Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = Late Carboniferous

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1067 KiB  
Article
Morpho-Molecular Discordance and Cryptic Diversity in Jumping Bristletails: A Mitogenomic Analysis of Pedetontus silvestrii (Insecta: Archaeognatha: Machilidae)
by Wei Cen, Jia-Wen Li, Jia-Tao He, Xin-Yu Chen, Luo-Ying Li, Kenneth B. Storey, Dan-Na Yu and Jia-Yong Zhang
Insects 2025, 16(5), 452; https://doi.org/10.3390/insects16050452 - 25 Apr 2025
Viewed by 290
Abstract
Archaeognatha (bristletails) represent an evolutionarily significant but understudied insect group. Notably, the morphological identification method proposed by Mendes for Archaeognatha has certain limitations, which may lead to the underestimation or misidentification of some cryptic species. To address this issue, we employed an integrated [...] Read more.
Archaeognatha (bristletails) represent an evolutionarily significant but understudied insect group. Notably, the morphological identification method proposed by Mendes for Archaeognatha has certain limitations, which may lead to the underestimation or misidentification of some cryptic species. To address this issue, we employed an integrated strategy that combines morphological and molecular identification methods. Therefore, this study aimed to (1) identify cryptic diversity within Pedetontus silvestrii using mitogenomic data; (2) clarify phylogenetic relationships among Archaeognatha lineages; and (3) estimate divergence times for key taxonomic splits. We analyzed mitochondrial genomes from six P. silvestrii populations (Liaoning, Jilin, and Hebei Provinces) alongside 14 published Archaeognatha genomes. Key findings include the following: (1) Integrative analyses of genetic distances, phylogenetic reconstruction, bPTP-based molecular species delimitation, and divergence time estimation collectively revealed four evolutionarily distinct lineages within P. silvestrii. (2) Machilidae and Machilinae were non-monophyletic, whereas Petrobiellinae showed close affinity to Meinertellidae. (3) Archaeognatha originated ~301.19 Mya (Late Carboniferous); the Machilinae–Petrobiinae split occurred approximately 153.99 Mya (Jurassic). This study underscores the critical importance of mitogenomic analysis in elucidating cryptic biodiversity, while emphasizing the necessity of integrating morphological identification with molecular characterization for comprehensive species delineation in future taxonomic investigations. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

30 pages, 9041 KiB  
Article
Pore–Fracture Structure and Fractal Features of Carboniferous Taiyuan Formation Hydrocarbon Source Rocks as Investigated Using MICP, LFNMR, and FESEM
by Dun Wu, Liu Zhao, Guangqing Hu and Wenyong Zhang
Fractal Fract. 2025, 9(4), 263; https://doi.org/10.3390/fractalfract9040263 - 20 Apr 2025
Viewed by 132
Abstract
The pore structure of reservoir rocks was a crucial factor affecting hydrocarbon production. Accurately characterized the micropore structure of different types of rock reservoirs was of great significance for unconventional natural gas exploration. In this study, multiple observation methods (field emission scanning electron [...] Read more.
The pore structure of reservoir rocks was a crucial factor affecting hydrocarbon production. Accurately characterized the micropore structure of different types of rock reservoirs was of great significance for unconventional natural gas exploration. In this study, multiple observation methods (field emission scanning electron microscope (FESEM) and low-field nuclear magnetic resonance (LFNMR)) and physical tests (mercury injection capillary pressure (MICP)) were employed, and double logarithmic plots for fractal fitting were illustrated. The fractal dimension of 15 samples was calculated using fractal theory to systematically investigate the pore–fracture structure and fractal characteristics of hydrocarbon source rock (limestone, mudstone, and sandstone) samples from the Late Carboniferous Taiyuan Formation in the Huainan coalfield. MICP experiments revealed that sandstone reservoirs had larger and more uniformly distributed pore throats compared to mudstone and limestone, exhibiting superior connectivity and permeability. The T2 spectrum characteristic maps obtained using LFNMR were also consistent with the pore distribution patterns derived from MICP experiments, particularly showed that sandstone types exhibited excellent signal intensity across different relaxation time periods and had a broader T2 spectrum width, which fully indicated that sandstone types possess superior pore structures and higher connectivity. FESEM experiments demonstrated that sandstone pores were highly developed and uniform, with sandstone fractures dominated by large fractures above the micrometer scale. Meanwhile, the FESEM fractal dimension results indicated that sandstone exhibits good fractal characteristics, validating its certain oil storage capacity. Furthermore, the FESEM fractal dimension exhibited a good correlation with the porosity and permeability of the hydrocarbon source rock reservoirs, suggesting that the FESEM fractal dimension can serve as an important parameter for evaluating the physical properties of hydrocarbon source rock reservoirs. This study enriched the basic geological theories for unconventional natural gas exploration in deep coal-bearing strata in the Huainan coalfield. Full article
Show Figures

Figure 1

24 pages, 12852 KiB  
Article
Zircon U-Pb Geochronology and Geochemical Constraints of Tiancang Granites, Southern Beishan Orogenic Belt: Implications for Early Permian Magmatism and Tectonic Evolution
by Chao Teng, Meiling Dong, Xinjie Yang, Deng Xiao, Jie Shao, Jun Cao, Yalatu Su and Wendong Lu
Minerals 2025, 15(4), 426; https://doi.org/10.3390/min15040426 - 19 Apr 2025
Viewed by 148
Abstract
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most [...] Read more.
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most extensive spatial-temporal distribution in this belt, remains controversial in its geodynamic context: whether it formed in a persistent subduction regime or was associated with mantle plume activity or post-collisional extension within a rift setting. This study presents an integrated analysis of petrology, zircon U-Pb geochronology, in situ Hf isotopes, and whole-rock geochemistry of Early Permian granites from the Tiancang area in the southern Beishan Orogenic Belt, complemented by regional comparative studies. Tiancang granites comprise biotite monzogranite, monzogranite, and syenogranite. Zircon U-Pb dating of four samples yields crystallization ages of 279.3–274.1 Ma. These granites are classified as high-K calc-alkaline to calc-alkaline, metaluminous to weakly peraluminous I-type granites. Geochemical signatures reveal the following: (1) low total rare earth element (REE) concentrations with light REE enrichment ((La/Yb)N = 3.26–11.39); (2) pronounced negative Eu anomalies (Eu/Eu* = 0.47–0.71) and subordinate Ce anomalies; (3) enrichment in large-ion lithophile elements (LILEs: Rb, Th, U, K) coupled with depletion in high-field-strength elements (HFSEs: Nb, Ta, P, Zr, Ti); (4) zircon εHf(t) values ranging from −10.5 to −0.1, corresponding to Hf crustal model ages (TDMC) of 1.96–1.30 Ga. These features collectively indicate that the Tiancang granites originated predominantly from partial melting of Paleoproterozoic–Mesoproterozoic crustal sources with variable mantle contributions, followed by extensive fractional crystallization. Regional correlations demonstrate near-synchronous magmatic activity across the southern/northern Beishan and eastern Tianshan Orogenic belts. The widespread Permian granitoids, combined with post-collisional magmatic suites and rift-related stratigraphic sequences, provide compelling evidence for a continental rift setting in the southern Beishan during the Early Permian. This tectonic regime transition likely began with lithospheric delamination after the Late Carboniferous–Early Permian collisional orogeny, which triggered asthenospheric upwelling and crustal thinning. These processes ultimately led to the terminal closure of the Paleo-Asian Ocean’s southern branch, followed by intracontinental evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

23 pages, 5902 KiB  
Article
Combining Fourier Transform Infrared and Raman Spectroscopy to Characterize Kerogen Molecular Structures: Insights into Their Thermal Maturity
by Dun Wu, Chenglong Wang, Wenxu Liang and Xia Gao
Int. J. Mol. Sci. 2025, 26(6), 2696; https://doi.org/10.3390/ijms26062696 - 17 Mar 2025
Viewed by 391
Abstract
This study systematically analyzed the composition of organic functional groups and changes in the carbon structure of kerogen at different stages of thermal maturity using Fourier Transform Infrared (FTIR) spectroscopy and Laser Raman spectroscopy techniques. The research selected oil shale samples from the [...] Read more.
This study systematically analyzed the composition of organic functional groups and changes in the carbon structure of kerogen at different stages of thermal maturity using Fourier Transform Infrared (FTIR) spectroscopy and Laser Raman spectroscopy techniques. The research selected oil shale samples from the Late Carboniferous deep coal strata in the southern part of the Huainan coalfield. Kerogen was extracted through acid treatment, pyrite removal, and heavy liquid separation processes. Utilizing FTIR and Raman spectroscopy, the study delved into the quantitative and qualitative characteristics of functional groups such as hydroxyl, carboxyl, and methyl in the kerogen, as well as the variations in the ratio between aliphatic and aromatic carbon. The research found that as thermal maturity increased, aromatic structural parameters in the kerogen significantly rose, while aliphatic structural parameters exhibited a downward trend. Specifically, FTIR spectroscopy was used to identify the characteristic absorption wavenumber ranges of different functional groups and calculate key parameters such as the aromaticity of the kerogen and the ratio of aliphatic to aromatic functional groups using relevant formulas. Meanwhile, Raman spectroscopy analysis revealed changes in the orderliness of carbon atoms and the degree of graphitization in the kerogen as a function of thermal maturity, with the intensity ratio of the G band to the D1 band (AD1/AG) emerging as an important indicator for assessing thermal maturity. Additionally, this study further validated the correlation between thermal maturity and parameters such as reflectance (R0) and the H/C ratio by calculating the metamorphic temperature of the kerogen. Combining the results of FTIR and Raman spectroscopy analyses, this study unveiled a close relationship between the thermal maturity of kerogen and its organic functional group composition and carbon structure. As thermal maturity increased, the degree of aromatization in the kerogen rose, aliphatic chain lengths shortened, and the degree of graphitization improved. These findings not only enhance the understanding of the thermal evolution process of kerogen but also provide crucial scientific insights for oil and gas exploration and development. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

21 pages, 29782 KiB  
Article
Metallogenic Process of Forming the Large Xiangcaowa Karstic Bauxite Deposit from the Southern Margin of the North China Craton
by Wenxia Wang, Xuefei Sun, Lei Liu, Lihua Zhao, Rongrong Liang, Tongyi Zhang and Xuefei Liu
Minerals 2025, 15(3), 310; https://doi.org/10.3390/min15030310 - 17 Mar 2025
Viewed by 320
Abstract
North China Craton (NCC) formed the world’s largest karstic bauxite belt in the Late Carboniferous, with significant variations in metallogenic sources and conditions, which affect the overall understanding of karstic bauxite genesis. The Xiangcaowa bauxite deposit in the southern NCC is a large [...] Read more.
North China Craton (NCC) formed the world’s largest karstic bauxite belt in the Late Carboniferous, with significant variations in metallogenic sources and conditions, which affect the overall understanding of karstic bauxite genesis. The Xiangcaowa bauxite deposit in the southern NCC is a large deposit of uncertain provenance and genesis. This study employed geological, mineralogical, and chronology analysis to investigate the sources and genesis of Xiangcaowa bauxite, further contributing to a full understanding of the origin of bauxite throughout the NCC. Xiangcaowa ore-bearing rock series is composed of bauxite and claystone layers. The composition of bauxite ore encompasses diaspore, kaolinite, anatase, pyrite, zircon, and rutile. Widely developed mineral assemblages, such as diaspore–anatase–pyrite, indicate that bauxite is mainly formed in reducing and alkaline karstic depressions. Detrital zircons, aged ~450, ~520, ~950, and ~1100 Ma, predominantly originate from igneous rocks in the North Qinling Orogenic Belt (NQOB), and the ~1650 and ~2400 Ma zircon age populations are primarily from the southern margin of the NCC. Detrital rutiles, which are concentrated in 800–510 Ma, are primarily from the metamorphic rocks of the South Qinling Orogenic Belt (SQOB); rutiles aged ~1500–910 Ma are primarily from metamorphic rocks in the NQOB. These results confirm that the principal sources of the bauxite are the igneous and metamorphic rocks within the NQOB, along with the metamorphic rocks of the SQOB, while the basement rocks of the NCC contribute only minorly to its formation. A large karstic bauxite deposit was formed by the transport of large amounts of weathered material into extensive karstic depressions where reducing and alkaline conditions favoured diaspore deposition. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

28 pages, 2517 KiB  
Article
Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting
by Furong Li, Zhi Zhang, Can Zhao, Jinqi Han, Jiaye Liu, Yaoyun Guo, Xinyu Tang, Chang Su, Xu Chang and Tong Wu
Minerals 2025, 15(3), 279; https://doi.org/10.3390/min15030279 - 9 Mar 2025
Viewed by 862
Abstract
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of [...] Read more.
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of the Lower Jurassic Badaowan Formation sandstones in the Dongdaohaizi Depression, located in the eastern Junggar Basin. The results reveal a progressive decrease in lithic fragment content and an increase in quartz content from older to younger strata within the Badaowan Formation, indicating an increase in compositional maturity. Provenance analysis indicates that the sandstones are predominantly derived from tuffaceous rocks, granites, basalts, and minor metamorphic rocks. Heavy mineral assemblages, including zircon, chromian spinel, tourmaline, and garnet, suggest parent rocks consisting primarily of intermediate to acidic igneous rocks, mafic igneous rocks, and metamorphic rocks. Integrated petrographic and geochemical data from the surrounding areas of the Dongdaohaizi Depression confirm that the Badaowan Formation sandstones are primarily sourced from the eastern Kelameili Mountain. The continued uplift and migration of the Kelameili Mountain during the Early Jurassic played a dominant role in shaping the sedimentary provenance. LA-ICP-MS analyses reveal that the rare earth element (REE) concentrations in the Lower Jurassic sandstones are slightly lower than the average REE content of the upper continental crust. The sandstones exhibit weak differentiation between light and heavy REEs, reflecting a depositional environment characterized by anoxic reducing conditions. Geochemical results indicate a tectonic setting dominated by a passive continental margin and continental island arc in the source area. Synthesizing these findings with related studies, we propose that the Kelameili Ocean, as part of the Paleo-Asian Ocean, underwent a complex evolution involving multiple oceanic basins and microcontinental subduction–collision systems. From the Middle Ordovician to Late Silurian, the Kelameili region evolved as a passive continental margin. With the onset of subduction during the Middle Devonian to Early Carboniferous, the eastern Junggar Basin transitioned into a continental island arc system. This tectonic transition was likely driven by episodic or bidirectional subduction of the Kelameili Ocean. Full article
Show Figures

Figure 1

23 pages, 8147 KiB  
Article
Thermochronology of the Kalba–Narym Batholith and the Irtysh Shear Zone (Altai Accretion–Collision System): Geodynamic Implications
by Alexey Travin, Mikhail Buslov, Nikolay Murzintsev, Valeriy Korobkin, Pavel Kotler, Sergey V. Khromykh and Viktor D. Zindobriy
Minerals 2025, 15(3), 243; https://doi.org/10.3390/min15030243 - 26 Feb 2025
Viewed by 414
Abstract
The granitoids of the Kalba–Narym batholith and the Irtysh shear zone (ISZ) are among the main geological features of the late Paleozoic Altai accretion–collision system (AACS) in Eastern Kazakhstan. Traditionally, it is believed that late Paleozoic strike-slip faults played a pivotal role at [...] Read more.
The granitoids of the Kalba–Narym batholith and the Irtysh shear zone (ISZ) are among the main geological features of the late Paleozoic Altai accretion–collision system (AACS) in Eastern Kazakhstan. Traditionally, it is believed that late Paleozoic strike-slip faults played a pivotal role at all stages of the development of the AACS, they were supposed to control deformation, magmatism, and ore deposits. This work is devoted to solving the problem of the tectonic evolution of the AACS based on the reconstruction of the thermal history of granitoids of the Kalba–Narym batholith in connection with the Chechek metamorphic dome structure, which is one of the highly metamorphosed blocks mapped within the ISZ. The new geological and geochronological data presented in this work allowed us to establish the sequence of formation of the Kalba–Narym granitoid batholith and link it with the evolution of the Irtysh shear zone (ISZ). It was revealed that in the late Carboniferous–early Permian (312–289 Ma), during the NE–SW compression, the Irtysh shear zone formed as a gently dipping thrust system into which gabbro of the Surov massif intruded. The combined manifestation of magmatic and tectonic processes caused the formation of tectonic mélange with cataclastic gabbro and metamorphic rocks of the Chechek metamorphic dome structure (312–289 Ma). Compression caused the formation of a cover-thrust structure. The thickening of the crust under the probable thermal action of the Tarim plume led to the formation of the early Permian Kalba–Narym batholith (297–284 Ma) within the Kalba–Narym terrane. Denudation of the orogen occurred before the Early Triassic (280–229 Ma). In this way the sequence of formation of the Kalba–Narym batholith and the ISZ is consistent with the concepts of the stages of plume-lithosphere interaction within the AACS under the influence of the late Carboniferous–early Permian Tarim igneous province, but in the cover-thrust tectonic setting. Full article
(This article belongs to the Special Issue Developments in Geochronology and Dating of Shear Zone Deformation)
Show Figures

Figure 1

21 pages, 21986 KiB  
Article
Characteristics of Coal-Bearing Shale Reservoirs and Gas Content Features in the Carboniferous–Permian System of the Qinshui Basin, Shanxi Province, China
by Shen Xu, Meng Wang, Jie Gao, Wenhao Li, Xiaorong Zhang, Wenxin Zhou and Yanzixian Zheng
Energies 2025, 18(5), 1120; https://doi.org/10.3390/en18051120 - 25 Feb 2025
Viewed by 290
Abstract
The evaluation of reservoir properties and gas-bearing characteristics is critical for assessing shale gas accumulation. This study aimed to improve the precision of characterizing the properties and gas-bearing features of the Carboniferous and Permian shale reservoirs within the Qinshui Basin, Shanxi Province, China. [...] Read more.
The evaluation of reservoir properties and gas-bearing characteristics is critical for assessing shale gas accumulation. This study aimed to improve the precision of characterizing the properties and gas-bearing features of the Carboniferous and Permian shale reservoirs within the Qinshui Basin, Shanxi Province, China. It specifically focuses on the shale from the Late Carboniferous to Early Permian Shanxi and Taiyuan formations at Well Z1, located in the mid-eastern region of the basin. A comprehensive suite of analytical techniques, including organic geochemical analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-pressure mercury intrusion, low-temperature nitrogen adsorption, isothermal adsorption experiments, and gas content measurements, was used to systematically evaluate the reservoir properties and gas-bearing characteristics of the Carboniferous–Permian shale in Well Z1. The findings reveal the following. (1) The organic matter in the Shanxi and Taiyuan formations of Well Z1 is predominantly Type III humic kerogen, exhibiting high maturity and abundance. Specifically, 67.40% of the samples have TOC > 1.00%, classifying them as medium- to high-quality source rocks. The vitrinite reflectance (Ro) ranges from 1.99% to 2.55%, and Tmax varies from 322.01 °C to 542.01 °C, indicating a high to over-mature stage. (2) The mineral composition of the shale is dominated by kaolinite, illite, and quartz, with a moderate brittleness index. The average clay mineral content is 52.12%, while quartz averages 45.53%, and the brittleness index averages 42.34. (3) The pore types in the shale are predominantly macropores, with varying peak intervals among different samples. (4) The surface area and specific pore volume of macropores show positive relationships with TOC, Tmax, kaolinite, and the amount of desorbed gas, while they are negatively correlated with quartz. In contrast, mesopores exhibit positive correlations with TOC and illite. (5) Desorbed gas content exhibits a positive correlation with porosity, Ro, and illite. These insights enhance the comprehension of the reservoir’s properties, the characteristics of gas presence, and the determinant factors for the Carboniferous–Permian shale located in the Qinshui Basin, providing a robust practical procedure for the exploration and extraction of coal-measure shale gas resources within this area. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

27 pages, 8263 KiB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of No. 5 Coal in Shanxi Formation, Central–Eastern Ordos Basin (China)
by Bo Pan, Kangle Wang, Guodong Dong, Xingze Zhou, Yuhang Chen, Yipeng Zhuang, Xing Gao and Xiaowei Du
Minerals 2025, 15(2), 177; https://doi.org/10.3390/min15020177 - 14 Feb 2025
Viewed by 595
Abstract
Coal is a carrier of geological information, preserving paleoenvironmental and paleoclimatic data from geological history. The Ordos Basin hosts abundant coal resources with significant potential for exploration and development. The geochemical properties of coal and their associated geological information offer key insights into [...] Read more.
Coal is a carrier of geological information, preserving paleoenvironmental and paleoclimatic data from geological history. The Ordos Basin hosts abundant coal resources with significant potential for exploration and development. The geochemical properties of coal and their associated geological information offer key insights into coal formation, coal–rock gas generation, and the identification of favorable development areas. This study focuses on the No. 5 coal of the Shanxi Formation in the central and eastern Ordos Basin. Building on previous research and advancements, this study reveals the geochemical attributes and sedimentary background of coal through core observations, drilling data, macerals, and element analyses. The results indicate that the No. 5 coal primarily consists of bright and semi-bright coal, characterized by medium ash yield and high fixed carbon. The macerals of the coal are predominantly vitrinite (64.08% on average), followed by inertinite (24.92% on average) and liptinite (2.8% on average). The source material for the No. 5 coal in the Shanxi Formation is primarily derived from felsic igneous rocks. The varying distribution patterns of rare earth elements suggest differences in the sources of coal materials. From the Late Carboniferous to the Early Permian, the North China Craton was located in tropical paleolatitudes in the Northern Hemisphere. The warm and humid paleoclimate facilitated the deposition of coal. Fluctuations in local lake levels and sedimentary system evolution resulted in an oxidized and oxygen-deficient water. The No. 5 coal is characterized by a relatively small TPI value and a relatively large GI value, indicating a coal-forming environment with deep water coverage, poor water circulation, or relative stagnation. This resulted in slow peat accumulation, allowing plant remains to fully gelatinize. The findings enhance the understanding of the geochemical characteristics of the No. 5 coal and the factors controlling its development within the Shanxi Formation of the central and eastern Ordos Basin. These results provide a theoretical basis for coal exploration and development. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

29 pages, 15871 KiB  
Article
How Stiff Was Armorica During the Variscan Orogeny? A Reappraisal of the “Bretonian” Phase in Central Brittany
by Michel Faure, Eric Marcoux, Marc Poujol and Clément Masson
Geosciences 2025, 15(2), 60; https://doi.org/10.3390/geosciences15020060 - 10 Feb 2025
Viewed by 851
Abstract
In collision belts, the upper plate is generally less deformed than the lower one that underwent syn-metamorphic ductile shearing, and frequently late-collisional crustal melting. Concerning the Variscan orogeny, it is widely accepted that the Armorica microcontinent represented the upper plate of the collision [...] Read more.
In collision belts, the upper plate is generally less deformed than the lower one that underwent syn-metamorphic ductile shearing, and frequently late-collisional crustal melting. Concerning the Variscan orogeny, it is widely accepted that the Armorica microcontinent represented the upper plate of the collision system. In France, the Central-North-Armorican Domain belonged to this upper plate whose southern margin in the Pontivy–Coray area exposes metamorphic rocks. There, structural and metamorphic studies indicate that an early tectono-metamorphic event (M0-M1) with biotite–garnet–staurolite–kyanite assemblage, crystallized at 0.9 GPa and 500 °C, is characterized by a top-to-the NW shearing. This event was followed by an HT event (M2) at ca 800–900 °C, coeval with a domal structure. In micaschists, monazite yields an LA-ICP-MS age at 351 Ma ascribed to M2. M0-M1-M2 events developed before the Late Carboniferous pluton emplacement at ca 315 Ma (M3 event). The tectono-metamorphic succession documents that Armorica was not a rigid block but underwent a synmetamortphic ductile deformation during the Famennian–Tournaisian (360–355 Ma) collision redefined here as the late episode of the “Bretonian orogenic phase”, whereas the pre-Famennian Bretonnian episode is ascribed to oceanic subduction. These new data allow us to reassess the geodynamic evolution of this part of the Variscan orogen. Full article
Show Figures

Figure 1

24 pages, 12711 KiB  
Article
The Largest Mesosaurs Ever Known: Evidence from Scanty Records
by Graciela Piñeiro, Pablo Núñez Demarco and Michel Laurin
Foss. Stud. 2025, 3(1), 1; https://doi.org/10.3390/fossils3010001 - 25 Dec 2024
Viewed by 3295
Abstract
Mesosaurs have long been considered to be small to mid-sized aquatic to semiaquatic amniotes that lived in Gondwana during the Early Permian or Late Carboniferous, according to recent research that showed their ghost range extending back to the Pennsylvanian. Previous morphometric analyses based [...] Read more.
Mesosaurs have long been considered to be small to mid-sized aquatic to semiaquatic amniotes that lived in Gondwana during the Early Permian or Late Carboniferous, according to recent research that showed their ghost range extending back to the Pennsylvanian. Previous morphometric analyses based on several hundred mesosaur specimens, including materials from Uruguay, Brazil, South Africa, Namibia, and the Paris National History Museum, provided a comprehensive understanding of mesosaur ontogeny, documented from fetus to adults. As a result, it was possible to determine the approximate size of any individual, measuring just one isolated limb bone, vertebrae, or even cranial elements. Herein, we describe large, poorly preserved and incomplete skulls, as well as axial and appendicular bones, from the Mangrullo Formation Konservat-Lagerstätte of Uruguay that suggest the existence of gigantism in mature mesosaurs reaching more than twice the size of previously described adults and type specimens. The sporadic occurrence of these giant individuals contrasts sharply with the abundant remains of young mesosaurs and, in general, with what is commonly found in the fossil record of vertebrates. The poor preservation of the mature individuals and their presence in coastal areas of the basin is consistent with the hypothesis that older mesosaurs have spent more time near the coast. An alternative hypothesis suggesting pelagic lifestyles is less supported by the available data. Given the preservation of unborn and hatchlings, as well as early juvenile, mature and very mature individuals, the mesosaur record is considered exceptional among early amniotes. Full article
Show Figures

Graphical abstract

18 pages, 4461 KiB  
Article
Thermochronological Constraints on the Tectonic History of the Arabian–Nubian Shield’s Northern Tip, Sinai, Egypt
by Sherif Mansour, Khaled M. Abdelfadil, Noriko Hasebe, Akihiro Tamura, Kamal Abdelrahman, Mohamed A. Gharib, Mohammed S. Fnais and Amer A. Shehata
Minerals 2024, 14(12), 1246; https://doi.org/10.3390/min14121246 - 6 Dec 2024
Viewed by 1154
Abstract
The effects of different regional tectonic events on the Neoproterozoic basement rocks of the Arabian–Nubian Shield in Sinai, as well as the Egyptian unstable and stable shelves, remain uncertain. Coupling fission-track thermochronometry findings with the modeling of the time–temperature history has proved to [...] Read more.
The effects of different regional tectonic events on the Neoproterozoic basement rocks of the Arabian–Nubian Shield in Sinai, as well as the Egyptian unstable and stable shelves, remain uncertain. Coupling fission-track thermochronometry findings with the modeling of the time–temperature history has proved to be an effective method for tackling these issues. The obtained zircon fission-track ages were differentiated into two groups from the Ediacaran–Cambrian and the Ordovician–Carboniferous periods, while the apatite fission-track data revealed two separate groups of cooling ages of the Carboniferous–Triassic and Late Cretaceous ages. The integration of these cooling ages and modeling of the time–temperature history revealed four discrete cooling pulses during the Neoproterozoic, Devonian–Carboniferous, Cretaceous, and Oligocene–Miocene eras. After integrating our findings with the regional tectonic historical and sedimentological records, these could be identified as cooling/exhumation pulses activated in response to the post-accretional event of erosion, Variscan tectonism, the disintegration of Gondwana, and the Gulf of Suez rifting, respectively. Furthermore, the southern border of the Egyptian unstable shelf was found to extend southward to South Sinai and south of the Bahariya depression. Full article
Show Figures

Figure 1

20 pages, 4913 KiB  
Article
Provenance and Paleo-Environment of the Late Carboniferous Bauxite Formations in Southern Shanxi
by Dongna Liu, Wenjie Jia, Fenghua Zhao, Rongrong Li, Shangqing Zhang, Jun Zhao and Ning Li
Appl. Sci. 2024, 14(22), 10358; https://doi.org/10.3390/app142210358 - 11 Nov 2024
Viewed by 1036
Abstract
The Carboniferous Benxi Formation in southern Shanxi of North China has significant bauxite resource potential; however, the source of its metallogenic material and its sedimentary environment remain unclear. The microscopy, X-ray diffraction, X-ray fluorescence spectroscopy, and inductively coupled plasma mass spectrometry methods were [...] Read more.
The Carboniferous Benxi Formation in southern Shanxi of North China has significant bauxite resource potential; however, the source of its metallogenic material and its sedimentary environment remain unclear. The microscopy, X-ray diffraction, X-ray fluorescence spectroscopy, and inductively coupled plasma mass spectrometry methods were applied in this study to examine the mineralogical, petrographic, and geochemical characteristics. Geochemical proxies of La/Y, Sr/Ba, Al2O3/TiO2, Zr/Sc, Th/Sc, La/Sc, and Th/Co were analyzed to investigate the paleo-depositional environment and provenance of the aluminum-bearing strata. The findings indicate that diaspores are the primary ore minerals in bauxite, while kaolinite and rutile are the predominant gangue minerals. Both the bauxite and claystone/aluminous rocks exhibit high enrichment in Li, Bi, and U, with relative enrichment in In, Sb, Th, Nb, and Ta. Li is notably concentrated in the claystone/aluminous rocks, reaching up to 1994.00 μg/g, primarily occurring in cookeite and boehmite, while U is highly concentrated in the bauxite. The aluminum-bearing strata were primarily formed under alkaline-reducing conditions, with changes in acidity and alkalinity of the environment during the sedimentary diagenetic process. Marine transgressions significantly impacted the sedimentary environment of the aluminum-bearing strata, and the paleoclimate was characterized as hot and humid. The principal factors contributing to enrichment of aluminum in the sedimentary basin were the in situ weathering of aluminum-rich source rocks and the transport of clastic materials from high-aluminum source rocks. The source rocks were closely associated with intermediate-acidic magmatic rocks and potentially related to the weathering of Ordovician carbonates. Full article
Show Figures

Figure 1

28 pages, 35997 KiB  
Article
Evaluation of Granite Fertility Utilizing Porphyry Indicator Minerals (Zircon, Apatite, and Titanite) and Geochemical Data: A Case Study from an Emerging Metallogenic Province in the Taimyr Peninsula, Siberian High Arctic
by Stepan V. Berzin, Dmitry L. Konopelko, Sergei V. Petrov, Vasiliy F. Proskurnin, Evgeny I. Berzon, Mikhail Yu. Kurapov, Tamara A. Golovina, Natalya Ya. Chernenko, Vasiliy S. Chervyakovskiy, Roman S. Palamarchuk and Elena M. Andreeva
Minerals 2024, 14(11), 1065; https://doi.org/10.3390/min14111065 - 23 Oct 2024
Viewed by 1520
Abstract
The Taimyr Peninsula in the Russian High Arctic comprises a late Paleozoic-early Mesozoic collisional belt where several porphyry-type mineralization occurrences were identified during the last decade, making this area a potential exploration target for Cu-Mo deposits. In order to further evaluate the metallogenic [...] Read more.
The Taimyr Peninsula in the Russian High Arctic comprises a late Paleozoic-early Mesozoic collisional belt where several porphyry-type mineralization occurrences were identified during the last decade, making this area a potential exploration target for Cu-Mo deposits. In order to further evaluate the metallogenic potential of the poorly outcropped northeastern part of Taimyr, samples from seven granitoid intrusions were investigated in this study aimed to evaluate the granite fertility based on petrography, geochemistry, and composition of porphyry indicator minerals (zircon, apatite, and titanite). The studied intrusions represent small to moderate-sized bodies (40–800 km2) composed of biotite (±amphibole) quartz monzonites, granodiorites, granites, and biotite leucogranites that formed in the course of late Paleozoic-early Mesozoic tectono-magmatic events at the Siberian margins. The late Carboniferous Tessemsky massif represents suprasubduction granitoid series, while the Pekinskiy, Shirokinskiy, Dorozhinskiy, Kristifensenskiy, and Yuzhno-Lodochnikovskiy massifs are correlated with the early Triassic Siberian Traps LIP. The rocks of intrusions comprise a relatively uniform geochemically, predominantly magnesian, slightly peraluminous, calc-alkaline high-K amphibole-bearing I-type granitoid series with adakitic affinity, where Triassic plume-related granitoids inherit geochemical signatures of Carboniferous supra-subduction granitoids, and all rock types are marked by enrichment in LILE and negative Ta, Nb, and Ti anomalies. It is suggested that the adakitic geochemical characteristics of the Taimyr granites are a result of derivation from a relatively homogeneous mafic lower crustal source that formed at the stage of Carboniferous continental subduction and continued to produce granitic melts in the course of the early Mesozoic magmatic evolution. Whole rock geochemistry and composition of porphyry mineral indicators (zircon, apatite, and titanite) indicate that the Taimyr granites crystallized from oxidized water-saturated magmas at moderate temperatures, with the majority of samples showing characteristics typical for porphyry-fertile granites worldwide (fO2 = ΔFMQ +1 to +3 with zircon Eu/Eu* > 0.4 and apatite SO3 > 0.2 wt.%). Data from Dorozhinskiy, Kristifensenskiy, Pekinskiy, and Tessemskiy intrusions fully match geochemical criteria for porphyry-fertile granitoids, and these massifs are considered the most prospective for Cu-Mo mineralization. Granites from Shirokinskiy and Yuzhno-Lodochnikovskiy intrusions only partially match compositional constraints for fertile melts and can be considered as second-tier exploration targets. Finally, available data for the Simsovsky massif preclude its classification as a porphyry-fertile body. These conclusions are in line with previously developed exploration criteria for the northeastern Taimyr, showing that geochemical indicators of granite-fertility can be used on a regional scale in parallel with other exploration methods. Full article
Show Figures

Figure 1

31 pages, 83141 KiB  
Article
The Relationships between the Internal Nappe Zone and the Regional Mylonitic Complex in the NE Variscan Sardinia (Italy): Insight from a New Possible Regional Interpretation?
by Franco Marco Elter and Federico Mantovani
Geosciences 2024, 14(10), 260; https://doi.org/10.3390/geosciences14100260 - 28 Sep 2024
Viewed by 1324
Abstract
This study presents an updated interpretation of geological data collected between 1984 and 2022. The area under consideration holds significant regional importance as it is located between the Internal Nappe Zone (INZ) and the Regional Mylonitic Complex (RMC). Re-evaluation of the geological data [...] Read more.
This study presents an updated interpretation of geological data collected between 1984 and 2022. The area under consideration holds significant regional importance as it is located between the Internal Nappe Zone (INZ) and the Regional Mylonitic Complex (RMC). Re-evaluation of the geological data has highlighted a more intricate structural framework than what is currently documented in the existing literature. This paper aims to illustrate, through structural analysis, that the Posada Valley Shear Zone (PVSZ) does not serve as the transitional boundary between the Inner Nappe Zone and the Regional Mylonitic Complex or High-Grade Metamorphic Complex (HGMC) as traditionally thought. Instead, the authors’ findings indicate that the transition boundary is confined to a shear band with a variable thickness ranging from 10 to 70 m at its widest points. The development of the Posada Valley Shear Zone is characterized by a series of transitions from mylonite I S-C to mylonite II S-C, extending over approximately 5 km. The formation of the Posada Valley Shear Zone is chronologically confined between the development of the East Variscan Shear Zone (EVSZ) and the emplacement of the Late Variscan granites. The differing orientations of Sm and S3 observed in the mylonitic events of the Posada Valley Shear Zone and the Regional Mylonitic Complex, respectively, are likely attributable to an anticlockwise rotation of the shortening directions during the upper Carboniferous period. Furthermore, this study proposes that the Condensed Isogrades Zone (CIZ), despite its unclear formation mechanism, should be recognized as the true transition zone between the Inner Nappe Zone and the Regional Mylonitic Complex or High-Grade Metamorphic Complex. This new interpretation challenges the previously accepted notion of increasing Variscan metamorphic zonation toward the northeast. This conclusion is supported by the identification of the same NE–SW orientation of the D2 tectonic event in both the Old Gneiss Complex (OGC in the Regional Mylonitic Complex) and the lithologies of the Inner Nappe Zone and the Condensed Isogrades Zone. The comprehensive analysis and new insights provided in this paper contribute to a refined understanding of the geological relationships and processes within this region, offering significant implications for future geological studies and interpretations. Full article
(This article belongs to the Special Issue Metamorphism and Tectonic Evolution of Metamorphic Belts)
Show Figures

Figure 1

Back to TopTop