Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,966)

Search Parameters:
Keywords = LC–MS/MS analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1113 KB  
Article
Identification of Daphnane Diterpenoids from Flower Buds and Blooming Flowers of Daphne odora Using UHPLC-Q-Exactive-Orbitrap MS
by Kouharu Otsuki, Kousei Miyamoto, Mami Goto, Mi Zhang, Takashi Kikuchi and Wei Li
Plants 2025, 14(17), 2616; https://doi.org/10.3390/plants14172616 - 22 Aug 2025
Viewed by 122
Abstract
Daphne odora is an evergreen shrub belonging to the Thymelaeaceae family that is widely cultivated as an ornamental garden plant. Its roots, leaves, and flowers have traditionally been used in Chinese medicine to treat pain, skin diseases, and rheumatism. While previous phytochemical studies [...] Read more.
Daphne odora is an evergreen shrub belonging to the Thymelaeaceae family that is widely cultivated as an ornamental garden plant. Its roots, leaves, and flowers have traditionally been used in Chinese medicine to treat pain, skin diseases, and rheumatism. While previous phytochemical studies have reported the presence of phenols, coumarins, biflavonoids, lignans, and daphnane diterpenoids in D. odora, its flowers remain largely unexplored. In the present study, the first comprehensive investigation of daphnane diterpenoids contained in the flower buds and blooming flowers of D. odora was conducted using ultra-high-performance liquid chromatography coupled with Q-Exactive-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Exactive-Orbitrap MS). A total of 30 daphnane diterpenoids were identified, including 12 previously unreported compounds, through detailed analysis of their retention times and MS/MS fragmentation patterns. Comparative profiling revealed that flower buds contained a higher abundance and greater diversity of daphnane diterpenoids than flowers. Furthermore, LC–MS-guided isolation enabled the purification of a novel compound, daphneodorin I (16), and its structure was elucidated through extensive physicochemical and spectroscopic analyses. Compound 16 represents the first daphnane diterpenoid with a Z-configured phenolic acyl moiety isolated from plants of the Thymelaeaceae family. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
Show Figures

Figure 1

17 pages, 806 KB  
Article
An FIA-MS Method for Rapid Coffee Adulteration Detection: A Comparative Study with a Non-Targeted LC-MS Approach
by Nerea Núñez, Javier Saurina and Oscar Núñez
Foods 2025, 14(17), 2931; https://doi.org/10.3390/foods14172931 - 22 Aug 2025
Viewed by 113
Abstract
Coffee adulteration is a growing concern in the food industry due to economic and quality implications. This study evaluates a rapid, non-targeted fingerprinting method based on flow injection analysis–mass spectrometry (FIA-MS) for detecting common coffee adulterants. A total of 119 samples were analyzed, [...] Read more.
Coffee adulteration is a growing concern in the food industry due to economic and quality implications. This study evaluates a rapid, non-targeted fingerprinting method based on flow injection analysis–mass spectrometry (FIA-MS) for detecting common coffee adulterants. A total of 119 samples were analyzed, including 43 coffee samples and 76 samples of common coffee adulterants (16 chicory, 10 barley, and 50 flour samples). FIA-MS combined with chemometric analysis allowed for the classification of pure and adulterated coffee samples with over 95% accuracy. Compared to LC-MS, the FIA-MS method showed a similar performance while offering significantly faster analysis and lower solvent consumption, making it a practical and sustainable option for high-throughput screening. For PLS regression studies, calibration and prediction errors were consistently below 0.91% and 11.7%, respectively. Furthermore, the methodology was compared with a non-targeted LC-MS approach, showing an excellent performance. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 2250 KB  
Article
Residual Characteristics and Processing Factors of Flubendiamide and Tebufenozide in Rice and Its Processed Products
by Dongju Kim, Eunbeen Oh, Seunghyeon Jo, Hyeonwoo Shin, Youngjin Ham, Junyoung Kim, Mihyun Cho, Moohyeog Im and Keesung Kyung
Foods 2025, 14(17), 2925; https://doi.org/10.3390/foods14172925 - 22 Aug 2025
Viewed by 149
Abstract
This study aimed to evaluate residue changes in flubendiamide and tebufenozide during the processing of whole grain into milled rice, cooked rice, and rice cake, and to calculate their processing factors (PFs). For the processing study, pesticides were applied at three times the [...] Read more.
This study aimed to evaluate residue changes in flubendiamide and tebufenozide during the processing of whole grain into milled rice, cooked rice, and rice cake, and to calculate their processing factors (PFs). For the processing study, pesticides were applied at three times the recommended rate based on Korea’s good agricultural practice (GAP), and processed products were prepared using conventional methods. Residual pesticide analysis was performed using a modified QuEChERS method and LC-MS/MS. The residue analysis method was validated based on parameters including LOQ, linearity, and accuracy at the LOQ, 10LOQ, and MRL levels, with the LOQ set at 0.01 mg/kg for all samples. During milling, which removes the hull, more than 90% of the pesticide residues were eliminated. Additional reductions exceeding 50% were observed during cooking and rice cake processing. All PFs, except for those in the hulls, were less than 1, indicating that processing reduces pesticide levels. Despite the use of threefold the GAP rate, the %ADI values for all processed products remained below 1%, suggesting negligible dietary risk. These findings provide scientific evidence supporting the safety of processed rice products regarding pesticide residues and highlight the importance of considering processing effects in dietary exposure assessments. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

18 pages, 8498 KB  
Article
Plasma Metabolomic Profiling Reveals Systemic Alterations in a Mouse Model of Type 2 Diabetes
by Masuma Akter Brishti, Fregi Vazhappully Francis and M. Dennis Leo
Metabolites 2025, 15(9), 564; https://doi.org/10.3390/metabo15090564 - 22 Aug 2025
Viewed by 141
Abstract
Background: Type 2 diabetes (T2D), the most common form of diabetes, is associated with a significantly elevated risk of cardiovascular and cerebrovascular complications. However, circulating metabolic signatures that reliably predict the transition to insulin resistance, and are potentially linked to increased vascular risk, [...] Read more.
Background: Type 2 diabetes (T2D), the most common form of diabetes, is associated with a significantly elevated risk of cardiovascular and cerebrovascular complications. However, circulating metabolic signatures that reliably predict the transition to insulin resistance, and are potentially linked to increased vascular risk, remain incompletely characterized. Rodent models, particularly those induced by a high-fat diet (HFD) combined with low-dose streptozotocin (STZ), are widely used to study the progression of T2D. However, the systemic metabolic shifts associated with this model, especially at the plasma level, are poorly defined. Methods: In this study, we performed untargeted liquid chromatography–mass spectrometry (LC-MS)-based metabolomic profiling on plasma samples from control, HFD-only (obese, insulin-sensitive), and HFD + STZ (obese, insulin-resistant) C57BL/6 mice. Results: In the HFD + STZ cohort, plasma profiles showed a global shift toward lipid classes; depletion of aromatic and branched-chain amino acids (BCAAs); accumulation of phenylalanine-derived co-metabolites, consistent with gut–liver axis dysregulation; elevations in glucose, fructose-6-phosphate, and nucleoside catabolites, indicating impaired glucose handling and heightened nucleotide turnover; increased free fatty acids, reflecting membrane remodeling and lipotoxic stress; and higher cAMP, thyroxine, hydrocortisone, and uric acid, consistent with endocrine and redox imbalance. By contrast, HFD-only mice exhibited elevations in aromatic amino acids and BCAAs relative to controls, a pattern compatible with early obesity-associated adaptation while insulin signaling remained partially preserved. KEGG analysis revealed disturbances in carbohydrate metabolism, amino acid degradation, nucleotide turnover, and hormone-related pathways, and HMDB mapping linked these changes to T2D, obesity, heart failure, and renal dysfunction. Conclusion: Collectively, these findings delineate insulin resistance-specific plasma signatures of metabolic inflexibility and inflammatory stress in the HFD + STZ model, distinguishing it from HFD alone and supporting its utility for mechanistic studies and biomarker discovery. Importantly, this plasma metabolomics study shows that insulin-sensitive and insulin-resistant states exhibit distinct variation in circulating metabolites and cardiovascular risk factors, underscoring the translational value of plasma profiling. Full article
(This article belongs to the Topic Animal Models of Human Disease 3.0)
Show Figures

Figure 1

16 pages, 1575 KB  
Article
Development and Validation of an LC-MS/MS Method for the Simultaneous Determination of Alprazolam, Bromazepam, Clonazepam, Diazepam and Flunitrazpam in Human Urine and Its Application to Samples from Suspected Drug Abusers
by Husein Kamal, Varun Gandhi, Lina Akil, Naser F. Al-Tannak, Nicholas J. W. Rattray and Ibrahim Khadra
Molecules 2025, 30(17), 3451; https://doi.org/10.3390/molecules30173451 - 22 Aug 2025
Viewed by 210
Abstract
A simple and reliable method was developed using LC-MS/MS to quantify alprazolam, bromazepam, clonazepam, diazepam, and flunitrazepam in clinical samples. This method was validated for the simultaneous determination of alprazolam, bromazepam, clonazepam, diazepam, and flunitrazepam. It was applied to human urine samples collected [...] Read more.
A simple and reliable method was developed using LC-MS/MS to quantify alprazolam, bromazepam, clonazepam, diazepam, and flunitrazepam in clinical samples. This method was validated for the simultaneous determination of alprazolam, bromazepam, clonazepam, diazepam, and flunitrazepam. It was applied to human urine samples collected from people suspected of drug abuse in the Kuwaiti region. Formic acid in water and acetonitrile was used in mobile phase with a gradient mode of elution using C18 reverse-phase column. The instrument was operated in a positive mode with an electrospray ionization source using multiple reaction monitoring. For sample extraction, the liquid-liquid extraction technique was used. The method was validated for limit of detection, limit of quantitation, selectivity, linearity, accuracy, and precision. The concentration for limit of quantitation was 6.0 ng/mL, the linearity ranged from 2.0 to 300 ng/mL for each of the analytes, and the r2 values were ≥0.99. The accuracy was found to be within a range of 80–120% and precision had a %RSD of ≤15% for each of the analytes. The method was applied to 48 urine samples collected from those suspected of drug abuse by the Toxicology Department of the General Department of Criminal Evidence, Kuwait, and alprazolam, bromazepam, clonazepam, diazepam and flunitrazepam were identified commonly in the samples. The overall drug positivity rate obtained considering 48 samples was 93.75%. Based on these results and successful determination of alprazolam, bromazepam, clonazepam, diazepam and flunitrazepam in human urine samples from those suspected of drug abuse, this method is deemed to be suitable for its routine analysis. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

26 pages, 2295 KB  
Article
Retrospective Urine Metabolomics of Clinical Toxicology Samples Reveals Features Associated with Cocaine Exposure
by Rachel K. Vanderschelden, Reya Kundu, Delaney Morrow, Simmi Patel and Kenichi Tamama
Metabolites 2025, 15(9), 563; https://doi.org/10.3390/metabo15090563 - 22 Aug 2025
Viewed by 178
Abstract
Background/Objectives: Cocaine is a widely used illicit stimulant with significant toxicity. Despite its clinical relevance, the broader metabolic alterations associated with cocaine use remain incompletely characterized. This study aims to identify novel biomarkers for cocaine exposure by applying untargeted metabolomics to retrospective urine [...] Read more.
Background/Objectives: Cocaine is a widely used illicit stimulant with significant toxicity. Despite its clinical relevance, the broader metabolic alterations associated with cocaine use remain incompletely characterized. This study aims to identify novel biomarkers for cocaine exposure by applying untargeted metabolomics to retrospective urine drug screening data. Methods: We conducted a retrospective analysis of a raw mass spectrometry (MS) dataset from urine comprehensive drug screening (UCDS) from 363 patients at the University of Pittsburgh Medical Center Clinical Toxicology Laboratory. The liquid chromatography–quadrupole time-of-flight mass spectrometry (LC-qToF-MS) data were preprocessed with MS-DIAL and subjected to multiple statistical analyses to identify features significantly associated with cocaine-enzyme immunoassay (EIA) results. Significant features were further evaluated using MS-FINDER for feature annotation. Results: Among 14,883 features, 262 were significantly associated with cocaine-EIA results. A subset of 37 more significant features, including known cocaine metabolites and impurities, nicotine metabolites, norfentanyl, and a tryptophan-related metabolite (3-hydroxy-tryptophan), was annotated. Cluster analysis revealed co-varying features, including parent compounds, metabolites, and related ion species. Conclusions: Features associated with cocaine exposure, including previously underrecognized cocaine metabolites and impurities, co-exposure markers, and alterations in an endogenous metabolic pathway, were identified. Notably, norfentanyl was found to be significantly associated with cocaine -EIA, reflecting current trends in illicit drug use. This study highlights the potential of repurposing real-world clinical toxicology data for biomarker discovery, providing a valuable approach to identifying exposure biomarkers and expanding our understanding of drug-induced metabolic disturbances in clinical toxicology. Further validation and exploration using complementary analytical platforms are warranted. Full article
Show Figures

Graphical abstract

17 pages, 3177 KB  
Article
Sakuranetin, A Laxative Component from Peach Leaves and Its Intervention in Metabolism
by Ping Wang, Yi Song, Haixin Jiang, Chenyuan Qi, Xubo Zhang, Disheng Wang, Luqi Li and Qiang Zhang
Int. J. Mol. Sci. 2025, 26(17), 8112; https://doi.org/10.3390/ijms26178112 - 22 Aug 2025
Viewed by 319
Abstract
Peach (Prunus persica) leaves, usually discarded in traditional Chinese medicine, were explored as a source of laxative agents. Using zebrafish larvae for bioactivity-guided fractionation, we isolated a single active flavanone that was identified by NMR and HR-MS as Sakuranetin. In vivo [...] Read more.
Peach (Prunus persica) leaves, usually discarded in traditional Chinese medicine, were explored as a source of laxative agents. Using zebrafish larvae for bioactivity-guided fractionation, we isolated a single active flavanone that was identified by NMR and HR-MS as Sakuranetin. In vivo assays demonstrated that Sakuranetin (10–25 µM) accelerated intestinal transit in a dose-dependent fashion; at 25 µM, 64.8% of the fluorescent intestinal content was expelled. Untargeted LC-MS metabolomic analysis revealed significant perturbations in serine biosynthesis and N-glycan precursor biosynthesis, suggesting energetic rewiring of enterocytes. RNA-Seq analysis highlighted gnat1 as the most responsive gene, and molecular docking predicted a stable Sakuranetin–Gnat1 complex with a binding free energy of −8.7 kcal/mol. Concurrent down-regulation of rho transcripts indicated suppression of inflammatory signaling that often accompanies constipation. Our findings identified Sakuranetin as a potent promoter of gut motility and position the otherwise wasted peach leaves as an untapped botanical resource for developing anti-constipation therapeutics. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds: 3rd Edition)
Show Figures

Graphical abstract

17 pages, 4548 KB  
Article
Ultrasonic-Cavitation-Enhanced Biodegradation of Ciprofloxacin: Mechanisms and Efficiency
by Qianheng Wen, Qiwei Peng, ThuThi Pham and Xiwei He
Water 2025, 17(16), 2495; https://doi.org/10.3390/w17162495 - 21 Aug 2025
Viewed by 178
Abstract
Ciprofloxacin (CIP), a persistent fluoroquinolone antibiotic, poses serious environmental concerns due to its low biodegradability and widespread presence in aquatic ecosystems. This study investigates the synergistic application of low-frequency ultrasonic cavitation and biological treatment to enhance CIP removal efficiency. Experiments have shown that [...] Read more.
Ciprofloxacin (CIP), a persistent fluoroquinolone antibiotic, poses serious environmental concerns due to its low biodegradability and widespread presence in aquatic ecosystems. This study investigates the synergistic application of low-frequency ultrasonic cavitation and biological treatment to enhance CIP removal efficiency. Experiments have shown that under the optimal biological treatment conditions (6 g/L sludge concentration, pH 8), single biological treatment for 48 h can only remove 41.9% CIP and 24.9% total organic carbon (TOC). Ultrasonic pretreatment was conducted under varying frequencies and pH conditions to determine optimal cavitation parameters, while biodegradation performance was evaluated at different sludge concentrations and pH levels. Results indicated that in 10 mg/L CIP wastewater under alkaline conditions (pH 9.0), CIP and TOC removal efficiencies reached 58.9% and 35.2%, respectively, within 30 min using 15 kHz ultrasound irradiation. When ultrasonic pretreatment was followed by biological treatment, overall removal rates increased to 96.3% for CIP and 90.4% for TOC, significantly outperforming either method alone. LC-MS analysis identified several degradation intermediates during ultrasonic pretreatment, revealing key transformation pathways such as piperazine ring cleavage, hydroxylation, and defluorination. Furthermore, toxicity evaluation using the T.E.S.T. model confirmed a substantial reduction in ecological risk after ultrasonic treatment. Overall, the combined ultrasonic–biological process offers a cost-effective and environmentally sustainable strategy for the efficient removal of fluoroquinolone antibiotics from wastewater. Full article
(This article belongs to the Special Issue Application of Microbial Technology in Wastewater Treatment)
Show Figures

Figure 1

21 pages, 4158 KB  
Article
Insight into the Sporulation Physiology of Elkhorn Fern: Metabolic, Hormonal, and Pigment Changes Within a Single Leaf of Platycerium bifurcatum
by Jakub Oliwa, Iwona Stawoska, Violetta Katarzyna Macioszek, Michał Dziurka, Magdalena Rys, Diana Saja-Garbarz, Anna Maksymowicz, Andrzej Kornaś and Andrzej Skoczowski
Int. J. Mol. Sci. 2025, 26(16), 8084; https://doi.org/10.3390/ijms26168084 - 21 Aug 2025
Viewed by 170
Abstract
Platycerium bifurcatum is one of the most widely cultivated ornamental fern species worldwide and a valuable component of the biodiversity of pantropical forests. In addition to its photosynthetic function, the sporotrophophyll leaves of this species periodically develop a large, clearly demarcated sporangium at [...] Read more.
Platycerium bifurcatum is one of the most widely cultivated ornamental fern species worldwide and a valuable component of the biodiversity of pantropical forests. In addition to its photosynthetic function, the sporotrophophyll leaves of this species periodically develop a large, clearly demarcated sporangium at the leaf tips, enabling physiological and biochemical measurements both in the active sporulation part and in the non-sporulating leaf area. The aim of this study was to assess anatomical changes, determine thermal effects and the content of selected phytohormones, and analyze the spatial distribution of pigments in the sporophilic and trophophylic part of the same leaf during spore formation. The study utilized fluorescence microscopy, isothermal microcalorimetry, Raman mapping, and ultra-high-performance liquid chromatography coupled with a Triple Quad LC/MS analyzer. The results revealed significant physiological differences between the sporulating and non-sporulating leaf areas. For the first time, differences in thermogenesis within the two leaf regions accompanying sporulation and linked to the sporangium development stage have been demonstrated in ferns. Increases in gibberellins (GA3, GA4, and GA6), auxin (indole-3-butyric acid), (±)-cis, trans-abscisic acid, and abscisic acid glucose ester were observed in the sporophilic part of the leaf, as well as fluctuations in phytohormones in the trophophilic part, indicating internal metabolite relocation within the leaf. Raman analysis and 2D mapping revealed local lignin accumulation and fluctuations in carotenoid levels during spore maturation. The results of this study demonstrate physiological variation within a single leaf and the mechanisms accompanying sporulation, which provide a better understanding of fern adaptive strategies. Full article
(This article belongs to the Special Issue Plant Hormone Signaling)
Show Figures

Figure 1

14 pages, 1191 KB  
Article
Biodegradation of Zearalenone by a Novel Bacillus Strain X13 Isolated from Volcanic Rock Soil Using the Mycotoxin as the Sole Carbon Source
by Di Meng, Kaizhong Xu, Jinbin Liu and Xiangru Liao
Microorganisms 2025, 13(8), 1954; https://doi.org/10.3390/microorganisms13081954 - 21 Aug 2025
Viewed by 164
Abstract
Zearalenone (ZEN) is a widespread estrogenic mycotoxin that poses serious health risks to both humans and animals through the contamination of cereals and feeds. In this study, a novel Bacillus strain X13 was isolated from volcanic rock soil and demonstrated the unique ability [...] Read more.
Zearalenone (ZEN) is a widespread estrogenic mycotoxin that poses serious health risks to both humans and animals through the contamination of cereals and feeds. In this study, a novel Bacillus strain X13 was isolated from volcanic rock soil and demonstrated the unique ability to utilize ZEN as the sole carbon source for growth and metabolism. Under optimized conditions (37 °C, pH 8.0, and 5% inoculum in M9 minimal medium), strain X13 achieved a ZEN degradation efficiency of 98.57%. LC-MS analysis identified 1-(3,5-dihydroxyphenyl)-6′-hydroxy-1′-undecen-10′-one as the primary degradation product, indicating enzymatic hydrolysis of the lactone ring. Enzymatic assays revealed that the active components were extracellular, proteinaceous, and metal ion-dependent. Furthermore, the strain reduced ZEN content in mold-contaminated corn flour by 74.6%, effectively lowering toxin levels below regulatory limits. These findings suggest that Bacillus sp. X13 is a promising candidate for the bioremediation of ZEN-contaminated agricultural products, with significant potential for application in food and feed detoxification strategies. The robust degradation performance of strain X13 under simulated environmental conditions, combined with its adaptability to agricultural substrates, positions it as a viable solution for large-scale mycotoxin mitigation in the food industry chain, from pre-harvest field management to post-harvest storage processing. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 3945 KB  
Article
Eupatorium lindleyanum DC Ameliorates Carbon Tetrachloride-Induced Hepatic Inflammation and Fibrotic Response in Mice
by Jinbao Yang, Yufei Wang, Lijuan Zhuo, Guijun Lu, Meiting Zhang, Jiabin Huang, Yehaomin Li, Wenwen Liu, Jing Qi, An Zhu and Zixiong Zhou
Pharmaceuticals 2025, 18(8), 1228; https://doi.org/10.3390/ph18081228 - 20 Aug 2025
Viewed by 211
Abstract
Background/Objectives: Eupatorium lindleyanum DC (Eup), a traditional Chinese medicinal herb, is widely used for treating inflammation-mediated diseases, including pneumonia. However, its potential therapeutic effects on inflammation-driven liver fibrosis remain to be elucidated. This study aimed to investigate the effects of Eup on [...] Read more.
Background/Objectives: Eupatorium lindleyanum DC (Eup), a traditional Chinese medicinal herb, is widely used for treating inflammation-mediated diseases, including pneumonia. However, its potential therapeutic effects on inflammation-driven liver fibrosis remain to be elucidated. This study aimed to investigate the effects of Eup on carbon tetrachloride (CCl4)-induced liver fibrosis and elucidate its underlying mechanisms. Methods: The chemical constituents of Eup were analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-LC/MS). A CCl4-induced liver fibrosis murine model and LX-2 cells were used in study. Serum biochemical assays, histological analysis, qRT-PCR, ELISA, and Western blot were used to assess Eup’s anti-inflammatory and anti-fibrotic properties. RNA sequencing (RNA-seq) was employed to identify potential mechanisms, with validation by Western blot. Results: 89 and 49 compounds were identified in Eup under positive and negative ion modes, respectively. In vivo, Eup treatment decreased collagen deposition and expression levels of fibrosis-related genes, including collagen I and α-smooth muscle actin. Additionally, Eup alleviated hepatic inflammation. In vitro, Eup inhibited FBS-induced hepatic stellate cell (HSCs) activation. Gene set enrichment analysis (GSEA) indicated that Eup significantly downregulated the platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor-beta (PDGFR-β) signaling pathway, which was further validated in both CCl4-induced fibrotic livers and PDGF-BB-activated HSCs using western blot. Conclusions: Eup attenuated liver fibrosis by inhibiting inflammation and suppressing HSCs activation via downregulating PDGF/PDGFR-β signaling pathway. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

21 pages, 8034 KB  
Article
Decoding Forage-Driven Microbial–Metabolite Patterns: A Multi-Omics Comparison of Eight Tropical Silage Crops
by Xianjun Lai, Siqi Liu, Yandan Zhang, Haiyan Wang and Lang Yan
Fermentation 2025, 11(8), 480; https://doi.org/10.3390/fermentation11080480 - 20 Aug 2025
Viewed by 247
Abstract
Tropical forage crops vary widely in biochemical composition, resulting in inconsistent silage quality. Understanding how plant traits shape microbial and metabolic networks during ensiling is crucial for optimizing fermentation outcomes. Eight tropical forages—Sorghum bicolor (sweet sorghum), Sorghum × drummondii (sorghum–Sudangrass hybrid), Sorghum [...] Read more.
Tropical forage crops vary widely in biochemical composition, resulting in inconsistent silage quality. Understanding how plant traits shape microbial and metabolic networks during ensiling is crucial for optimizing fermentation outcomes. Eight tropical forages—Sorghum bicolor (sweet sorghum), Sorghum × drummondii (sorghum–Sudangrass hybrid), Sorghum sudanense (Sudangrass), Pennisetum giganteum (giant Napier grass), Pennisetum purpureum cv. Purple (purple elephant grass), Pennisetum sinese (king grass), Leymus chinensis (sheep grass), and Zea mexicana (Mexican teosinte)—were ensiled under uniform conditions. Fermentation quality, bacterial and fungal communities (16S rRNA and ITS sequencing), and metabolite profiles (untargeted liquid chromatography–mass spectrometry, LC-MS) were analyzed after 60 days. Sweet sorghum and giant Napier grass showed optimal fermentation, with high lactic acid levels (111.2 g/kg and 99.4 g/kg, respectively), low NH4+-N (2.4 g/kg and 3.1 g/kg), and dominant Lactiplantibacillus plantarum. In contrast, sheep grass and Mexican teosinte exhibited poor fermentation, with high NH4+-N (6.7 and 6.1 g/kg) and Clostridium dominance. Fungal communities were dominated by Kazachstania humilis (>95%), while spoilage-associated genera such as Cladosporium, Fusarium, and Termitomyces proliferated in poorly fermented silages. Metabolomic analysis identified 15,827 features, with >3000 significantly differential metabolites between silages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed divergence in flavonoid biosynthesis, lipid metabolism, and amino acid pathways. In the sweet sorghum vs. sheep grass comparison, oxidative stress markers ((±) 9-HODE, Agrimonolide) were elevated in sheep grass, while sweet sorghum accumulated antioxidants like Vitamin D3. Giant Napier grass exhibited higher levels of antimicrobial flavonoids (e.g., Apigenin) than king grass, despite both being dominated by lactic acid bacteria. Sorghum–Sudangrass hybrid silage showed enrichment of lignan and flavonoid derivatives, while Mexican teosinte accumulated hormone-like compounds (Gibberellin A53, Pterostilbene), suggesting microbial dysbiosis. These findings indicate that silage fermentation outcomes are primarily driven by forage-intrinsic traits. A “forage–microbiota–metabolite” framework was proposed to explain how plant-specific properties regulate microbial assembly and metabolic output. These insights can guide forage selection and development of precision inoculant for high-quality tropical silage. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

26 pages, 1955 KB  
Article
A Bioactive Emulgel Formulation of Equisetum telmateia Ehrh. Methanol Extract: Integrating Antioxidant Activity, Skin Enzyme Inhibition, and Permeation Kinetics
by Tuğba Buse Şentürk, Timur Hakan Barak, Emre Şefik Çağlar, Emine Saldamlı, Ebru Özdemir Nath and Zafer Ömer Özdemir
Gels 2025, 11(8), 662; https://doi.org/10.3390/gels11080662 - 20 Aug 2025
Viewed by 281
Abstract
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the [...] Read more.
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the antioxidant capacity of, and the phytochemical composition of E. telmateia. Additionally, a novel emulgel was formulated from the main methanolic extract and characterized in terms of pH, viscosity, determination of content quantification, textural profile analysis, and spreadability. After the characterization studies, in vitro release and ex vivo permeation and penetration studies were performed. Firstly, the dried aerial parts of E. telmateia were macerated in methanol, followed by partitioning with solvents of increasing polarity: n-hexane, chloroform, ethyl acetate, and n-butanol. Antioxidant activity was assessed using DPPH, FRAP, CUPRAC, and TOAC assays, while enzyme inhibition was analyzed for collagenase, elastase, hyaluronidase, and tyrosinase. LC-MS/MS analysis identified 53 phytochemical compounds. Protocatechuic acid, the main phenolic compound, was quantitatively analyzed in each subfraction by HPTLC. The in vitro release studies showed sustained release of the reference substance (protocatechuic acid) and the kinetic modeling of the release was fitted to the Higuchi model. The ex vivo permeation and penetration studies showed that the formulation exhibited a retention of 3.06 ± 0.21 µg.cm−2 after 24 h, whereas the suspended extract demonstrated a skin retention of 1.28 ± 0.47 µg.cm−2. Both the extracts and the formulated emulgel exhibited inhibitory effects on skin-related enzymes. Our finding suggested that E. telmateia might be a valuable ingredient for wrinkle care and skin-regenerating cosmetics. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
Show Figures

Figure 1

20 pages, 1133 KB  
Article
Unconventional Material from In Vitro Plant Cell Cultures: Vitis labrusca var. Isabella Case Study
by Vanessa Dalla Costa, Anna Piovan, Paola Brun and Raffaella Filippini
Appl. Sci. 2025, 15(16), 9139; https://doi.org/10.3390/app15169139 - 19 Aug 2025
Viewed by 261
Abstract
Isabella, an ancient hybrid grape originating from Vitis labrusca and Vitis vinifera genotypes, is widely cultivated for various food products and is considered a superfood due to its nutritional profile and high polyphenol content. To overcome the unsustainability of intensive agriculture and establish [...] Read more.
Isabella, an ancient hybrid grape originating from Vitis labrusca and Vitis vinifera genotypes, is widely cultivated for various food products and is considered a superfood due to its nutritional profile and high polyphenol content. To overcome the unsustainability of intensive agriculture and establish a new route towards more sustainable and socially fair superfood production, this work validated the establishment of undifferentiated in vitro cultures of V. labrusca var. Isabella. Two callus cell lines have been obtained on two different solid media, exhibiting distinct morpho-chemical characteristics. The total phenolic content and antioxidant activity of the callus juices were statistically different in the two cell lines. The subsequent qualitative–quantitative LC-MS analysis revealed the presence of seven stilbenoid derivatives in one cell line and three in the other; likewise, the total stilbenoid content was statistically different between the two cell lines (5.76 and 23.24 µg/mL of juice in the two cell lines on the 28th day of growth). The Isabella cell cultures possess nutritionally valuable profiles. These results suggest that plant cell culture technology can be a sustainable and viable option for the production of complementary, added-value food materials. Full article
(This article belongs to the Special Issue Unconventional Raw Materials for Food Products, 2nd Edition)
Show Figures

Figure 1

20 pages, 2915 KB  
Article
Cytotoxic Peptidic Metabolites Isolated from the Soil-Derived Fungus Trichoderma atroviride
by Jun Gu Kim, Jae Sang Han, Dahyeon Lee, Mi Kyeong Lee, Bang Yeon Hwang and Jin Woo Lee
Molecules 2025, 30(16), 3422; https://doi.org/10.3390/molecules30163422 - 19 Aug 2025
Viewed by 271
Abstract
Twelve undescribed peptidic compounds, bukhansantaibols A–K (110) and bukhansantaibals A–B (1112), were isolated from the soil fungus Trichoderma atroviride through LC-MS and bioactivity-guided purification. Their structures were elucidated by the analysis of 1D and 2D [...] Read more.
Twelve undescribed peptidic compounds, bukhansantaibols A–K (110) and bukhansantaibals A–B (1112), were isolated from the soil fungus Trichoderma atroviride through LC-MS and bioactivity-guided purification. Their structures were elucidated by the analysis of 1D and 2D NMR spectra, HRESIMS, and acid hydrolysis using modified Marfey’s method. All compounds were evaluated for their cytotoxic activity against HCT-8 (colon cancer) and SK-OV-3 (ovarian cancer) cells. Among them, compounds 15 exhibited significant inhibitory effects, with IC50 values ranging from 2.1 to 19.6 μM. Full article
(This article belongs to the Special Issue Discovery of Microbial Natural Products)
Show Figures

Graphical abstract

Back to TopTop