholar] [CrossRef]
- Zheng, J.; Tan, Y.; Liu, X.; Zhang, C.; Su, K.; Jiang, Y.; Luo, J.; Li, L.; Du, X. NAT10 Regulates Mitotic Cell Fate by Acetylating Eg5 to Control Bipolar Spindle Assembly and Chromosome Segregation. Cell Death Differ. 2022, 29, 846–860. [Google Scholar] [CrossRef]
- Nalawansha, D.A.; Gomes, I.D.; Wambua, M.K.; Pflum, M.K.H. HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation. Cell Chem. Biol. 2017, 24, 481–492.e5. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Du, Z.; Yan, X.; Zheng, P.; Liu, Y. Fbxo30 Regulates Mammopoiesis by Targeting the Bipolar Mitotic Kinesin Eg5. Cell Rep. 2016, 15, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Guo, G.; Zhang, S.; Zhang, Y.; Zhang, L.; Li, D.; Wu, S.; Cong, Y.; Wang, X.; Xie, S.; et al. KIF11 UFMylation Maintains Photoreceptor Cilium Integrity and Retinal Homeostasis. Adv. Sci. 2024, 11, e2400569. [Google Scholar] [CrossRef]
- Eibes, S.; Gallisà-Suñé, N.; Rosas-Salvans, M.; Martínez-Delgado, P.; Vernos, I.; Roig, J. Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown. Curr. Biol. 2018, 28, 121–129.e4. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Liu, Y.; Peng, Y.; Fu, Y.; Fu, Y.; Yin, L.; Li, X. UHRF1 Promotes Spindle Assembly and Chromosome Congression by Catalyzing EG5 Polyubiquitination. J. Cell Biol. 2023, 222, e202210093. [Google Scholar] [CrossRef]
- Venuto, S.; Monteonofrio, L.; Cozzolino, F.; Monti, M.; Appolloni, I.; Mazza, T.; Canetti, D.; Giambra, V.; Panelli, P.; Fusco, C.; et al. TRIM8 Interacts with KIF11 and KIFC1 and Controls Bipolar Spindle Formation and Chromosomal Stability. Cancer Lett. 2020, 473, 98–106. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, J.; Sun, M.; Diao, K.; Wang, J.; Li, S.; Cao, Q.; Dai, S.; Mi, X. TRAF4 Inhibits the Apoptosis and Promotes the Proliferation of Breast Cancer Cells by Inhibiting the Ubiquitination of Spindle Assembly-Associated Protein Eg5. Front. Oncol. 2022, 12, 855139. [Google Scholar] [CrossRef]
- Eguren, M.; Álvarez-Fernández, M.; García, F.; López-Contreras, A.J.; Fujimitsu, K.; Yaguchi, H.; Luque-García, J.L.; Fernández-Capetillo, O.; Muñoz, J.; Yamano, H.; et al. A Synthetic Lethal Interaction between APC/C and Topoisomerase Poisons Uncovered by Proteomic Screens. Cell Rep. 2014, 6, 670–683. [Google Scholar] [CrossRef]
- van Ree, J.H.; Nam, H.-J.; Jeganathan, K.B.; Kanakkanthara, A.; van Deursen, J.M. Pten Regulates Spindle Pole Movement through Dlg1-Mediated Recruitment of Eg5 to Centrosomes. Nat. Cell Biol. 2016, 18, 814–821. [Google Scholar] [CrossRef]
- Mann, B.J.; Wadsworth, P. Kinesin-5 Regulation and Function in Mitosis. Trends Cell Biol. 2019, 29, 66–79. [Google Scholar] [CrossRef]
- Zhu, K.; Cai, Y.; Si, X.; Ye, Z.; Gao, Y.; Liu, C.; Wang, R.; Ma, Z.; Zhu, H.; Zhang, L.; et al. The Phosphorylation and Dephosphorylation Switch of VCP/P97 Regulates the Architecture of Centrosome and Spindle. Cell Death Differ. 2022, 29, 2070–2088. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Cleary, J.M.; Asenjo, A.B.; Chen, Y.; Mascaro, J.A.; Arginteanu, D.F.J.; Sosa, H.; Hancock, W.O. Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin. Curr. Biol. 2019, 29, 2259–2269.e4. [Google Scholar] [CrossRef]
- Endo, T.; Ariga, H.; Matsumoto, K. Truncated Form of Tenascin-X, XB-S, Interacts with Mitotic Motor Kinesin Eg5. Mol. Cell. Biochem. 2009, 320, 53–66. [Google Scholar] [CrossRef]
- Raaijmakers, J.A.; van Heesbeen, R.G.H.P.; Meaders, J.L.; Geers, E.F.; Fernandez-Garcia, B.; Medema, R.H.; Tanenbaum, M.E. Nuclear Envelope-Associated Dynein Drives Prophase Centrosome Separation and Enables Eg5-Independent Bipolar Spindle Formation. EMBO J. 2012, 31, 4179–4190. [Google Scholar] [CrossRef]
- Hata, S.; Pastor Peidro, A.; Panic, M.; Liu, P.; Atorino, E.; Funaya, C.; Jäkle, U.; Pereira, G.; Schiebel, E. The Balance between KIFC3 and EG5 Tetrameric Kinesins Controls the Onset of Mitotic Spindle Assembly. Nat. Cell Biol. 2019, 21, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Mountain, V.; Simerly, C.; Howard, L.; Ando, A.; Schatten, G.; Compton, D.A. The Kinesin-Related Protein, HSET, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle. J. Cell Biol. 1999, 147, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-X.; Yang, W.-X. KIFC1: A Promising Chemotherapy Target for Cancer Treatment? Oncotarget 2016, 7, 48656–48670. [Google Scholar] [CrossRef] [PubMed]
- Özduman, G.; Şimşek, F.; Javed, A.; Korkmaz, K.S. HN1 Expression Contributes to Mitotic Fidelity through Aurora A-PLK1-Eg5 Axis. Cytoskeleton 2025, 82, 291–301. [Google Scholar] [CrossRef]
- Kaseda, K.; McAinsh, A.D.; Cross, R.A. Dual Pathway Spindle Assembly Increases Both the Speed and the Fidelity of Mitosis. Biol. Open 2012, 1, 12–18. [Google Scholar] [CrossRef]
- Toso, A.; Winter, J.R.; Garrod, A.J.; Amaro, A.C.; Meraldi, P.; McAinsh, A.D. Kinetochore-Generated Pushing Forces Separate Centrosomes during Bipolar Spindle Assembly. J. Cell Biol. 2009, 184, 365–372. [Google Scholar] [CrossRef]
- Dionisio-Vicuña, M.N.; Gutiérrez-López, T.Y.; Adame-García, S.R.; Vázquez-Prado, J.; Reyes-Cruz, G. VPS28, an ESCRT-I Protein, Regulates Mitotic Spindle Organization via Gβγ, EG5 and TPX2. Biochim. Biophys. Acta—Mol. Cell Res. 2018, 1865, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.-T.; Kuo, H.-H.; Hsu, S.-C.; Yih, L.-H. HSP70 Regulates Eg5 Distribution within the Mitotic Spindle and Modulates the Cytotoxicity of Eg5 Inhibitors. Cell Death Dis. 2020, 11, 715. [Google Scholar] [CrossRef]
- Mann, B.J.; Wadsworth, P. Distribution of Eg5 and TPX2 in Mitosis: Insight from CRISPR Tagged Cells. Cytoskeleton 2018, 75, 508–521. [Google Scholar] [CrossRef]
- Lecland, N.; Lüders, J. The Dynamics of Microtubule Minus Ends in the Human Mitotic Spindle. Nat. Cell Biol. 2014, 16, 770–778. [Google Scholar] [CrossRef]
- Kamranvar, S.A.; Gupta, D.K.; Wasberg, A.; Liu, L.; Roig, J.; Johansson, S. Integrin-Mediated Adhesion Promotes Centrosome Separation in Early Mitosis. Cells 2022, 11, 1360. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Hégarat, N.; Vesely, C.; Roseboom, I.; Larch, C.; Streicher, H.; Straatman, K.; Flynn, H.; Skehel, M.; Hirota, T.; et al. Differential Control of Eg5-Dependent Centrosome Separation by Plk1 and Cdk1. EMBO J. 2011, 30, 2233–2245. [Google Scholar] [CrossRef] [PubMed]
- Barisic, M.; Rajendraprasad, G. Mitotic Poleward Flux: Finding Balance between Microtubule Dynamics and Sliding. BioEssays 2021, 43, 2100079. [Google Scholar] [CrossRef]
- van Heesbeen, R.G.H.P.; Tanenbaum, M.E.; Medema, R.H. Balanced Activity of Three Mitotic Motors Is Required for Bipolar Spindle Assembly and Chromosome Segregation. Cell Rep. 2014, 8, 948–956. [Google Scholar] [CrossRef]
- Tanenbaum, M.E.; Macůrek, L.; Janssen, A.; Geers, E.F.; Alvarez-Fernández, M.; Medema, R.H. Kif15 Cooperates with Eg5 to Promote Bipolar Spindle Assembly. Curr. Biol. 2009, 19, 1703–1711. [Google Scholar] [CrossRef]
- van Heesbeen, R.G.H.P.; Raaijmakers, J.A.; Tanenbaum, M.E.; Halim, V.A.; Lelieveld, D.; Lieftink, C.; Heck, A.J.R.; Egan, D.A.; Medema, R.H. Aurora A, MCAK, and Kif18b Promote Eg5-Independent Spindle Formation. Chromosoma 2017, 126, 473–486. [Google Scholar] [CrossRef]
- Gayek, A.S.; Ohi, R. Kinetochore-Microtubule Stability Governs the Metaphase Requirement for Eg5. Mol. Biol. Cell 2014, 25, 2051–2060. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Kamakura, S.; Hayase, J.; Sumimoto, H. Interaction of NuMA Protein with the Kinesin Eg5: Its Possible Role in Bipolar Spindle Assembly and Chromosome Alignment. Biochem. J. 2013, 451, 195–204. [Google Scholar] [CrossRef]
- Chu, X.; Chen, X.; Wan, Q.; Zheng, Z.; Du, Q. Nuclear Mitotic Apparatus (NuMA) Interacts with and Regulates Astrin at the Mitotic Spindle. J. Biol. Chem. 2016, 291, 20055–20067. [Google Scholar] [CrossRef]
- Hueschen, C.L.; Kenny, S.J.; Xu, K.; Dumont, S. NuMA Recruits Dynein Activity to Microtubule Minus-Ends at Mitosis. Elife 2017, 6, e29328. [Google Scholar] [CrossRef]
- Neahring, L.; Cho, N.H.; Dumont, S. Opposing Motors Provide Mechanical and Functional Robustness in the Human Spindle. Dev. Cell 2021, 56, 3006–3018.e5. [Google Scholar] [CrossRef]
- Kollu, S.; Bakhoum, S.F.; Compton, D.A. Interplay of Microtubule Dynamics and Sliding during Bipolar Spindle Formation in Mammalian Cells. Curr. Biol. 2009, 19, 2108–2113. [Google Scholar] [CrossRef]
- Vukušić, K.; Ponjavić, I.; Buđa, R.; Risteski, P.; Tolić, I.M. Microtubule-Sliding Modules Based on Kinesins EG5 and PRC1-Dependent KIF4A Drive Human Spindle Elongation. Dev. Cell 2021, 56, 1253–1267.e10. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Shi, X.; Zhang, R.; Tian, Y.; Wang, X.; Wei, C.; Li, D.; Li, X.; Kong, X.; Liu, Y.; et al. Regulation of Proliferation and Cell Cycle by Protein Regulator of Cytokinesis 1 in Oral Squamous Cell Carcinoma. Cell Death Dis. 2018, 9, 564. [Google Scholar] [CrossRef] [PubMed]
- Nunes Bastos, R.; Gandhi, S.R.; Baron, R.D.; Gruneberg, U.; Nigg, E.A.; Barr, F.A. Aurora B Suppresses Microtubule Dynamics and Limits Central Spindle Size by Locally Activating KIF4A. J. Cell Biol. 2013, 202, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; McCollum, D. A Role for Metaphase Spindle Elongation Forces in Correction of Merotelic Kinetochore Attachments. Curr. Biol. 2012, 22, 225–230. [Google Scholar] [CrossRef]
- Drosopoulos, K.; Tang, C.; Chao, W.C.H.; Linardopoulos, S. APC/C Is an Essential Regulator of Centrosome Clustering. Nat. Commun. 2014, 5, 3686. [Google Scholar] [CrossRef]
- She, Z.-Y.; Zhong, N.; Wei, Y.-L. Kinesin-5 Eg5 Mediates Centrosome Separation to Control Spindle Assembly in Spermatocytes. Chromosoma 2022, 131, 87–105. [Google Scholar] [CrossRef]
- Chauvière, M.; Kress, C.; Kress, M. Disruption of the Mitotic Kinesin Eg5 Gene (Knsl1) Results in Early Embryonic Lethality. Biochem. Biophys. Res. Commun. 2008, 372, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.; Justice, M.J. The Kinesin Related Motor Protein, Eg5, Is Essential for Maintenance of Pre-Implantation Embryogenesis. Biochem. Biophys. Res. Commun. 2007, 357, 694–699. [Google Scholar] [CrossRef]
- Wu, T.; Luo, Y.; Zhang, M.; Chen, B.; Du, X.; Gu, H.; Xie, S.; Pan, Z.; Yu, R.; Hai, R.; et al. Mechanisms of Minor Pole–Mediated Spindle Bipolarization in Human Oocytes. Science 2024, 385, eado1022. [Google Scholar] [CrossRef]
- Wakana, Y.; Villeneuve, J.; van Galen, J.; Cruz-Garcia, D.; Tagaya, M.; Malhotra, V. Kinesin-5/Eg5 Is Important for Transport of CARTS from the Trans-Golgi Network to the Cell Surface. J. Cell Biol. 2013, 202, 241–250. [Google Scholar] [CrossRef]
- Fan, T.; Liu, W.; Qu, R.; Zhu, J.; Shi, Y.; Liu, J.; Li, X.; Zhou, Z.; Chang, Y.; Ouyang, J.; et al. Actin Polymerization Regulates the Osteogenesis of HASCs by Influencing α-Tubulin Expression and Eg5 Activity. Genes Dis. 2025, 12, 101380. [Google Scholar] [CrossRef]
- Freixo, F.; Martinez Delgado, P.; Manso, Y.; Sánchez-Huertas, C.; Lacasa, C.; Soriano, E.; Roig, J.; Lüders, J. NEK7 Regulates Dendrite Morphogenesis in Neurons via Eg5-Dependent Microtubule Stabilization. Nat. Commun. 2018, 9, 2330. [Google Scholar] [CrossRef] [PubMed]
- Nadar, V.C.; Lin, S.; Baas, P.W. Microtubule Redistribution in Growth Cones Elicited by Focal Inactivation of Kinesin-5. J. Neurosci. 2012, 32, 5783–5794. [Google Scholar] [CrossRef] [PubMed]
- Falnikar, A.; Tole, S.; Baas, P.W. Kinesin-5, a Mitotic Microtubule-Associated Motor Protein, Modulates Neuronal Migration. Mol. Biol. Cell 2011, 22, 1561–1574. [Google Scholar] [CrossRef]
- Yaskanich, A.H.; Patel, A.; Leys, M. Novel KIF11 Mutation Associated with Microcephaly, Chorioretinopathy and Impaired Intellectual Development: 20 Years of Follow-Up. Children 2025, 12, 560. [Google Scholar] [CrossRef]
- Gonzalez, T.; Tyler, R.C.; Schilter, K.F.; McCarrier, J.; Muriello, M.; Basel, D.; Reddi, H.V. KIF11 Variants Associated with Novel Renal System Involvement—Two Cases That Expand the Phenotypic Spectrum of Microcephaly with or Without Chorioretinopathy, Lymphedema, or Impaired Intellectual Development. Am. J. Med. Genet. Part A 2025, 197, e63903. [Google Scholar] [CrossRef]
- Ari, C.; Borysov, S.I.; Wu, J.; Padmanabhan, J.; Potter, H. Alzheimer Amyloid Beta Inhibition of Eg5/Kinesin 5 Reduces Neurotrophin and/or Transmitter Receptor Function. Neurobiol. Aging 2014, 35, 1839–1849. [Google Scholar] [CrossRef]
- Borysov, S.I.; Granic, A.; Padmanabhan, J.; Walczak, C.E.; Potter, H. Alzheimer Aβ Disrupts the Mitotic Spindle and Directly Inhibits Mitotic Microtubule Motors. Cell Cycle 2011, 10, 1397–1410. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Wang, X.; Huang, M.; Wei, X.; Luo, X.; Wei, Y.; She, Z. KIF11 Inhibition Induces Retinopathy Progression by Affecting Photoreceptor Cell Ciliogenesis and Cell Cycle Regulation in Development. Adv. Biol. 2025, 9, e2400748. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Huang, L.; Sun, L.; Li, S.; Zhang, T.; Ding, X. Update on the Phenotypic and Genotypic Spectrum of KIF11-Related Retinopathy. Genes 2022, 13, 713. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xiao, X.; Li, S.; Jia, X.; Guo, X.; Zhang, Q. KIF11 Mutations Are a Common Cause of Autosomal Dominant Familial Exudative Vitreoretinopathy. Br. J. Ophthalmol. 2016, 100, 278–283. [Google Scholar] [CrossRef] [PubMed]
- van der Ende, S.; Bedard, K.; Wallace, K.; Mackley, M.P.; Nightingale, M.; Gaston, D.; Beis, M.J.; Leblanc, M.A.; Gillett, R.; Levin, A.V.; et al. Gene Variant Spectrum in Probands with Familial Exudative Vitreoretinopathy Using an Expanded Panel. Investig. Ophthalmol. Vis. Sci. 2025, 66, 23. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Liu, C.-D.; Liu, C.; Wu, J.; Xie, Z.-G. Machine Learning and Weighted Gene Co-Expression Network Analysis Identify a Three-Gene Signature to Diagnose Rheumatoid Arthritis. Front. Immunol. 2024, 15, 1387311. [Google Scholar] [CrossRef] [PubMed]
- Keiffer, T.R.; DiGiuseppe, S.; Guion, L.; Bienkowska-Haba, M.; Zwolinska, K.; Siddiqa, A.; Kushwaha, A.; Sapp, M.J. HPV16 Entry Requires Dynein for Minus-End Transport and Utilizes Kinesin Kif11 for plus-End Transport along Microtubules during Mitosis. J. Virol. 2025, 99, e0093724. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Iimori, M.; Wakasa, T.; Ando, K.; Saeki, H.; Oda, Y.; Oki, E.; Maehara, Y. The Balance of Forces Generated by Kinesins Controls Spindle Polarity and Chromosomal Heterogeneity in Tetraploid Cells. J. Cell Sci. 2019, 132, jcs231530. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.T.; Ma, H.T.; Poon, R.Y. Kinesins Regulate the Heterogeneity in Centrosome Clustering after Whole-Genome Duplication. Life Sci. Alliance 2024, 7, e202402670. [Google Scholar] [CrossRef] [PubMed]
- Dale, K.L.; Armond, J.W.; Hynds, R.E.; Vladimirou, E. Modest Increase of KIF11 Expression Exposes Fragilities in the Mitotic Spindle, Causing Chromosomal Instability. J. Cell Sci. 2022, 135, jcs260031. [Google Scholar] [CrossRef]
- Wei, D.; Rui, B.; Qingquan, F.; Chen, C.; Ping, H.Y.; Xiaoling, S.; Hao, W.; Jun, G. KIF11 Promotes Cell Proliferation via ERBB2/PI3K/AKT Signaling Pathway in Gallbladder Cancer. Int. J. Biol. Sci. 2021, 17, 514–526. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, C.; Li, Y.; Jiang, Y.; Xing, B.; Du, X. P21-Activated Kinase 6 Controls Mitosis and Hepatocellular Carcinoma Progression by Regulating Eg5. Biochim. Biophys. Acta—Mol. Cell Res. 2021, 1868, 118888. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C.; Zhang, S.; Sun, L.; Hu, J.; Qiu, B.; Liu, S.; Hong, Y.; Chen, T.; Wang, K.; et al. High Interstitial Fluid Pressure Enhances USP1-Dependent KIF11 Protein Stability to Promote Hepatocellular Carcinoma Progression. J. Transl. Med. 2025, 23, 66. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Z.; Qi, X.; Jiang, Y.; Liu, D.; Liu, K. Kinesin Family Member 11 Promotes Progression of Hepatocellular Carcinoma via the OCT4 Pathway. Funct. Integr. Genom. 2023, 23, 284. [Google Scholar] [CrossRef]
- Wu, B.; Hu, C.; Kong, L. ASPM Combined with KIF11 Promotes the Malignant Progression of Hepatocellular Carcinoma via the Wnt/Β-catenin Signaling Pathway. Exp. Ther. Med. 2021, 22, 1154. [Google Scholar] [CrossRef]
- Song, P.; Lv, D.; Yang, L.; Zhou, J.; Yan, X.; Liu, Z.; Ma, K.; Yu, Y.; Liu, X.; Dong, Q. Di-(2-Ethylhexyl) Phthalate Promotes Benign Prostatic Hyperplasia through KIF11-Wnt/β-Catenin Signaling Pathway. Ecotoxicol. Environ. Saf. 2024, 281, 116602. [Google Scholar] [CrossRef]
- Pei, Y.; Li, G.; Ran, J.; Wan, X.; Wei, F.; Wang, L. Kinesin Family Member 11 Enhances the Self-Renewal Ability of Breast Cancer Cells by Participating in the Wnt/β-Catenin Pathway. J. Breast Cancer 2019, 22, 522. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Noh, Y.S.; Moon, J.-W.; Sim, S.; Han, S.W.; Kim, E.S.; Lee, J.-Y. Gene Expression Network Analysis Identified CDK1 and KIF11 as Possible Key Molecules in the Development of Colorectal Cancer from Normal Tissues. Genom. Inform. 2025, 23, 15. [Google Scholar] [CrossRef]
- Wang, B.; Yu, J.; Sun, Z.; Luh, F.; Lin, D.; Shen, Y.; Wang, T.; Zhang, Q.; Liu, X. Kinesin Family Member 11 Is a Potential Therapeutic Target and Is Suppressed by MicroRNA-30a in Breast Cancer. Mol. Carcinog. 2020, 59, 908–922. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Zeng, X.; He, M.; Gong, Y.; Liu, Y. LncRNA VPS9D1-AS1 Promotes Malignant Progression of Lung Adenocarcinoma by Targeting MiRNA-30a-5p/KIF11 Axis. Front. Genet. 2021, 12, 807628. [Google Scholar] [CrossRef]
- Zhu, K.; Su, Y.; Xu, B.; Wang, Z.; Sun, H.; Wang, L.; Sun, C.; He, X. MicroRNA-186-5p Represses Neuroblastoma Cell Growth via Downregulation of Eg5. Am. J. Transl. Res. 2019, 11, 2245–2256. [Google Scholar] [PubMed]
- Wang, X.-L.; He, X.; Gao, T.; Zhou, X.; Cruz-Monserrate, Z.; Tsung, A.; Ma, J.; Cai, C. MG53 Suppresses Tumor Growth via Transcriptional Inhibition of KIF11 in Pancreatic Cancer. Transl. Oncol. 2024, 50, 102118. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Guo, L. Characterization of Cell Cycle-Related Competing Endogenous RNAs Using Robust Rank Aggregation as Prognostic Biomarker in Lung Adenocarcinoma. Front. Oncol. 2022, 12, 807367. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Fu, J.; Wang, J.; Ding, M. HELLS Knockdown Inhibits the Malignant Progression of Lung Adenocarcinoma Via Blocking Akt/CREB Pathway by Downregulating KIF11. Mol. Biotechnol. 2024, 67, 548–561. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, Y.; Hirai, S.; Yamaguchi, M.; Idogawa, M. Small Cell Lung Carcinoma Cells Depend on KIF11 for Survival. Int. J. Mol. Sci. 2024, 25, 7230. [Google Scholar] [CrossRef]
- Xie, M.; Ding, K.; Jing, X.; Wei, Y.; Shu, Y. Identification and Verification of Hub Genes Associated with the Progression of Non-Small Cell Lung Cancer by Integrated Analysis. Front. Pharmacol. 2022, 13, 997842. [Google Scholar] [CrossRef]
- Fu, L.; Zhao, L.; Liao, C.; Wang, P.; Gu, Y.; Li, S.; Shi, L.; Wang, Q.; Xie, J.; Zhang, L.; et al. Knockdown of KAT5/KIF11 Induces Autophagy and Promotes Apoptosis in Anaplastic Thyroid Cancer Cells. Exp. Ther. Med. 2023, 25, 247. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, G.; Cui, S.; Du, G. Upregulation of KIF11 in TP53 Mutant Glioma Promotes Tumor Stemness and Drug Resistance. Cell. Mol. Neurobiol. 2022, 42, 1477–1485. [Google Scholar] [CrossRef]
- Exertier, P.; Javerzat, S.; Wang, B.; Franco, M.; Herbert, J.; Platonova, N.; Winandy, M.; Pujol, N.; Nivelles, O.; Ormenese, S.; et al. Impaired Angiogenesis and Tumor Development by Inhibition of the Mitotic Kinesin Eg5. Oncotarget 2013, 4, 2302–2316. [Google Scholar] [CrossRef]
- Li, J.-A.; Liu, B.-C.; Song, Y.; Chen, X. Cyclin A2 Regulates Symmetrical Mitotic Spindle Formation and Centrosome Amplification in Human Colon Cancer Cells. Am. J. Transl. Res. 2018, 10, 2669–2676. [Google Scholar] [PubMed]
- Kim, M.; Jeong, H.J.; Ju, H.-M.; Song, J.-Y.; Jang, S.J.; Choi, J. Overexpression of the NEK9-EG5 Axis Is a Novel Metastatic Marker in Pathologic Stage T3 Colon Cancer. Sci. Rep. 2023, 13, 342. [Google Scholar] [CrossRef]
- Venere, M.; Horbinski, C.; Crish, J.F.; Jin, X.; Vasanji, A.; Major, J.; Burrows, A.C.; Chang, C.; Prokop, J.; Wu, Q.; et al. The Mitotic Kinesin KIF11 Is a Driver of Invasion, Proliferation, and Self-Renewal in Glioblastoma. Sci. Transl. Med. 2015, 7, 304ra143. [Google Scholar] [CrossRef]
- Lim, Y.C.; Jensen, K.E.; Aguilar-Morante, D.; Vardouli, L.; Vitting-Seerup, K.; Gimple, R.C.; Wu, Q.; Pedersen, H.; Elbaek, K.J.; Gromova, I.; et al. Non-Metabolic Functions of Phosphofructokinase-1 Orchestrate Tumor Cellular Invasion and Genome Maintenance under Bevacizumab Therapy. Neuro. Oncol. 2023, 25, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Pashley, S.L.; Papageorgiou, S.; O’Regan, L.; Barone, G.; Robinson, S.W.; Lucken, K.; Straatman, K.R.; Roig, J.; Fry, A.M. The Mesenchymal Morphology of Cells Expressing the EML4–ALK V3 Oncogene Is Dependent on Phosphorylation of Eg5 by NEK7. J. Biol. Chem. 2024, 300, 107144. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhu, Q.; Tian, G.; Song, W.; Wang, T.; Wang, A.; Chen, X.; Qin, S. KIF11 Manipulates SREBP2 dependent Mevalonate Cross Talk to Promote Tumor Progression in Pancreatic Ductal Adenocarcinoma. Cancer Med. 2022, 11, 3282–3295. [Google Scholar] [CrossRef]
- Kim, J.-H.; Seo, Y.; Jo, M.; Jeon, H.; Kim, Y.-S.; Kim, E.-J.; Seo, D.; Lee, W.-H.; Kim, S.R.; Yachie, N.; et al. Interrogation of Kinase Genetic Interactions Provides a Global View of PAK1-Mediated Signal Transduction Pathways. J. Biol. Chem. 2020, 295, 16906–16919. [Google Scholar] [CrossRef]
- Shi, B.; Bao, J.; Liu, Y.; Shi, J. Death Receptor 6 Promotes Ovarian Cancer Cell Migration through KIF 11. FEBS Open Bio 2018, 8, 1497–1507. [Google Scholar] [CrossRef]
- Wang, F.; Lin, S.L. Knockdown of Kinesin KIF11 Abrogates Directed Migration in Response to Epidermal Growth Factor-Mediated Chemotaxis. Biochem. Biophys. Res. Commun. 2014, 452, 642–648. [Google Scholar] [CrossRef]
- Yang, C.-F.; Tsai, W.-Y.; Chen, W.-A.; Liang, K.-W.; Pan, C.-J.; Lai, P.-L.; Yang, P.-C.; Huang, H.-C. Kinesin-5 Contributes to Spindle-Length Scaling in the Evolution of Cancer toward Metastasis. Sci. Rep. 2016, 6, 35767. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhao, H.; Li, Z.; Yan, L.; Min, Q.; Wu, Q.; Zhan, Q. Integrative Analysis of T Cell-Mediated Tumor Killing-Related Genes Reveals KIF11 as a Novel Therapeutic Target in Esophageal Squamous Cell Carcinoma. J. Transl. Med. 2025, 23, 197. [Google Scholar] [CrossRef]
- Liu, T.; Wei, J. The Potential Bioactive Ingredients and Hub Genes of Five TCM Prescriptions against Lung Adenocarcinoma Were Explored Based on Bioinformatics. Naunyn. Schmiedebergs. Arch. Pharmacol. 2023, 396, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhuang, H.; Xia, R.; Gan, L.; Wu, Y.; Ma, J.; Sun, Y.; Zhuang, Z. KIF11 Is Required for Proliferation and Self-Renewal of Docetaxel Resistant Triple Negative Breast Cancer Cells. Oncotarget 2017, 8, 92106–92118. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, X.; Wang, H.; Liu, P.; Feng, Q.; Xu, C.; Song, Z. Identification of Hub Genes for the Diagnosis and Prognosis in Triple Negative Breast Cancer Using Transcriptome and Differential Methylation Integration Analysis. J. Cancer 2025, 16, 2026–2040. [Google Scholar] [CrossRef]
- Jin, Q.; Huang, F.; Wang, X.; Zhu, H.; Xian, Y.; Li, J.; Zhang, S.; Ni, Q. High Eg5 Expression Predicts Poor Prognosis in Breast Cancer. Oncotarget 2017, 8, 62208–62216. [Google Scholar] [CrossRef]
- Lu, M.; Zhu, H.; Wang, X.; Zhang, D.; Xiong, L.; Xu, L.; You, Y. The Prognostic Role of Eg5 Expression in Laryngeal Squamous Cell Carcinoma. Pathology 2016, 48, 214–218. [Google Scholar] [CrossRef]
- Wang, B.; Bao, L.; Li, X.; Sun, G.; Yang, W.; Xie, N.; Lei, L.; Chen, W.; Zhang, H.; Chen, M.; et al. Identification and Validation of the Important Role of KIF11 in the Development and Progression of Endometrial Cancer. J. Transl. Med. 2025, 23, 48. [Google Scholar] [CrossRef]
- Huang, R.; Liu, J.; Li, H.; Zheng, L.; Jin, H.; Zhang, Y.; Ma, W.; Su, J.; Wang, M.; Yang, K. Identification of Hub Genes and Their Correlation with Immune Infiltration Cells in Hepatocellular Carcinoma Based on GEO and TCGA Databases. Front. Genet. 2021, 12, 647353. [Google Scholar] [CrossRef]
- Shao, Y.-Y.; Sun, N.-Y.; Jeng, Y.-M.; Wu, Y.-M.; Hsu, C.; Hsu, C.-H.; Hsu, H.-C.; Cheng, A.-L.; Lin, Z.-Z. Eg5 as a Prognostic Biomarker and Potential Therapeutic Target for Hepatocellular Carcinoma. Cells 2021, 10, 1698. [Google Scholar] [CrossRef]
- Gudivada, I.P.; Amajala, K.C. Integrative Bioinformatics Analysis for Targeting Hub Genes in Hepatocellular Carcinoma Treatment. Curr. Genom. 2025, 26, 48–80. [Google Scholar] [CrossRef]
- Rahimi-Farsi, N.; Shahbazi, T.; Ghorbani, A.; Mottaghi-Dastjerdi, N.; Yazdani, F.; Mohseni, P.; Guzzi, P.H.; Esmail nia, G.; Shahbazi, B.; Ahmadi, K. Network-Based Analysis of Candidate Oncogenes and Pathways in Hepatocellular Carcinoma. Biochem. Biophys. Rep. 2025, 43, 102086. [Google Scholar] [CrossRef]
- Heidari, R.; Assadollahi, V.; Marashi, S.N.; Elahian, F.; Mirzaei, S.A. The miRNA mRNA Regulatory Network in Human Hepatocellular Carcinoma by Transcriptomic Analysis From GEO. Cancer Rep. 2025, 8, e70098. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, W.; Zhu, Y.; Tian, Y.; Wu, K.; Ji, L.; Ding, L.; Zhang, W.; Gao, T.; Liu, X.; et al. KIF11 as a Potential Cancer Prognostic Marker Promotes Tumorigenesis in Children with Wilms Tumor. Pediatr. Hematol. Oncol. 2022, 39, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X.; Mare, M.; Dumont, A.S.; Zhang, H.; Yan, D.; Xiong, Z. Overexpression of Eg5 Correlates with High Grade Astrocytic Neoplasm. J. Neurooncol. 2016, 126, 77–80. [Google Scholar] [CrossRef]
- Ding, S.; Xing, N.; Lu, J.; Zhang, H.; Nishizawa, K.; Liu, S.; Yuan, X.; Qin, Y.; Liu, Y.; Ogawa, O.; et al. Overexpression of Eg5 Predicts Unfavorable Prognosis in Non-Muscle Invasive Bladder Urothelial Carcinoma. Int. J. Urol. 2011, 18, 432–438. [Google Scholar] [CrossRef]
- Kowalewski, A.; Jaworski, D.; Antosik, P.; Smolińska, M.; Ligmanowska, J.; Grzanka, D.; Szylberg, Ł. Overexpression of Kif11 Is a Poor Prognostic Factor in Clear Cell Renal Cell Carcinoma. Polish J. Pathol. 2022, 73, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Lu, J.; Ding, K.; Bi, D.; Niu, Z.; Cao, Q.; Zhang, J.; Ding, S. The Expression of Eg5 Predicts a Poor Outcome for Patients with Renal Cell Carcinoma. Med. Oncol. 2013, 30, 476. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Dai, Y.; Wang, Y.; Zhang, S.; Liu, G. High Kinesin Family Member 11 Expression Predicts Poor Prognosis in Patients with Clear Cell Renal Cell Carcinoma. J. Clin. Pathol. 2019, 72, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Neska-Długosz, I.; Buchholz, K.; Durślewicz, J.; Gagat, M.; Grzanka, D.; Tojek, K.; Klimaszewska-Wiśniewska, A. Prognostic Impact and Functional Annotations of KIF11 and KIF14 Expression in Patients with Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 9732. [Google Scholar] [CrossRef]
- Hansson, K.; Radke, K.; Aaltonen, K.; Saarela, J.; Mañas, A.; Sjölund, J.; Smith, E.M.; Pietras, K.; Påhlman, S.; Wennerberg, K.; et al. Therapeutic Targeting of KSP in Preclinical Models of High-Risk Neuroblastoma. Sci. Transl. Med. 2020, 12, eaba4434. [Google Scholar] [CrossRef]
- Masanas, M.; Masiá, N.; Suárez-Cabrera, L.; Olivan, M.; Soriano, A.; Majem, B.; Devis-Jauregui, L.; Burgos-Panadero, R.; Jiménez, C.; Rodriguez-Sodupe, P.; et al. The Oral KIF11 Inhibitor 4SC-205 Exhibits Antitumor Activity and Potentiates Standard and Targeted Therapies in Primary and Metastatic Neuroblastoma Models. Clin. Transl. Med. 2021, 11, e533. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, X.; Jiang, T.; Pan, Y.; Lin, Y.; Feng, X.; Ding, Z.; Yang, C.; Tan, Y.; Wang, H.; et al. The Therapeutic Effect of KSP Inhibitors in Preclinical Models of Cholangiocarcinoma. Cell Death Dis. 2022, 13, 799. [Google Scholar] [CrossRef]
- He, N.; Wei, X.; Sun, R.; Zhang, G.; Zhao, J.; Jiang, X.; Long, B.; Yu, Z.; Shi, W.; Jiao, Z. Targeting Eg5 Using Arry520 Combats Gastric Cancer by Inducing Monopolar Spindles. Gene 2025, 955, 149458. [Google Scholar] [CrossRef] [PubMed]
- Jungwirth, G.; Yu, T.; Moustafa, M.; Rapp, C.; Warta, R.; Jungk, C.; Sahm, F.; Dettling, S.; Zweckberger, K.; Lamszus, K.; et al. Identification of KIF11 as a Novel Target in Meningioma. Cancers 2019, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Daigo, K.; Takano, A.; Manh, T.; Yoshitake, Y.; Shinohara, M.; Tohnai, I.; Murakami, Y.; Maegawa, J.; Daigo, Y. Characterization of KIF11 as a Novel Prognostic Biomarker and Therapeutic Target for Oral Cancer. Int. J. Oncol. 2017, 52, 155–165. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Liu, B.; Wei, S.; Wang, T.; Li, T.; Lin, J.; Ni, X. KIF11: A Potential Prognostic Biomarker for Predicting Bone Metastasis-free Survival of Prostate Cancer. Oncol. Lett. 2022, 24, 312. [Google Scholar] [CrossRef]
- Thankamony, A.P.; Murali, R.; Karthikeyan, N.; Varghese, B.A.; Teo, W.S.; McFarland, A.; Roden, D.L.; Holliday, H.; Konrad, C.V.; Cazet, A.; et al. Targeting the Id1-Kif11 Axis in Triple-Negative Breast Cancer Using Combination Therapy. Biomolecules 2020, 10, 1295. [Google Scholar] [CrossRef]
- Murase, Y.; Ono, H.; Ogawa, K.; Yoshioka, R.; Ishikawa, Y.; Ueda, H.; Akahoshi, K.; Ban, D.; Kudo, A.; Tanaka, S.; et al. Inhibitor Library Screening Identifies Ispinesib as a New Potential Chemotherapeutic Agent for Pancreatic Cancers. Cancer Sci. 2021, 112, 4641–4654. [Google Scholar] [CrossRef]
- Antosik, P.; Durślewicz, J.; Smolińska-Świtała, M.; Podemski, J.; Podemska, E.; Neska-Długosz, I.; Jóźwicki, J.; Grzanka, D. KIF11 and KIF14 Are a Novel Potential Prognostic Biomarker in Patients with Endometrioid Carcinoma. Cancers 2025, 17, 804. [Google Scholar] [CrossRef]
- Saijo, T.; Ishii, G.; Ochiai, A.; Yoh, K.; Goto, K.; Nagai, K.; Kato, H.; Nishiwaki, Y.; Saijo, N. Eg5 Expression Is Closely Correlated with the Response of Advanced Non-Small Cell Lung Cancer to Antimitotic Agents Combined with Platinum Chemotherapy. Lung Cancer 2006, 54, 217–225. [Google Scholar] [CrossRef]
- Wissing, M.D.; De Morrée, E.S.; Dezentjé, V.O.; Buijs, J.T.; De Krijger, R.R.; Smit, V.T.H.B.M.; Van Weerden, W.M.; Gelderblom, H.; van der Pluijm, G. Nuclear Eg5 (Kinesin Spindle Protein) Expression Predicts Docetaxel Response and Prostate Cancer Aggressiveness. Oncotarget 2014, 5, 7357–7367. [Google Scholar] [CrossRef]
- Doan, C.C.; Doan, N.T.; Nguyen, Q.H.; Nguyen, M.H.; Do, M.S.; Le, V.D. Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells. Iran. Biomed. J. 2015, 19, 1–16. [Google Scholar] [CrossRef]
- Serpico, A.F.; Visconti, R.; Grieco, D. Exploiting Immune-Dependent Effects of Microtubule-Targeting Agents to Improve Efficacy and Tolerability of Cancer Treatment. Cell Death Dis. 2020, 11, 361. [Google Scholar] [CrossRef]
- Shahin, R.; Aljamal, S. Kinesin Spindle Protein Inhibitors in Cancer: From High Throughput Screening to Novel Therapeutic Strategies. Futur. Sci. OA 2022, 8, FSO778. [Google Scholar] [CrossRef] [PubMed]
- Perez-Melero, C. KSP Inhibitors as Antimitotic Agents. Curr. Top. Med. Chem. 2014, 14, 2286–2311. [Google Scholar] [CrossRef] [PubMed]
- Faeze Mortazavi, S.; Ebadi, A.; Navid Mohammadian, M.; Mojaddami, A.; Toolabi, M. Synthesis of Novel 3,4-Dihydropyrimidine Derivatives, Cytotoxic Activity Evaluation, Apoptosis, Molecular Docking Studies, and MD Simulations. Chem. Biodivers. 2025, 22, e202402170. [Google Scholar] [CrossRef] [PubMed]
- Chavan, K.A.; Shukla, M.; Chauhan, A.N.S.; Maji, S.; Mali, G.; Bhattacharyya, S.; Erande, R.D. Effective Synthesis and Biological Evaluation of Natural and Designed Bis(Indolyl)Methanes via Taurine-Catalyzed Green Approach. ACS Omega 2022, 7, 10438–10446. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Błauż, A.; Krawczyk, K.; Rychlik, B.; Plażuk, D. Design and Synthesis of Ferrocenyl 1,4-Dihydropyridines and Their Evaluation as Kinesin-5 Inhibitors. Dalt. Trans. 2024, 53, 16038–16053. [Google Scholar] [CrossRef] [PubMed]
- Guido, B.C.; Ramos, L.M.; Nolasco, D.O.; Nobrega, C.C.; Andrade, B.Y.; Pic-Taylor, A.; Neto, B.A.; Corrêa, J.R. Impact of Kinesin Eg5 Inhibition by 3,4-Dihydropyrimidin-2(1H)-One Derivatives on Various Breast Cancer Cell Features. BMC Cancer 2015, 15, 283. [Google Scholar] [CrossRef]
- Gonçalves, I.L.; Rockenbach, L.; Göethel, G.; Saüer, E.; Kagami, L.P.; das Neves, G.M.; Munhoz, T.; Figueiró, F.; Garcia, S.C.; Oliveira Battastini, A.M.; et al. New Pharmacological Findings Linked to Biphenyl DHPMs, Kinesin Eg5 Ligands: Anticancer and Antioxidant Effects. Future Med. Chem. 2020, 12, 1137–1154. [Google Scholar] [CrossRef]
- Bodun, D.S.; Ibrahim, I.O.; Bashiru, M.; Abolade, R.O.; Ndarawit, W.K.; John-Joy Owolade, A.; Temitope, A.; Somtochukwu, I.J.; Olugbogi, E.A.; Samadhi, K.G.A.; et al. De Novo Design and Bioactivity Prediction of Mitotic Kinesin Eg5 Inhibitors Using MPNN and LSTM-Based Transfer Learning. Comput. Biol. Med. 2025, 195, 110672. [Google Scholar] [CrossRef]
- Xing, N.-D.; Ding, S.-T.; Saito, R.; Nishizawa, K.; Kobayashi, T.; Inoue, T.; Oishi, S.; Fujii, N.; Lv, J.-J.; Ogawa, O.; et al. A Potent Chemotherapeutic Strategy in Prostate Cancer: S-(Methoxytrityl)-L-Cysteine, a Novel Eg5 Inhibitor. Asian J. Androl. 2011, 13, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, X.; Du, M.; Chen, X.; Ning, X.; Chen, H.; Wang, S.; Liu, J.; Liu, Z.; Li, R.; et al. Eg5 Inhibitor YL001 Induces Mitotic Arrest and Inhibits Tumor Proliferation. Oncotarget 2017, 8, 42510–42524. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, C.; Kang, M.; Ma, X.; Sun, X.; Xue, Y.; Fang, Y. KIF11 Serves as a Cell Cycle Mediator in Childhood Acute Lymphoblastic Leukemia. J. Cancer Res. Clin. Oncol. 2023, 149, 15609–15622. [Google Scholar] [CrossRef]
- Kim, K.H.; Xie, Y.; Tytler, E.M.; Woessner, R.; Mor, G.; Alvero, A.B. KSP Inhibitor ARRY-520 as a Substitute for Paclitaxel in Type I Ovarian Cancer Cells. J. Transl. Med. 2009, 7, 63. [Google Scholar] [CrossRef]
- Tunquist, B.J.; Woessner, R.D.; Walker, D.H. Mcl-1 Stability Determines Mitotic Cell Fate of Human Multiple Myeloma Tumor Cells Treated with the Kinesin Spindle Protein Inhibitor ARRY-520. Mol. Cancer Ther. 2010, 9, 2046–2056. [Google Scholar] [CrossRef]
- Woessner, R.; Tunquist, B.; Lemieux, C.; Chlipala, E.; Jackinsky, S.; Dewolf, W.; Voegtli, W.; Cox, A.; Rana, S.; Lee, P.; et al. ARRY-520, a Novel KSP Inhibitor with Potent Activity in Hematological and Taxane-Resistant Tumor Models. Anticancer Res. 2009, 29, 4373–4380. [Google Scholar]
- Carter, B.Z.; Mak, D.H.; Woessner, R.; Gross, S.; Schober, W.D.; Estrov, Z.; Kantarjian, H.; Andreeff, M. Inhibition of KSP by ARRY-520 Induces Cell Cycle Block and Cell Death via the Mitochondrial Pathway in AML Cells. Leukemia 2009, 23, 1755–1762. [Google Scholar] [CrossRef]
- Jungwirth, G.; Yu, T.; Cao, J.; Eddine, M.A.; Moustafa, M.; Warta, R.; Debus, J.; Unterberg, A.; Abdollahi, A.; Herold-Mende, C. KIF11 Inhibitors Filanesib and Ispinesib Inhibit Meningioma Growth in Vitro and in Vivo. Cancer Lett. 2021, 506, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nousiainen, R.; Eloranta, K.; Saarela, J.; Hassinen, A.; Luck, T.J.; Cairo, S.; Indersie, E.; Potdar, S.; Feodoroff, M.J.; Lohi, J.; et al. Functional Screening Identifies Kinesin Spindle Protein Inhibitor Filanesib as a Potential Treatment Option for Hepatoblastoma. Npj Precis. Oncol. 2025, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Purcell, J.W.; Davis, J.; Reddy, M.; Martin, S.; Samayoa, K.; Vo, H.; Thomsen, K.; Bean, P.; Kuo, W.L.; Ziyad, S.; et al. Activity of the Kinesin Spindle Protein Inhibitor Ispinesib (SB-715992) in Models of Breast Cancer. Clin. Cancer Res. 2010, 16, 566–576. [Google Scholar] [CrossRef]
- Wiltshire, C.; Singh, B.L.; Stockley, J.; Fleming, J.; Doyle, B.; Barnetson, R.; Robson, C.N.; Kozielski, F.; Leung, H.Y. Docetaxel-Resistant Prostate Cancer Cells Remain Sensitive to S-Trityl-l-Cysteine–Mediated Eg5 Inhibition. Mol. Cancer Ther. 2010, 9, 1730–1739. [Google Scholar] [CrossRef]
- Ding, S.; Zhao, Z.; Sun, D.; Wu, F.; Bi, D.; Lu, J.; Xing, N.; Sun, L.; Wu, H.; Ding, K. Eg5 Inhibitor, a Novel Potent Targeted Therapy, Induces Cell Apoptosis in Renal Cell Carcinoma. Tumor Biol. 2014, 35, 7659–7668. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Nishizawa, K.; Kobayashi, T.; Oishi, S.; Lv, J.; Fujii, N.; Ogawa, O.; Nishiyama, H. A Potent Chemotherapeutic Strategy for Bladder Cancer: (S)-Methoxy-Trityl-L-Cystein, a Novel Eg5 Inhibitor. J. Urol. 2010, 184, 1175–1181. [Google Scholar] [CrossRef]
- Shimizu, M.; Ishii, H.; Ogo, N.; Unno, Y.; Matsuno, K.; Sawada, J.; Akiyama, Y.; Asai, A. S-Trityl-L-Cysteine Derivative Induces Caspase-Independent Cell Death in K562 Human Chronic Myeloid Leukemia Cell Line. Cancer Lett. 2010, 298, 99–106. [Google Scholar] [CrossRef]
- Su, K.-C.; Radul, E.; Maier, N.K.; Tsang, M.-J.; Goul, C.; Moodie, B.; Marescal, O.; Keys, H.R.; Cheeseman, I.M. Functional Genetics Reveals Modulators of Antimicrotubule Drug Sensitivity. J. Cell Biol. 2025, 224, e202403065. [Google Scholar] [CrossRef]
- Taglieri, L.; Rubinacci, G.; Giuffrida, A.; Carradori, S.; Scarpa, S. The Kinesin Eg5 Inhibitor K858 Induces Apoptosis and Reverses the Malignant Invasive Phenotype in Human Glioblastoma Cells. Investig. New Drugs 2018, 36, 28–35. [Google Scholar] [CrossRef]
- Nicolai, A.; Taurone, S.; Carradori, S.; Artico, M.; Greco, A.; Costi, R.; Scarpa, S. The Kinesin Eg5 Inhibitor K858 Exerts Antiproliferative and Proapoptotic Effects and Attenuates the Invasive Potential of Head and Neck Squamous Carcinoma Cells. Investig. New Drugs 2022, 40, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Nakai, R.; Iida, S.; Takahashi, T.; Tsujita, T.; Okamoto, S.; Takada, C.; Akasaka, K.; Ichikawa, S.; Ishida, H.; Kusaka, H.; et al. K858, a Novel Inhibitor of Mitotic Kinesin Eg5 and Antitumor Agent, Induces Cell Death in Cancer Cells. Cancer Res. 2009, 69, 3901–3909. [Google Scholar] [CrossRef] [PubMed]
- Giantulli, S.; De Iuliis, F.; Taglieri, L.; Carradori, S.; Menichelli, G.; Morrone, S.; Scarpa, S.; Silvestri, I. Growth Arrest and Apoptosis Induced by Kinesin Eg5 Inhibitor K858 and by Its 1,3,4-Thiadiazoline Analogue in Tumor Cells. Anticancer. Drugs 2018, 29, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Cataldi, A.; Carradori, S.; Zara, S. Kinesin Eg5 Selective Inhibition by Newly Synthesized Molecules as an Alternative Approach to Counteract Breast Cancer Progression: An In Vitro Study. Biology 2022, 11, 1450. [Google Scholar] [CrossRef]
- Ricci, A.; Gallorini, M.; Del Bufalo, D.; Cataldi, A.; D’Agostino, I.; Carradori, S.; Zara, S. Negative Modulation of the Angiogenic Cascade Induced by Allosteric Kinesin Eg5 Inhibitors in a Gastric Adenocarcinoma In Vitro Model. Molecules 2022, 27, 957. [Google Scholar] [CrossRef]
- Marconi, G.D.; Carradori, S.; Ricci, A.; Guglielmi, P.; Cataldi, A.; Zara, S. Kinesin Eg5 Targeting Inhibitors as a New Strategy for Gastric Adenocarcinoma Treatment. Molecules 2019, 24, 3948. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, F.; Yu, Y.; Wang, H.; Fang, M.; Yang, Y.; Sun, H.; Wang, L.; Sheng, Y. KSP Inhibitor SB743921 Inhibits Growth and Induces Apoptosis of Breast Cancer Cells by Regulating P53, Bcl-2, and DTL. Anticancer. Drugs 2016, 27, 863–872. [Google Scholar] [CrossRef]
- Yin, Y.; Sun, H.; Xu, J.; Xiao, F.; Wang, H.; Yang, Y.; Ren, H.; Wu, C.-T.; Gao, C.; Wang, L. Kinesin Spindle Protein Inhibitor SB743921 Induces Mitotic Arrest and Apoptosis and Overcomes Imatinib Resistance of Chronic Myeloid Leukemia Cells. Leuk. Lymphoma 2015, 56, 1813–1820. [Google Scholar] [CrossRef]
- Bongero, D.; Paoluzzi, L.; Marchi, E.; Zullo, K.M.; Neisa, R.; Mao, Y.; Escandon, R.; Wood, K.; O’Connor, O.A. The Novel Kinesin Spindle Protein (KSP) Inhibitor SB-743921 Exhibits Marked Activity in in Vivo and in Vitro Models of Aggressive Large B-Cell Lymphoma. Leuk. Lymphoma 2015, 56, 2945–2952. [Google Scholar] [CrossRef]
- Sun, X.; Shi, X.; Sun, X.; Luo, Y.; Wu, X.; Yao, C.; Yu, H.; Li, D.; Liu, M.; Zhou, J. Dimethylenastron Suppresses Human Pancreatic Cancer Cell Migration and Invasion in Vitro via Allosteric Inhibition of Mitotic Kinesin Eg5. Acta Pharmacol. Sin. 2011, 32, 1543–1548. [Google Scholar] [CrossRef]
- Liu, M.; Yu, H.; Huo, L.; Liu, J.; Li, M.; Zhou, J. Validating the Mitotic Kinesin Eg5 as a Therapeutic Target in Pancreatic Cancer Cells and Tumor Xenografts Using a Specific Inhibitor. Biochem. Pharmacol. 2008, 76, 169–178. [Google Scholar] [CrossRef]
- Sun, L.; Sun, X.; Xie, S.; Yu, H.; Zhong, D. Significant Decrease of ADP Release Rate Underlies the Potent Activity of Dimethylenastron to Inhibit Mitotic Kinesin Eg5 and Cancer Cell Proliferation. Biochem. Biophys. Res. Commun. 2014, 447, 465–470. [Google Scholar] [CrossRef]
- Rello-Varona, S.; Vitale, I.; Kepp, O.; Senovilla, L.; Jemaá, M.; Métivier, D.; Castedo, M.; Kroemer, G. Preferential Killing of Tetraploid Tumor Cells by Targeting the Mitotic Kinesin Eg5. Cell Cycle 2009, 8, 1030–1035. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, C.; Liu, F.; You, Q.-D.; Wu, W.-T. Cloning, Enzyme Characterization of Recombinant Human Eg5 and the Development of a New Inhibitor. Biol. Pharm. Bull. 2008, 31, 1397–1402. [Google Scholar] [CrossRef][Green Version]
- Jiang, C.; Yang, L.; Wu, W.-T.; Guo, Q.-L.; You, Q.-D. CPUYJ039, a Newly Synthesized Benzimidazole-Based Compound, Is Proved to Be a Novel Inducer of Apoptosis in HCT116 Cells with Potent KSP Inhibitory Activity. J. Pharm. Pharmacol. 2011, 63, 1462–1469. [Google Scholar] [CrossRef]
- Cox, C.D.; Coleman, P.J.; Breslin, M.J.; Whitman, D.B.; Garbaccio, R.M.; Fraley, M.E.; Buser, C.A.; Walsh, E.S.; Hamilton, K.; Schaber, M.D.; et al. Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2 S)-4-(2,5-Difluorophenyl)-N-[(3 R, 4 S)-3-Fluoro-1-Methylpiperidin-4-Yl]-2-(Hydroxymethyl)- N -Methyl-2-Phenyl-2,5-Dihydro-1 H -Pyrrole-1-Carboxamide (MK-0731) for the Treatment of Taxane-Re. J. Med. Chem. 2008, 51, 4239–4252. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.S.; Fan, L.; Van Horn, R.D.; Nakai, R.; Ohta, Y.; Akinaga, S.; Murakata, C.; Yamashita, Y.; Yin, T.; Credille, K.M.; et al. A Novel Eg5 Inhibitor (LY2523355) Causes Mitotic Arrest and Apoptosis in Cancer Cells and Shows Potent Antitumor Activity in Xenograft Tumor Models. Mol. Cancer Ther. 2015, 14, 2463–2472. [Google Scholar] [CrossRef] [PubMed]
- Takenaga, M.; Yamamoto, Y.; Takeuchi, T.; Ohta, Y.; Tokura, Y.; Hamaguchi, A.; Asai, D.; Nakashima, H.; Oishi, S.; Fujii, N. Potential New Chemotherapy Strategy for Human Ovarian Carcinoma with a Novel KSP Inhibitor. Biochem. Biophys. Res. Commun. 2015, 463, 222–228. [Google Scholar] [CrossRef]
- Sakowicz, R.; Finer, J.T.; Beraud, C.; Crompton, A.; Lewis, E.; Fritsch, A.; Lee, Y.; Mak, J.; Moody, R.; Turincio, R.; et al. Antitumor Activity of a Kinesin Inhibitor. Cancer Res. 2004, 64, 3276–3280. [Google Scholar] [CrossRef] [PubMed]
- Ugarte, F.; Porth, K.; Sadekova, S. Histone H3 Phosphorylation in Human Skin Histoculture as a Tool to Evaluate Patient’s Response to Antiproliferative Drugs. Biomark. Insights 2015, 10, 73–76. [Google Scholar] [CrossRef]
- Marcus, A.I.; Peters, U.; Thomas, S.L.; Garrett, S.; Zelnak, A.; Kapoor, T.M.; Giannakakou, P. Mitotic Kinesin Inhibitors Induce Mitotic Arrest and Cell Death in Taxol-Resistant and -Sensitive Cancer Cells. J. Biol. Chem. 2005, 280, 11569–11577. [Google Scholar] [CrossRef]
- Hayashi, N.; Koller, E.; Fazli, L.; Gleave, M.E. Effects of Eg5 Knockdown on Human Prostate Cancer Xenograft Growth and Chemosensitivity. Prostate 2008, 68, 1283–1295. [Google Scholar] [CrossRef]
- Marra, E.; Palombo, F.; Ciliberto, G.; Aurisicchio, L. Kinesin Spindle Protein SiRNA Slows Tumor Progression. J. Cell. Physiol. 2013, 228, 58–64. [Google Scholar] [CrossRef]
- Davis, D.A.; Sarkar, S.H.; Hussain, M.; Li, Y.; Sarkar, F.H. Increased Therapeutic Potential of an Experimental Anti-Mitotic Inhibitor SB715992 by Genistein in PC-3 Human Prostate Cancer Cell Line. BMC Cancer 2006, 6, 22. [Google Scholar] [CrossRef][Green Version]
- Zhou, Y.; Yang, L.; Xiong, L.; Wang, K.; Hou, X.; Li, Q.; Kong, F.; Liu, X.; He, J. KIF11 Is Upregulated in Colorectal Cancer and Silencing of It Impairs Tumor Growth and Sensitizes Colorectal Cancer Cells to Oxaliplatin via P53/GSK3β Signaling. J. Cancer 2021, 12, 3741–3753. [Google Scholar] [CrossRef] [PubMed]
- Tallman, M.M.; Zalenski, A.A.; Stabl, I.; Schrock, M.S.; Kollin, L.; de Jong, E.; De, K.; Grubb, T.M.; Summers, M.K.; Venere, M. Improving Localized Radiotherapy for Glioblastoma via Small Molecule Inhibition of KIF11. Cancers 2023, 15, 3173. [Google Scholar] [CrossRef]
- Chen, Y.; Chow, J.P.H.; Poon, R.Y.C. Inhibition of Eg5 Acts Synergistically with Checkpoint Abrogation in Promoting Mitotic Catastrophe. Mol. Cancer Res. 2012, 10, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.D.; Liu, M.; Dai, C.; Gray, K.; Nale, L.; Tevar, S.; Lee, S.; Liang, L.; Ponery, A.; Yaremko, B.; et al. SCH 2047069, a Novel Oral Kinesin Spindle Protein Inhibitor, Shows Single-Agent Antitumor Activity and Enhances the Efficacy of Chemotherapeutics. Mol. Cancer Ther. 2010, 9, 2993–3002. [Google Scholar] [CrossRef] [PubMed]
- Yasuhira, S.; Shibazaki, M.; Nishiya, M.; Maesawa, C. Paclitaxel-Induced Aberrant Mitosis and Mitotic Slippage Efficiently Lead to Proliferative Death Irrespective of Canonical Apoptosis and P53. Cell Cycle 2016, 15, 3268–3277. [Google Scholar] [CrossRef]
- Lee, J.; Cho, Y.J.; Lee, J.-W.; Ahn, H.J. KSP SiRNA/Paclitaxel-Loaded PEGylated Cationic Liposomes for Overcoming Resistance to KSP Inhibitors: Synergistic Antitumor Effects in Drug-Resistant Ovarian Cancer. J. Control. Release 2020, 321, 184–197. [Google Scholar] [CrossRef]
- Doan, C.; Le, L.; Hoang, S.; Do, S.; Le, D. Simultaneous Silencing of VEGF and KSP by SiRNA Cocktail Inhibits Proliferation and Induces Apoptosis of Hepatocellular Carcinoma Hep3B Cells. Biol. Res. 2014, 47, 70. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-J.; Kessel, E.; Edinger, D.; He, D.; Klein, P.M.; Voith von Voithenberg, L.; Lamb, D.C.; Lächelt, U.; Lehto, T.; Wagner, E. Dual Antitumoral Potency of EG5 SiRNA Nanoplexes Armed with Cytotoxic Bifunctional Glutamyl-Methotrexate Targeting Ligand. Biomaterials 2016, 77, 98–110. [Google Scholar] [CrossRef]
- Truebenbach, I.; Zhang, W.; Wang, Y.; Kern, S.; Höhn, M.; Reinhard, S.; Gorges, J.; Kazmaier, U.; Wagner, E. Co-Delivery of Pretubulysin and SiEG5 to EGFR Overexpressing Carcinoma Cells. Int. J. Pharm. 2019, 569, 118570. [Google Scholar] [CrossRef]
- Gampa, G.; Kenchappa, R.S.; Mohammad, A.S.; Parrish, K.E.; Kim, M.; Crish, J.F.; Luu, A.; West, R.; Hinojosa, A.Q.; Sarkaria, J.N.; et al. Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves Its Efficacy in a Mouse Model of Glioblastoma. Sci. Rep. 2020, 10, 6524. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Johansen, L.; Zhang, Y.; Wilson, A.; Keegan, M.; Avery, W.; Elliott, P.; Borisy, A.A.; Keith, C.T. The Novel Combination of Chlorpromazine and Pentamidine Exerts Synergistic Antiproliferative Effects through Dual Mitotic Action. Cancer Res. 2007, 67, 11359–11367. [Google Scholar] [CrossRef]
- Hernández-García, S.; San-Segundo, L.; González-Méndez, L.; Corchete, L.A.; Misiewicz-Krzeminska, I.; Martín-Sánchez, M.; López-Iglesias, A.-A.; Algarín, E.M.; Mogollón, P.; Díaz-Tejedor, A.; et al. The Kinesin Spindle Protein Inhibitor Filanesib Enhances the Activity of Pomalidomide and Dexamethasone in Multiple Myeloma. Haematologica 2017, 102, 2113–2124. [Google Scholar] [CrossRef]
- Song, I.-S.; Jeong, Y.J.; Nyamaa, B.; Jeong, S.H.; Kim, H.K.; Kim, N.; Ko, K.S.; Rhee, B.D.; Han, J. KSP Inhibitor SB743921 Induces Death of Multiple Myeloma Cells via Inhibition of the NF-ΚB Signaling Pathway. BMB Rep. 2015, 48, 571–576. [Google Scholar] [CrossRef]
- Bobylev, I.; Peters, D.; Vyas, M.; Barham, M.; Klein, I.; von Strandmann, E.P.; Neiss, W.F.; Lehmann, H.C. Kinesin-5 Blocker Monastrol Protects Against Bortezomib-Induced Peripheral Neurotoxicity. Neurotox. Res. 2017, 32, 555–562. [Google Scholar] [CrossRef]
- Basso, A.D.; Liu, M.; Gray, K.; Tevar, S.; Lee, S.; Liang, L.; Ponery, A.; Smith, E.B.; Monsma, F.J.; Yu, T.; et al. SCH 1473759, a Novel Aurora Inhibitor, Demonstrates Enhanced Anti-Tumor Activity in Combination with Taxanes and KSP Inhibitors. Cancer Chemother. Pharmacol. 2011, 68, 923–933. [Google Scholar] [CrossRef]
- Ma, H.T.; Erdal, S.; Huang, S.; Poon, R.Y.C. Synergism between Inhibitors of Aurora A and KIF11 Overcomes KIF15-dependent Drug Resistance. Mol. Oncol. 2014, 8, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Dong, Y.; Yu, X.; Lu, J.; Jin, N.; Shang, C.; Li, X.; Fan, S. A Novel Antibody-KSP Inhibitor Conjugate Improves KSP Inhibitor Efficacy in Vitro and in Vivo. Biomaterials 2023, 301, 122258. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, D.; Stelte-Ludwig, B.; Lerchen, H.-G.; Wengner, A.M.; Ahsen, O.v.; Buchmann, P.; Märsch, S.; Mahlert, C.; Greven, S.; Dietz, L.; et al. IL3RA-Targeting Antibody–Drug Conjugate BAY-943 with a Kinesin Spindle Protein Inhibitor Payload Shows Efficacy in Preclinical Models of Hematologic Malignancies. Cancers 2020, 12, 3464. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A.; Berndt, S.; Lerchen, H.-G.; Forveille, S.; Sauvat, A.; Mumberg, D.; Kroemer, G.; Kepp, O. Antibody–Drug Conjugates Harboring a Kinesin Spindle Protein Inhibitor with Immunostimulatory Properties. Oncoimmunology 2022, 11, 2037216. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M.B.; Pasquier, E.; Li, F.; Beck, D.; Zhang, S.; Zhao, H.; Kavallaris, M.; Wong, S.T.C. Computational Analysis of Image-based Drug Profiling Predicts Synergistic Drug Combinations: Applications in Triple-negative Breast Cancer. Mol. Oncol. 2014, 8, 1548–1560. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Banu, M.A.; Zhao, W.; Rosenfeld, S.S.; Canoll, P.; Sims, P.A. Multiplexed Single-Cell Lineage Tracing of Mitotic Kinesin Inhibitor Resistance in Glioblastoma. Cell Rep. 2024, 43, 114139. [Google Scholar] [CrossRef]
- Planas-Silva, M.D.; Filatova, I.S. Estrogen-Dependent Regulation of Eg5 in Breast Cancer Cells. Anticancer. Drugs 2007, 18, 773–779. [Google Scholar] [CrossRef]
- Sun, L.; Lu, J.; Niu, Z.; Ding, K.; Bi, D.; Liu, S.; Li, J.; Wu, F.; Zhang, H.; Zhao, Z.; et al. A Potent Chemotherapeutic Strategy with Eg5 Inhibitor against Gemcitabine Resistant Bladder Cancer. PLoS ONE 2015, 10, e0144484. [Google Scholar] [CrossRef]
- Terribas, E.; Fernández, M.; Mazuelas, H.; Fernández-Rodríguez, J.; Biayna, J.; Blanco, I.; Bernal, G.; Ramos-Oliver, I.; Thomas, C.; Guha, R.; et al. KIF11 and KIF15 Mitotic Kinesins Are Potential Therapeutic Vulnerabilities for Malignant Peripheral Nerve Sheath Tumors. Neuro-Oncol. Adv. 2020, 2, i62–i74. [Google Scholar] [CrossRef]
- Hwang, M.-K.; Min, Y.-K.; Kim, S.-H. Kinesin Spindle Protein Inhibitor HR22C16 Sensitizes TRAIL-Induced Apoptosis in Human Lung Cancer H1299 Cells. Bull. Korean Chem. Soc. 2011, 32, 1737–1740. [Google Scholar] [CrossRef][Green Version]
- Tang, D.; Zheng, S.; Liu, C.; Zuo, N.; Yan, R.; Wu, C.; Ma, J.; Wang, C.; Chen, B.; Liu, S.; et al. Kinesin Spindle Protein Inhibitor Exacerbates Cisplatin-Induced Hair Cell Damage. Arch. Biochem. Biophys. 2022, 731, 109432. [Google Scholar] [CrossRef]
- Wakui, H.; Yamamoto, N.; Kitazono, S.; Mizugaki, H.; Nakamichi, S.; Fujiwara, Y.; Nokihara, H.; Yamada, Y.; Suzuki, K.; Kanda, H.; et al. A Phase 1 and Dose-Finding Study of LY2523355 (Litronesib), an Eg5 Inhibitor, in Japanese Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2014, 74, 15–23. [Google Scholar] [CrossRef]
- Infante, J.R.; Patnaik, A.; Verschraegen, C.F.; Olszanski, A.J.; Shaheen, M.; Burris, H.A.; Tolcher, A.W.; Papadopoulos, K.P.; Beeram, M.; Hynes, S.M.; et al. Two Phase 1 Dose-Escalation Studies Exploring Multiple Regimens of Litronesib (LY2523355), an Eg5 Inhibitor, in Patients with Advanced Cancer. Cancer Chemother. Pharmacol. 2017, 79, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Vuky, J.; Elliott, T.; Mead, G.; Arranz, J.A.; Chester, J.; Chowdhury, S.; Dudek, A.Z.; Müller-Mattheis, V.; Grimm, M.-O.; et al. Phase II Study to Assess the Efficacy, Safety and Tolerability of the Mitotic Spindle Kinesin Inhibitor AZD4877 in Patients with Recurrent Advanced Urothelial Cancer. Investig. New Drugs 2013, 31, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Padmanabhan, S.; Stock, W.; Tallman, M.S.; Curt, G.A.; Li, J.; Osmukhina, A.; Wu, K.; Huszar, D.; Borthukar, G.; et al. Phase I/II Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of AZD4877 in Patients with Refractory Acute Myeloid Leukemia. Investig. New Drugs 2012, 30, 1107–1115. [Google Scholar] [CrossRef]
- Hollebecque, A.; Deutsch, E.; Massard, C.; Gomez-Roca, C.; Bahleda, R.; Ribrag, V.; Bourgier, C.; Lazar, V.; Lacroix, L.; Gazzah, A.; et al. A Phase I, Dose-Escalation Study of the Eg5-Inhibitor EMD 534085 in Patients with Advanced Solid Tumors or Lymphoma. Investig. New Drugs 2013, 31, 1530–1538. [Google Scholar] [CrossRef]
- Holen, K.D.; Belani, C.P.; Wilding, G.; Ramalingam, S.; Volkman, J.L.; Ramanathan, R.K.; Vasist, L.S.; Bowen, C.J.; Hodge, J.P.; Dar, M.M.; et al. A First in Human Study of SB-743921, a Kinesin Spindle Protein Inhibitor, to Determine Pharmacokinetics, Biologic Effects and Establish a Recommended Phase II Dose. Cancer Chemother. Pharmacol. 2011, 67, 447–454. [Google Scholar] [CrossRef]
- O’Connor, O.A.; Gerecitano, J.; Van Deventer, H.; Hainsworth, J.; Zullo, K.M.; Saikali, K.; Seroogy, J.; Wolff, A.; Escandón, R. The Addition of Granulocyte-Colony Stimulating Factor Shifts the Dose Limiting Toxicity and Markedly Increases the Maximum Tolerated Dose and Activity of the Kinesin Spindle Protein Inhibitor SB-743921 in Patients with Relapsed or Refractory Lymphoma: Res. Leuk. Lymphoma 2015, 56, 2585–2591. [Google Scholar] [CrossRef]
- Burris, H.A.; Jones, S.F.; Williams, D.D.; Kathman, S.J.; Hodge, J.P.; Pandite, L.; Ho, P.T.C.; Boerner, S.A.; LoRusso, P. A Phase I Study of Ispinesib, a Kinesin Spindle Protein Inhibitor, Administered Weekly for Three Consecutive Weeks of a 28-Day Cycle in Patients with Solid Tumors. Investig. New Drugs 2011, 29, 467–472. [Google Scholar] [CrossRef]
- Souid, A.; Dubowy, R.L.; Ingle, A.M.; Conlan, M.G.; Sun, J.; Blaney, S.M.; Adamson, P.C. A Pediatric Phase I Trial and Pharmacokinetic Study of Ispinesib: A Children’s Oncology Group Phase I Consortium Study. Pediatr. Blood Cancer 2010, 55, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Goldman, B.; Synold, T.W.; Ryan, C.W.; Vasist, L.S.; Van Veldhuizen, P.J.; Dakhil, S.R.; Lara, P.N.; Drelichman, A.; Hussain, M.H.A.; et al. Southwest Oncology Group Phase II Study of Ispinesib in Androgen-Independent Prostate Cancer Previously Treated with Taxanes. Clin. Genitourin. Cancer 2008, 6, 103–109. [Google Scholar] [CrossRef]
- Knox, J.J.; Gill, S.; Synold, T.W.; Biagi, J.J.; Major, P.; Feld, R.; Cripps, C.; Wainman, N.; Eisenhauer, E.; Seymour, L. A Phase II and Pharmacokinetic Study of SB-715992, in Patients with Metastatic Hepatocellular Carcinoma: A Study of the National Cancer Institute of Canada Clinical Trials Group (NCIC CTG IND.168). Investig. New Drugs 2008, 26, 265–272. [Google Scholar] [CrossRef]
- Lee, C.W.; Bélanger, K.; Rao, S.C.; Petrella, T.M.; Tozer, R.G.; Wood, L.; Savage, K.J.; Eisenhauer, E.A.; Synold, T.W.; Wainman, N.; et al. A Phase II Study of Ispinesib (SB-715992) in Patients with Metastatic or Recurrent Malignant Melanoma: A National Cancer Institute of Canada Clinical Trials Group Trial. Investig. New Drugs 2008, 26, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.T.; Beekman, K.E.; Hussain, M.; Davis, N.B.; Clark, J.I.; Thomas, S.P.; Nichols, K.F.; Stadler, W.M. A University of Chicago Consortium Phase II Trial of SB-715992 in Advanced Renal Cell Cancer. Clin. Genitourin. Cancer 2008, 6, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Blagden, S.P.; Molife, L.R.; Seebaran, A.; Payne, M.; Reid, A.H.M.; Protheroe, A.S.; Vasist, L.S.; Williams, D.D.; Bowen, C.; Kathman, S.J.; et al. A Phase I Trial of Ispinesib, a Kinesin Spindle Protein Inhibitor, with Docetaxel in Patients with Advanced Solid Tumours. Br. J. Cancer 2008, 98, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.A.; Siu, L.L.; Chen, E.X.; Hotte, S.J.; Chia, S.; Schwarz, J.K.; Pond, G.R.; Johnson, C.; Colevas, A.D.; Synold, T.W.; et al. Phase II Study of Ispinesib in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck. Investig. New Drugs 2008, 26, 257–264. [Google Scholar] [CrossRef] [PubMed]
- LoRusso, P.M.; Goncalves, P.H.; Casetta, L.; Carter, J.A.; Litwiler, K.; Roseberry, D.; Rush, S.; Schreiber, J.; Simmons, H.M.; Ptaszynski, M.; et al. First-in-Human Phase 1 Study of Filanesib (ARRY-520), a Kinesin Spindle Protein Inhibitor, in Patients with Advanced Solid Tumors. Investig. New Drugs 2015, 33, 440–449. [Google Scholar] [CrossRef]
- Khoury, H.J.; Garcia-Manero, G.; Borthakur, G.; Kadia, T.; Foudray, M.C.; Arellano, M.; Langston, A.; Bethelmie-Bryan, B.; Rush, S.; Litwiler, K.; et al. A Phase 1 Dose-escalation Study of ARRY-520, a Kinesin Spindle Protein Inhibitor, in Patients with Advanced Myeloid Leukemias. Cancer 2012, 118, 3556–3564. [Google Scholar] [CrossRef]
- Shah, J.J.; Kaufman, J.L.; Zonder, J.A.; Cohen, A.D.; Bensinger, W.I.; Hilder, B.W.; Rush, S.A.; Walker, D.H.; Tunquist, B.J.; Litwiler, K.S.; et al. A Phase 1 and 2 Study of Filanesib Alone and in Combination with Low-dose Dexamethasone in Relapsed/Refractory Multiple Myeloma. Cancer 2017, 123, 4617–4630. [Google Scholar] [CrossRef]
- Ocio, E.M.; Motlló, C.; Rodríguez-Otero, P.; Martínez-López, J.; Cejalvo, M.J.; Martín-Sánchez, J.; Bladé, J.; García-Malo, M.D.; Dourdil, M.V.; García-Mateo, A.; et al. Filanesib in Combination with Pomalidomide and Dexamethasone in Refractory MM Patients: Safety and Efficacy, and Association with Alpha 1-acid Glycoprotein (AAG) Levels. Phase Ib/II Pomdefil Clinical Trial Conducted by the Spanish MM Group. Br. J. Haematol. 2021, 192, 522–530. [Google Scholar] [CrossRef]
- Chari, A.; Htut, M.; Zonder, J.A.; Fay, J.W.; Jakubowiak, A.J.; Levy, J.B.; Lau, K.; Burt, S.M.; Tunquist, B.J.; Hilder, B.W.; et al. A Phase 1 Dose-escalation Study of Filanesib plus Bortezomib and Dexamethasone in Patients with Recurrent/Refractory Multiple Myeloma. Cancer 2016, 122, 3327–3335. [Google Scholar] [CrossRef]
- Pan, D.; Kaufman, J.L.; Htut, M.; Agrawal, M.; Mazumder, A.; Cornell, R.F.; Zonder, J.A.; Fay, J.W.; Modiano, M.R.; Moshier, E.L.; et al. Filanesib plus Bortezomib and Dexamethasone in Relapsed/Refractory t(11;14) and 1q21 Gain Multiple Myeloma. Cancer Med. 2022, 11, 358–370. [Google Scholar] [CrossRef]
- Lee, H.C.; Shah, J.J.; Feng, L.; Manasanch, E.E.; Lu, R.; Morphey, A.; Crumpton, B.; Patel, K.K.; Wang, M.L.; Alexanian, R.; et al. A Phase 1 Study of Filanesib, Carfilzomib, and Dexamethasone in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood Cancer J. 2019, 9, 80. [Google Scholar] [CrossRef]
- Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; et al. First-in-Humans Trial of an RNA Interference Therapeutic Targeting VEGF and KSP in Cancer Patients with Liver Involvement. Cancer Discov. 2013, 3, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Parrish, C.A.; Nevins, N.; McNulty, D.E.; Chaudhari, A.M.; Carson, J.D.; Sudakin, V.; Shaw, A.N.; Lehr, R.; Zhao, H.; et al. ATP-Competitive Inhibitors of the Mitotic Kinesin KSP That Function via an Allosteric Mechanism. Nat. Chem. Biol. 2007, 3, 722–726. [Google Scholar] [CrossRef]
- Maliga, Z.; Mitchison, T.J. Small-Molecule and Mutational Analysis of Allosteric Eg5 Inhibition by Monastrol. BMC Chem. Biol. 2006, 6, 2. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Marshall, C.G.; Torrent, M.; Williams, O.; Hamilton, K.A.; Buser, C.A. Characterization of Inhibitor Binding to Human Kinesin Spindle Protein by Site-Directed Mutagenesis. Arch. Biochem. Biophys. 2009, 484, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Indorato, R.-L.; DeBonis, S.; Garcia-Saez, I.; Skoufias, D.A. Drug Resistance Dependent on Allostery: A P-Loop Rigor Eg5 Mutant Exhibits Resistance to Allosteric Inhibition by STLC. Front. Oncol. 2022, 12, 965455. [Google Scholar] [CrossRef]
- Brier, S.; Lemaire, D.; DeBonis, S.; Forest, E.; Kozielski, F. Molecular Dissection of the Inhibitor Binding Pocket of Mitotic Kinesin Eg5 Reveals Mutants That Confer Resistance to Antimitotic Agents. J. Mol. Biol. 2006, 360, 360–376. [Google Scholar] [CrossRef]
- Indorato, R.-L.; DeBonis, S.; Kozielski, F.; Garcia-Saez, I.; Skoufias, D.A. STLC-Resistant Cell Lines as Tools to Classify Chemically Divergent Eg5 Targeting Agents According to Their Mode of Action and Target Specificity. Biochem. Pharmacol. 2013, 86, 1441–1451. [Google Scholar] [CrossRef]
- Tcherniuk, S.; van Lis, R.; Kozielski, F.; Skoufias, D.A. Mutations in the Human Kinesin Eg5 That Confer Resistance to Monastrol and S-Trityl-l-Cysteine in Tumor Derived Cell Lines. Biochem. Pharmacol. 2010, 79, 864–872. [Google Scholar] [CrossRef]
- Indorato, R.-L.; Talapatra, S.K.; Lin, F.; Haider, S.; Mackay, S.P.; Kozielski, F.; Skoufias, D.A. Is the Fate of Clinical Candidate Arry-520 Already Sealed? Predicting Resistance in Eg5–Inhibitor Complexes. Mol. Cancer Ther. 2019, 18, 2394–2406. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Stewart, A.L.; Mukherjee, S.; Huang, C.; Hartwell, K.A.; Miller, P.G.; Subramanian, R.; Carmody, L.C.; Yusuf, R.Z.; Sykes, D.B.; et al. Niche-Based Screening in Multiple Myeloma Identifies a Kinesin-5 Inhibitor with Improved Selectivity over Hematopoietic Progenitors. Cell Rep. 2015, 10, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Talapatra, S.K.; Anthony, N.G.; Mackay, S.P.; Kozielski, F. Mitotic Kinesin Eg5 Overcomes Inhibition to the Phase I/II Clinical Candidate SB743921 by an Allosteric Resistance Mechanism. J. Med. Chem. 2013, 56, 6317–6329. [Google Scholar] [CrossRef]
- Tarui, Y.; Chinen, T.; Nagumo, Y.; Motoyama, T.; Hayashi, T.; Hirota, H.; Muroi, M.; Ishii, Y.; Kondo, H.; Osada, H.; et al. Terpendole E and Its Derivative Inhibit STLC- and GSK-1-Resistant Eg5. ChemBioChem 2014, 15, 934–938. [Google Scholar] [CrossRef]
- Sturgill, E.G.; Ohi, R. Kinesin-12 Differentially Affects Spindle Assembly Depending on Its Microtubule Substrate. Curr. Biol. 2013, 23, 1280–1290. [Google Scholar] [CrossRef]
- Sturgill, E.G.; Norris, S.R.; Guo, Y.; Ohi, R. Kinesin-5 Inhibitor Resistance Is Driven by Kinesin-12. J. Cell Biol. 2016, 213, 213–227. [Google Scholar] [CrossRef]
- Salazar, B.M.; Ohi, R. Antiparallel Microtubule Bundling Supports KIF15-Driven Mitotic Spindle Assembly. Mol. Biol. Cell 2024, 35, ar84. [Google Scholar] [CrossRef]
- Liu, M.; Aneja, R.; Liu, C.; Sun, L.; Gao, J.; Wang, H.; Dong, J.-T.; Sarli, V.; Giannis, A.; Joshi, H.C.; et al. Inhibition of the Mitotic Kinesin Eg5 Up-Regulates Hsp70 through the Phosphatidylinositol 3-Kinase/Akt Pathway in Multiple Myeloma Cells. J. Biol. Chem. 2006, 281, 18090–18097. [Google Scholar] [CrossRef]
- Jackson, A.L.; Mao, M.; Kobayashi, S.; Ward, T.; Biery, M.; Dai, H.; Bartz, S.R.; Linsley, P.S. Chromosome 20q Amplification Regulates in Vitro Response to Kinesin-5 Inhibitor. Cancer Inform. 2008, 6, CIN.S609. [Google Scholar] [CrossRef]
- Kenchappa, R.S.; Dovas, A.; Argenziano, M.G.; Meyer, C.T.; Stopfer, L.E.; Banu, M.A.; Pereira, B.; Griffith, J.; Mohammad, A.; Talele, S.; et al. Activation of STAT3 through Combined SRC and EGFR Signaling Drives Resistance to a Mitotic Kinesin Inhibitor in Glioblastoma. Cell Rep. 2022, 39, 110991. [Google Scholar] [CrossRef] [PubMed]
- Mardin, B.R.; Isokane, M.; Cosenza, M.R.; Krämer, A.; Ellenberg, J.; Fry, A.M.; Schiebel, E. EGF-Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival. Dev. Cell 2013, 25, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Marquis, L.; Tran, M.; Choi, W.; Lee, I.; Huszar, D.; Siefker-Radtke, A.; Dinney, C.P.; McConkey, D.J. P63 Expression Correlates with Sensitivity to the Eg5 Inhibitor AZD4877 in Bladder Cancer Cells. Cancer Biol. Ther. 2012, 13, 477–486. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Zhao, L.; Su, L.; Luo, J. Circular RNA-MTO1 Suppresses Breast Cancer Cell Viability and Reverses Monastrol Resistance through Regulating the TRAF4/Eg5 Axis. Int. J. Oncol. 2018, 53, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Asraf, H.; Avunie-Masala, R.; Hershfinkel, M.; Gheber, L. Mitotic Slippage and Expression of Survivin Are Linked to Differential Sensitivity of Human Cancer Cell-Lines to the Kinesin-5 Inhibitor Monastrol. PLoS ONE 2015, 10, e0129255. [Google Scholar] [CrossRef]
- Lee, T.D.; Lee, O.W.; Brimacombe, K.R.; Chen, L.; Guha, R.; Lusvarghi, S.; Tebase, B.G.; Klumpp-Thomas, C.; Robey, R.W.; Ambudkar, S.V.; et al. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-Glycoprotein. Mol. Pharmacol. 2019, 96, 629–640. [Google Scholar] [CrossRef]
- Tao, W.; South, V.J.; Zhang, Y.; Davide, J.P.; Farrell, L.; Kohl, N.E.; Sepp-Lorenzino, L.; Lobell, R.B. Induction of Apoptosis by an Inhibitor of the Mitotic Kinesin KSP Requires Both Activation of the Spindle Assembly Checkpoint and Mitotic Slippage. Cancer Cell 2005, 8, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Green, D.R.; Llambi, F. Cell Death Signaling. Cold Spring Harb. Perspect. Biol. 2015, 7, a006080. [Google Scholar] [CrossRef]
- Cheng, E.H.-Y.; Wei, M.C.; Weiler, S.; Flavell, R.A.; Mak, T.W.; Lindsten, T.; Korsmeyer, S.J. BCL-2, BCL-XL Sequester BH3 Domain-Only Molecules Preventing BAX- and BAK-Mediated Mitochondrial Apoptosis. Mol. Cell 2001, 8, 705–711. [Google Scholar] [CrossRef]
- Tao, W.; South, V.J.; Diehl, R.E.; Davide, J.P.; Sepp-Lorenzino, L.; Fraley, M.E.; Arrington, K.L.; Lobell, R.B. An Inhibitor of the Kinesin Spindle Protein Activates the Intrinsic Apoptotic Pathway Independently of P53 and De Novo Protein Synthesis. Mol. Cell. Biol. 2007, 27, 689–698. [Google Scholar] [CrossRef][Green Version]
- Vijapurkar, U.; Wang, W.; Herbst, R. Potentiation of Kinesin Spindle Protein Inhibitor–Induced Cell Death by Modulation of Mitochondrial and Death Receptor Apoptotic Pathways. Cancer Res. 2007, 67, 237–245. [Google Scholar] [CrossRef]
- Tang, Y.; Orth, J.D.; Xie, T.; Mitchison, T.J. Rapid Induction of Apoptosis during Kinesin-5 Inhibitor-Induced Mitotic Arrest in HL60 Cells. Cancer Lett. 2011, 310, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhou, Y.; Huang, H.-C.; Mitchison, T.J. Navitoclax (ABT-263) Accelerates Apoptosis during Drug-Induced Mitotic Arrest by Antagonizing Bcl-XL. Cancer Res. 2011, 71, 4518–4526. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.N.; Pinto, B.; Monteiro, L.; Silva, P.M.A.; Bousbaa, H. Coupling Kinesin Spindle Protein and Aurora B Inhibition with Apoptosis Induction Enhances Oral Cancer Cell Killing. Cancers 2024, 16, 2014. [Google Scholar] [CrossRef] [PubMed]
Organ | Cancer Type | Expression |
---|---|---|
Ovaries | Ovarian cancer | Upregulated |
Liver | Hepatocellular carcinoma | Upregulated |
Head and neck | Head and neck squamous cell carcinoma | Upregulated |
Breast | Breast cancer | Upregulated |
Lung | Lung adenocarcinoma | Upregulated |
Lung squamous cell carcinoma | Upregulated | |
Endometrium | Uterine corpus endometrial carcinoma | Upregulated |
Brain and CNS | Glioblastoma multiforme | Upregulated |
Pancreas | Pancreatic adenocarcinoma | Upregulated |
Colon | Colon cancer | Upregulated |
Kidney | Clear cell renal cell carcinoma | Downregulated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.P.N.; Silva, P.M.A.; Bousbaa, H. Kinesin Spindle Protein (KIF11) in Mitosis and Cancer. Int. J. Mol. Sci. 2025, 26, 8975. https://doi.org/10.3390/ijms26188975
Silva JPN, Silva PMA, Bousbaa H. Kinesin Spindle Protein (KIF11) in Mitosis and Cancer. International Journal of Molecular Sciences. 2025; 26(18):8975. https://doi.org/10.3390/ijms26188975
Chicago/Turabian StyleSilva, João P. N., Patrícia M. A. Silva, and Hassan Bousbaa. 2025. "Kinesin Spindle Protein (KIF11) in Mitosis and Cancer" International Journal of Molecular Sciences 26, no. 18: 8975. https://doi.org/10.3390/ijms26188975
APA StyleSilva, J. P. N., Silva, P. M. A., & Bousbaa, H. (2025). Kinesin Spindle Protein (KIF11) in Mitosis and Cancer. International Journal of Molecular Sciences, 26(18), 8975. https://doi.org/10.3390/ijms26188975