Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,454)

Search Parameters:
Keywords = LAMP1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1187 KB  
Review
Integration of Point-of-Care Technology in the Decoding Process of Single Nucleotide Polymorphism for Healthcare Application
by Thi Ngoc Diep Trinh, Hanh An Nguyen, Nguyen Pham Anh Thi, Thi Xuan Tuy Ho, Kieu The Loan Trinh and Nguyen Khoi Song Tran
Micromachines 2025, 16(10), 1159; https://doi.org/10.3390/mi16101159 - 13 Oct 2025
Abstract
Single nucleotide polymorphism (SNP) involves plenty of genetic disorders in organisms that can be passed down to the next generation or cause the stimulant signal that leads to early mortality in infants, especially within humankind. In medical field, real-time polymerase chain reaction (RT-PCR) [...] Read more.
Single nucleotide polymorphism (SNP) involves plenty of genetic disorders in organisms that can be passed down to the next generation or cause the stimulant signal that leads to early mortality in infants, especially within humankind. In medical field, real-time polymerase chain reaction (RT-PCR) is the most popular method for disease diagnosis. The investigation of genetic maps for the prediction of inherited illnesses needs the collaboration of sequencing technique and genome analysis. Although these methods are popular now, the cost for each test is quite high. Moreover, there is the requirement of extra machines and skillful technician or specialist level. Among these popular methods, the allele-specific polymerase chain reaction (AS-PCR), allele-specific loop isothermal mediated amplification (AS-LAMP), and allele-specific recombinase polymerase amplification (AS-RPA) are brought up for screening the nucleotide differences in the genetic sequence which will be noticed in this review as their availability, novelty, and potential for quick distinguishing of disease caused by SNP. Point-of-care testing (POCT) is a system built in a portable size but can perform the entire process of SNP recognition. Along with that, the POCT is intersected with the mentioned amplification methods and the genetic material preparation steps to become a united framework for higher efficiency and accuracy and lower cost. According to that, this review will focus on three common amplification techniques and their combination with POCT in the upstream and downstream process to genotype SNP related to human diseases. Full article
(This article belongs to the Section B4: Point-of-Care Devices)
Show Figures

Figure 1

14 pages, 2835 KB  
Article
Rapid and Cost-Effective ABO Blood Genotyping Using a Freeze-Dried, Point-of-Care Ready Loop-Mediated Isothermal Amplification (LAMP) Assay
by Jianlin Zhang, Zhiheng Wang, Yibin Lu and Wei Wu
Diagnostics 2025, 15(20), 2568; https://doi.org/10.3390/diagnostics15202568 - 12 Oct 2025
Viewed by 48
Abstract
Background: The accurate and rapid genotyping of ABO (chromosome 9q34.2) blood types is critical for clinical diagnostics and transfusion medicine, particularly in scenarios where serological methods yield uncertain results, such as in neonatal testing or with rare ABO subtypes. Methods: This study describes [...] Read more.
Background: The accurate and rapid genotyping of ABO (chromosome 9q34.2) blood types is critical for clinical diagnostics and transfusion medicine, particularly in scenarios where serological methods yield uncertain results, such as in neonatal testing or with rare ABO subtypes. Methods: This study describes a loop-mediated isothermal amplification (LAMP)-based method for ABO genotyping that offers a faster and more cost-effective alternative to conventional PCR-based techniques. Results: The method targets four key single nucleotide polymorphisms (SNPs) at positions 261, 297, 703, and 930, allowing for the differentiation of common A, B, and O blood types, as well as the rare AB subtype B(A)01. The detection of the B(A)01 subtype is clinically important for preventing transfusion mismatches where serology may be inconclusive. Operating at a constant temperature, the assay can be completed in under an hour without the need for a thermocycler, offering significant time and cost benefits over qPCR. The method demonstrated high specificity, demonstrating detection down to 10 copies across all assays. When validated against a gold-standard method on clinical blood samples, the LAMP assay showed high accuracy (95% C value calculated via binomial exact method): 97.4% for type O, 98.7% for type A, 98.7% for type B, and 100% for the B(A)01 subtype. To enhance usability for point-of-care applications, freeze-dried reagents were developed that permit direct loading of lysed blood samples while maintaining high performance. Conclusions: This simplified and robust format positions the LAMP assay as a promising tool for rapid and reliable ABO genotyping in diverse clinical settings. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Graphical abstract

19 pages, 2236 KB  
Article
A UV-C LED Sterilization Lamp Driver Circuit with Boundary Conduction Mode Control Power Factor Correction
by Chun-An Cheng, Ching-Min Lee, En-Chih Chang, Cheng-Kuan Lin, Long-Fu Lan and Sheng-Hong Hou
Electronics 2025, 14(20), 3985; https://doi.org/10.3390/electronics14203985 (registering DOI) - 11 Oct 2025
Viewed by 90
Abstract
The increasing prevalence of common cold viruses and bacteria in daily life has heightened interest in sterilization lamp technologies. Compared with traditional mercury-based ultraviolet (UV) lamps, modern UV lamps offer advantages including extended operational lifespan, high energy efficiency, compact form factor, and the [...] Read more.
The increasing prevalence of common cold viruses and bacteria in daily life has heightened interest in sterilization lamp technologies. Compared with traditional mercury-based ultraviolet (UV) lamps, modern UV lamps offer advantages including extended operational lifespan, high energy efficiency, compact form factor, and the absence of hazardous materials, rendering them both safer and environmentally sustainable. In particular, UV-C LED lamps, which emit at short wavelengths, are capable of disrupting the molecular structure of DNA or RNA in microbial cells, thereby inhibiting cellular replication and achieving effective disinfection and sterilization. Conventional UV-C LED sterilization lamp driver circuits frequently employ a two-stage architecture, which requires a large number of components, occupies substantial physical space, and exhibits reduced efficiency due to multiple stages of power conversion. To address these limitations, this paper proposes a UV-C LED sterilization lamp driver circuit for an AC voltage supply, employing boundary conduction mode (BCM) control with integrated power factor correction (PFC). The proposed single-stage, single-switch topology combines a buck PFC converter and a flyback converter while recovering transformer leakage energy to further improve efficiency. Compared with conventional two-stage designs, the proposed circuit reduces the number of power switches and components, thereby lowering manufacturing cost and enhancing overall energy conversion efficiency. The operating principles of the proposed driver circuit are analyzed, and a prototype is developed for a 110 V AC input with an output specification of 10.8 W (90 V/0.12 A). Experimental results demonstrate that the prototype achieves an efficiency exceeding 92%, a power factor of 0.91, an output voltage ripple of 1.298%, and an output current ripple of 4.44%. Full article
Show Figures

Figure 1

18 pages, 7772 KB  
Article
High Red–Blue Light Ratio Promotes Accelerated In Vitro Flowering and Seed-Set Development in Amaranthus hypochondriacus Under a Long-Day Photoperiod
by Alex R. Bermudez-Valle, Norma A. Martínez-Gallardo, Eliana Valencia-Lozano and John P. Délano-Frier
Plants 2025, 14(20), 3134; https://doi.org/10.3390/plants14203134 - 11 Oct 2025
Viewed by 166
Abstract
Grain amaranths are recalcitrant to conventional in vitro plant regeneration by organogenesis de novo or through somatic embryogenesis. Consequently, floral organogenesis by these methods, representing the culminating developmental point in angiosperms, is rarely achieved. In the present study, the manipulation of in vitro [...] Read more.
Grain amaranths are recalcitrant to conventional in vitro plant regeneration by organogenesis de novo or through somatic embryogenesis. Consequently, floral organogenesis by these methods, representing the culminating developmental point in angiosperms, is rarely achieved. In the present study, the manipulation of in vitro flowering was explored as part of a strategy designed to overcome grain amaranth’s regeneration recalcitrance. It led to an efficient and reproducible in vitro protocol in which half-longitudinally dissected zygotic embryos generated fully developed Amaranthus hypochondriacus (Ah) plants. The use of high-irradiance illumination with LED lamps with a 3:1 red–blue irradiance ratio was a critical factor, leading to a 70% rate of early flowering events under flowering-inhibiting long-day photoperiod conditions. Contrariwise, no flowering was induced under LED white lights. All in vitro flowering Ah plants yielded viable seeds. To understand the basic molecular mechanisms of the phenomenon observed, gene expression patterns and principal component analysis of key flowering-related genes were analyzed after cultivation in vitro for 4, 8, and 12 weeks under both lighting regimes. These coded for photoreceptors, photomorphogenetic regulators, embryogenic modulators, and flowering activators/repressors. The results highlighted the upregulation of key flowering-regulatory genes, including CONSTANS, FLOWERING LOCUS T, and LEAFY, together with the downregulation of the floral repressor TERMINAL FLOWER1. Ribosome biogenesis- and seed-development-related genes were also differentially expressed, supporting a key role in this process for protein synthesis and embryogenesis. A model is proposed to explain how this light-regulated molecular framework enables in vitro flowering and seed production in Ah plants kept under long-day photoperiods. Full article
Show Figures

Figure 1

15 pages, 2497 KB  
Article
Colored Shade Nets and LED Lights at Different Wavelengths Increase the Production and Quality of Canada Goldenrod (Solidago canadensis L.) Flower Stems
by Fabíola Villa, Luciana Sabini da Silva Murara, Giordana Menegazzo da Silva, Edvan Costa da Silva, Larissa Hiromi Kiahara Sackser, Laís Romero Paula, Mateus Lopes Borduqui Cavalcante and Daniel Fernandes da Silva
Plants 2025, 14(20), 3119; https://doi.org/10.3390/plants14203119 - 10 Oct 2025
Viewed by 215
Abstract
Canada goldenrod (Solidago canadensis L.), a short-day plant commonly cultivated as a cut flower, depends on proper lighting management to obtain long stems and higher commercial value. Thus, this study aimed to determine the effect of modifying the light spectrum through the [...] Read more.
Canada goldenrod (Solidago canadensis L.), a short-day plant commonly cultivated as a cut flower, depends on proper lighting management to obtain long stems and higher commercial value. Thus, this study aimed to determine the effect of modifying the light spectrum through the installation of light-emitting diodes (LEDs) and the use of colored shade nets on the production and quality of Canada goldenrod stems. The treatments used were colored shade nets and different LED lighting treatments. Production per plant and productivity per square meter were determined. Twenty stems were selected and evaluated for: stem length; inflorescence length and width; number of floral ramets per inflorescence; number of leaves; stem base diameter (mm); and fresh stem biomass (g). Canada goldenrod plants require an extension of the light period with artificial lighting to produce higher-quality stems, regardless of whether the bulbs emit red or white light. The use of nets with 50% red and white shading promoted higher production and elongation of Canada goldenrod stems, with a production that reached up to 4.2 floral stems per plant and 100.3 floral stems per square meter using the red shade net and white LED. These floral stems were of high commercial standard, with a length of up to 81.35 cm with the red shade net and red LED, and were 31 cm in diameter for the inflorescences, approximately, under black or white shade nets and white or red LEDs. More robust floral stems with greater biomass were observed using any shade net color and LED lamps. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

17 pages, 3452 KB  
Article
CAP-LAMP2b–Modified Stem Cells’ Extracellular Vesicles Hybrid with CRISPR-Cas9 Targeting ADAMTS4 to Reverse IL-1β–Induced Aggrecan Loss in Chondrocytes
by Kun-Chi Wu, Yu-Hsun Chang, Raymond Yuh-Shyan Chiang and Dah-Ching Ding
Int. J. Mol. Sci. 2025, 26(19), 9812; https://doi.org/10.3390/ijms26199812 - 9 Oct 2025
Viewed by 194
Abstract
Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity [...] Read more.
Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity peptide fused to an EV membrane protein) engineering and ADAMTS4 gene editing hybrid vesicle formation. Human umbilical cord MSCs (hUCMSCs) were characterized via morphology, immunophenotyping, and trilineage differentiation. EVs from control and CAP-LAMP2b-transfected hUCMSCs were fused with liposomes carrying CRISPR-Cas9 ADAMTS4 gRNA. DiI-labeled EV uptake was assessed via fluorescence imaging. CAP-LAMP2b was expressed in hUCMSCs and their EVs. EVs exhibited the expected size (~120 nm), morphology, and exosomal markers (CD9, CD63, CD81, HSP70). CAP-modified hybrid EVs significantly enhanced chondrocyte uptake compared to control EVs and liposomes. IL-1β increased ADAMTS4 expression, whereas CAP-LAMP2b-ADAMTS4 EVs, particularly clone SG3, reversed these effects by reducing ADAMTS4 and restoring aggrecan. Western blotting confirmed suppressed ADAMTS4 and elevated aggrecan protein. CAP-LAMP2b-ADAMTS4 EVs, therefore, showed superior uptake and therapeutic efficacy in inflamed chondrocytes, attenuating inflammatory gene expression and preserving matrix integrity. These results support engineered EVs as a promising cell-free approach for cartilage repair and osteoarthritis treatment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 319 KB  
Perspective
Tuning the Spectrum of Outdoor Light Sources to the Ambient Spectrum
by Roland Brémond and Gaël Obein
Sustainability 2025, 17(19), 8921; https://doi.org/10.3390/su17198921 - 8 Oct 2025
Viewed by 281
Abstract
Artificial light at night (ALAN) is now considered as a driver of evolution, possibly harmful to biodiversity, which constitutes a threat to the terrestrial and marine environment, and as such falls under Sustainable Development Goals (SDGs) 14 and 15. One way of mitigating [...] Read more.
Artificial light at night (ALAN) is now considered as a driver of evolution, possibly harmful to biodiversity, which constitutes a threat to the terrestrial and marine environment, and as such falls under Sustainable Development Goals (SDGs) 14 and 15. One way of mitigating its impact on the environment is to select an environment-friendly light spectrum, which is made more easily with current LED technologies. In this paper, we propose to adapt the spectrum of the lamps to that of the immediate environment. It makes it possible not to disturb the light environment of animals and plants at night and during the twilight period, at least from a spectral point of view, while ensuring the usual functions of lighting for humans. Apart from its own merit, the proposed concept may also contribute to SDG 13 by saving energy compared to current approaches based on long wavelengths light. The proposed idea may be implemented in various ways and deserves to be discussed in the lighting community and tested in real settings. Full article
(This article belongs to the Special Issue Outdoor Lighting Innovations and the Sustainable Development Goals)
Show Figures

Figure 1

21 pages, 1716 KB  
Article
LAI-YOLO: Towards Lightweight and Accurate Insulator Anomaly Detection via Selective Weighted Feature Fusion
by Jianan Qu, Zhiliang Zhu, Ziang Jiang, Congjie Wen and Yijian Weng
Appl. Sci. 2025, 15(19), 10780; https://doi.org/10.3390/app151910780 - 7 Oct 2025
Viewed by 193
Abstract
While insulator integrity is critical for power grid stability, prevailing detection algorithms often rely on computationally intensive models incompatible with resource-constrained edge devices like unmanned aerial vehicles (UAVs). Key limitations—including redundant feature interference, inadequate sensitivity to small targets, rigid fusion weights, and sample [...] Read more.
While insulator integrity is critical for power grid stability, prevailing detection algorithms often rely on computationally intensive models incompatible with resource-constrained edge devices like unmanned aerial vehicles (UAVs). Key limitations—including redundant feature interference, inadequate sensitivity to small targets, rigid fusion weights, and sample imbalance—further restrict practical deployment. To address those problems, this study presents a lightweight insulator anomaly detection algorithm, LAI-YOLO. First, the SqueezeGate-C3k2 (SG-C3k2) module, equipped with an adaptive gating mechanism, is incorporated into the Backbone network to reduce redundant information during feature extraction. Secondly, we propose a High-level Screening–Feature Weighted Feature Pyramid Network (HS-WFPN) to replace FPN+PAN via selective weighted feature fusion, enabling dynamic cross-scale integration and enhanced small-target detection. Then, a reconstructed lightweight detection head coupled with Slide Weighted Focaler Loss (SWFocalerLoss) mitigates performance degradation from sample imbalance. Ultimately, the layer adaptation for the magnitude-based pruning (LAMP) technique slashes computational demands without sacrificing detection prowess. Experimental results on our insulator anomaly dataset demonstrate that the improved model achieves higher efficacy in identifying insulator anomalies, with mAP@0.5 increasing from 88.2% to 91.1%, while model parameters and FLOPs are diminished to 45.7% and 53.9% of the baseline, respectively. This efficiency facilitates the deployment of edge devices and highlights the method’s considerable application potential. Full article
(This article belongs to the Special Issue Advances in Wireless Networks and Mobile Communication)
Show Figures

Figure 1

15 pages, 5128 KB  
Article
Effect of Drought and High-Light Stress on Volatile Compounds and Quality of Welsh Onion (Allium fistulosum L.)
by Xuena Liu, Zijing Chen, Kun Xu and Kang Xu
Agronomy 2025, 15(10), 2349; https://doi.org/10.3390/agronomy15102349 - 6 Oct 2025
Viewed by 288
Abstract
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized [...] Read more.
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized LED-intelligent spectral-customized lamps to simulate high-light stress and a 10% PEG-6000 Hoagland solution to simulate drought stress. The effects of different stress treatments on the nutritional quality, volatile compounds, and mineral element composition of the edible portions were systematically analyzed. The results demonstrated that drought stress significantly promoted the accumulation of alcoholic compounds in leaf tissues while reducing the content of sulfur-containing compounds. High-light stress markedly increased the levels of hydrocarbon compounds in leaves. Sulfur-containing compounds in leaf tissues were predominantly disulfides, but under combined drought and high-light stress, their content decreased, while the proportion of trisulfides significantly increased. Volatile compounds in pseudostems were primarily composed of sulfur-containing and aldehyde compounds, yet their levels markedly declined under combined stress. Additionally, combined stress led to reductions in pyruvic acid, soluble sugars, and soluble protein content in the edible portions, while the crude fiber content increased, thereby significantly impairing nutritional quality. This study provides a scientific basis for understanding the abiotic stress response mechanisms of Welsh onion and offers valuable insights for cultivation management and quality regulation. Full article
Show Figures

Figure 1

21 pages, 718 KB  
Review
HTS and PCR Methods Are the Most Used in the Diagnosis of Aspergillosis: Advantages over Other Molecular Methods
by Carlos Alberto Castro-Fuentes, Esperanza Duarte-Escalante, María Guadalupe Frías-De-León, María del Carmen Auxilio González-Villaseñor and María del Rocío Reyes-Montes
J. Fungi 2025, 11(10), 720; https://doi.org/10.3390/jof11100720 - 6 Oct 2025
Viewed by 543
Abstract
Aspergillosis includes a variety of diseases caused by species of the genus Aspergillus, ranging from non-invasive allergic diseases to chronic, invasive pulmonary infections, which are potentially fatal in immunocompromised hosts. Therefore, there is an urgent need for new diagnostic tools and the [...] Read more.
Aspergillosis includes a variety of diseases caused by species of the genus Aspergillus, ranging from non-invasive allergic diseases to chronic, invasive pulmonary infections, which are potentially fatal in immunocompromised hosts. Therefore, there is an urgent need for new diagnostic tools and the optimization of existing tests to improve patient care. This work reviews the most commonly used molecular methods for the diagnosis of aspergillosis from clinical samples, emphasizing their advantages. These methods included HTS, NTS, ISH, microarrays, PCR-RFLP, LAMP, and PCR in various modalities (qPCR, multiplex PCR, nested PCR, RT-PCR, endpoint PCR, U-dHRM, and ddPCR). The review showed that the most commonly used methods for diagnosing aspergillosis are NGS and PCR in their different modalities; however, each method has advantages and disadvantages. qPCR is the method that has demonstrated the greatest sensitivity and specificity on clinical samples (such as blood, serum, bronchoalveolar lavage [BAL], tissue, or sputum), since it detects specific sequences, and the validation of this method shows greater progress in achieving this objective. Likewise, NGS showed that BAL is the most suitable sample, with a higher fungal load than sputum or blood. On the other hand, NGS is not a targeted technique, since it sequences all the genetic material present. Additionally, the sensitivity for detecting pathogens decreases when clinical samples are used due to the high background of nucleic acids present in the human host. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

19 pages, 3076 KB  
Article
Air Pollutant Traceability Based on Federated Learning of Edge Intelligent Perception Agents
by Jinping Xue, Xin Hu, Qiang Liu, Congbo Yin, Peitao Ni and Xinyu Bo
Sensors 2025, 25(19), 6119; https://doi.org/10.3390/s25196119 - 3 Oct 2025
Viewed by 245
Abstract
Tracing the source of air pollution presents a significant challenge, especially in densely populated urban areas, because of the unpredictable and complex nature of aerodynamics. To address this issue, intelligent lamp posts have been developed with smart sensors and edge computing capabilities. These [...] Read more.
Tracing the source of air pollution presents a significant challenge, especially in densely populated urban areas, because of the unpredictable and complex nature of aerodynamics. To address this issue, intelligent lamp posts have been developed with smart sensors and edge computing capabilities. These lamp posts serve as nodes in the EIPA (Edge Intelligent Perception Agent) network within urban campuses. These lamp posts aim to track air pollutants by employing a tracking algorithm that utilizes big data learning and Gaussian diffusion models. This approach focuses on monitoring the quality of urban air and identifying pollution sources, rather than relying solely on traditional CFD simulations for air pollution dispersion. The algorithm comprises three primary components: (1) the Federated Learning framework built on the EIPA system; (2) the LSTM model implemented on the edge nodes of the EIPA system; and (3) a genetic algorithm utilized for optimizing the model parameters. By using CFD simulations in a simulated city park, training data on air dynamic movements is gathered. The usefulness of the method for tracing air pollutants based on federated learning of edge intelligent perception agents is demonstrated by the outcomes of algorithm training. Experimental results show that, compared to the traditional genetic algorithm (GA) and LSTM + genetic algorithm, the proposed FL + LSTM + GA method significantly improves the pollution source positioning accuracy to 99.5% and reduces the average absolute error (MAE) of Gaussian model parameter estimation to 0.20. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

26 pages, 16624 KB  
Article
Design and Evaluation of an Automated Ultraviolet-C Irradiation System for Maize Seed Disinfection and Monitoring
by Mario Rojas, Claudia Hernández-Aguilar, Juana Isabel Méndez, David Balderas-Silva, Arturo Domínguez-Pacheco and Pedro Ponce
Sensors 2025, 25(19), 6070; https://doi.org/10.3390/s25196070 - 2 Oct 2025
Viewed by 274
Abstract
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to [...] Read more.
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to regulate the microclimate of the chamber. Without air extraction, radiation stabilized within one minute, with internal temperatures increasing by 5.1 °C and humidity decreasing by 13.26% over 10 min. When activated, the extractor reduced heat build-up by 1.4 °C, minimized humidity fluctuations (4.6%), and removed odors, although it also attenuated the intensity of ultraviolet-C by up to 19.59%. A 10 min ultraviolet-C treatment significantly reduced the fungal infestation in maize seeds by 23.5–26.25% under both extraction conditions. Thermal imaging confirmed localized heating on seed surfaces, which stressed the importance of temperature regulation during exposure. Notable color changes (ΔE>2.3) in treated seeds suggested radiation-induced pigment degradation. Ultraviolet-C intensity mapping revealed spatial non-uniformity, with measurements limited to a central axis, indicating the need for comprehensive spatial analysis. The integrated computer vision system successfully detected seed contours and color changes under high-contrast conditions, but underperformed under low-light or uneven illumination. These limitations highlight the need for improved image processing and consistent lighting to ensure accurate monitoring. Overall, the chamber shows strong potential as a non-chemical seed disinfection tool. Future research will focus on improving radiation uniformity, assessing effects on germination and plant growth, and advancing system calibration, safety mechanisms, and remote control capabilities. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

8 pages, 1429 KB  
Communication
Tunable Work Functions in Plasmonic Metals
by Kanij Mehtanin Khabir, Leila Hesami, Anthony P. Martin, Jawuan Wilson, Chi Yang and Mikhail A. Noginov
Nanomaterials 2025, 15(19), 1483; https://doi.org/10.3390/nano15191483 - 29 Sep 2025
Viewed by 271
Abstract
We have studied the effect of BITh molecules on the work functions of Ag and Au, with and without quartz lamp illumination. Silver and gold films coated with BITh molecules were fabricated and studied in reflection and Kelvin Probe experiments. The deposition of [...] Read more.
We have studied the effect of BITh molecules on the work functions of Ag and Au, with and without quartz lamp illumination. Silver and gold films coated with BITh molecules were fabricated and studied in reflection and Kelvin Probe experiments. The deposition of BITh films on Ag and Au reduced their work functions (in agreement with our recent study, wherein a similar reduction was caused by the deposition of a PMMA polymer). Illumination of the BITh-coated samples with a quartz lamp caused reductions in work functions by several tens of meV, which (almost) returned to their original values when the light was turned off. The characteristic time of this process (~15 min) was much shorter than that of photopolymerization (~180 min), suggesting that these two phenomena are nearly independent of each other. The effects of the Au substrates were qualitatively similar to those of the Ag substrates. Our findings pave the way to fundamental studies and applications of light–matter interactions. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

20 pages, 2758 KB  
Article
Development of DC-Powered LED Lamp Driver Circuit for Outdoor Emergency Lighting Applications
by Chun-An Cheng, Chien-Hsuan Chang, Hung-Liang Cheng, En-Chih Chang, Hong-Jun Huang, Jie-Heng Du, Hsiang-Lin Chang and Pei-Ying Ye
Appl. Sci. 2025, 15(19), 10522; https://doi.org/10.3390/app151910522 - 28 Sep 2025
Viewed by 320
Abstract
In the event of power outages caused by natural disasters, accidents, or other emergencies, outdoor emergency lighting systems play a critical role in providing illumination to maintain spatial orientation, facilitate evacuation procedures, and help individuals avoid hazardous areas or locate safe shelters. Compared [...] Read more.
In the event of power outages caused by natural disasters, accidents, or other emergencies, outdoor emergency lighting systems play a critical role in providing illumination to maintain spatial orientation, facilitate evacuation procedures, and help individuals avoid hazardous areas or locate safe shelters. Compared to traditional lighting technologies, LED-based outdoor emergency lighting offers several advantages, including compact size, long operational lifespan, low energy consumption, high safety, resistance to breakage, and the absence of chemical residue or pollution. These characteristics align with contemporary trends in environmental sustainability and energy efficiency. This study proposes a novel LED driver circuit architecture for outdoor emergency lighting applications. The primary circuit topology is based on an improved buck-boost converter integrated with a flyback converter, forming a hybrid buck-boost-flyback configuration. The proposed circuit is capable of recycling the energy stored in the transformer’s leakage inductance, thereby enhancing overall power conversion efficiency. A 12 W (20 V/0.6 A) prototype LED driver circuit was designed and implemented to validate the performance of the proposed system. Experimental measurements, including waveform analysis and efficiency evaluation, demonstrate that the driver circuit achieves a high efficiency exceeding 91%. These results confirm the practical feasibility and effectiveness of the proposed electronic driver for LED-based outdoor emergency lighting applications. Full article
(This article belongs to the Special Issue Recent Advances and Applications Related to Light-Emitting Diodes)
Show Figures

Figure 1

26 pages, 11189 KB  
Article
DSEE-YOLO: A Dynamic Edge-Enhanced Lightweight Model for Infrared Ship Detection in Complex Maritime Environments
by Siyu Wang, Yunsong Feng, Wei Jin, Liping Liu, Changqi Zhou, Huifeng Tao and Lei Cai
Remote Sens. 2025, 17(19), 3325; https://doi.org/10.3390/rs17193325 - 28 Sep 2025
Viewed by 421
Abstract
Complex marine infrared images, which suffer from background interference, blurred features, and indistinct contours, hamper detection accuracy. Meanwhile, the limited computing power, storage, and energy of maritime devices require target detection models suitable for real-time detection. To address these issues, we propose DSEE-YOLO [...] Read more.
Complex marine infrared images, which suffer from background interference, blurred features, and indistinct contours, hamper detection accuracy. Meanwhile, the limited computing power, storage, and energy of maritime devices require target detection models suitable for real-time detection. To address these issues, we propose DSEE-YOLO (Dynamic Ship Edge-Enhanced YOLO), an efficient lightweight infrared ship detection algorithm. It integrates three innovative modules with pruning and self-distillation: the C3k2_MultiScaleEdgeFusion module replaces the original bottleneck with a MultiEdgeFusion structure to boost edge feature expression; the lightweight DS_ADown module uses DSConv (depthwise separable convolution) to reduce parameters while preserving feature capability; and the DyTaskHead dynamically aligns classification and localization features through task decomposition. Redundant structures are pruned via LAMP (Layer-Adaptive Sparsity for the Magnitude-Based Pruning), and performance is optimized via BCKD (Bridging Cross-Task Protocol Inconsistency for Knowledge Distillation) self-distillation, yielding a lightweight, efficient model. Experimental results show the DSEE-YOLO outperforms YOLOv11n when applied to our self-constructed IRShip dataset by reducing parameters by 42.3% and model size from 10.1 MB to 3.5 MB while increasing mAP@0.50 by 2.8%, mAP@0.50:0.95 by 3.8%, precision by 2.3%, and recall by 3.0%. These results validate its high-precision detection capability and lightweight advantages in complex infrared scenarios, offering an efficient solution for real-time maritime infrared ship monitoring. Full article
Show Figures

Figure 1

Back to TopTop