Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Laves eutectic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 22487 KB  
Article
As-Casting Structure and Homogenization Behavior of Ta-Containing GH4151 Ni-Based Superalloy
by Tianliang Cui, Xingfei Xie, Wugang Yu, Jinglong Qu, Shaomin Lyu and Jinhui Du
Materials 2025, 18(8), 1742; https://doi.org/10.3390/ma18081742 - 10 Apr 2025
Viewed by 549
Abstract
In this paper, the as-cast microstructure, microsegregation, the kinetics of secondary precipitation phase, and thermal deformation behavior in Ta-containing GH4151 alloy (Ta-GH4151) were studied using optical microscope (OM), scanning electron microscope (SEM), electron probe (EPMA), differential scanning calorimetry (DSC), mechanical testing and simulation [...] Read more.
In this paper, the as-cast microstructure, microsegregation, the kinetics of secondary precipitation phase, and thermal deformation behavior in Ta-containing GH4151 alloy (Ta-GH4151) were studied using optical microscope (OM), scanning electron microscope (SEM), electron probe (EPMA), differential scanning calorimetry (DSC), mechanical testing and simulation (MTS) and electron backscattering diffraction (EBSD). The results indicate that Ti, Ta, Nb and Mo are mainly distributed in the interdendritic region and exhibit negative segregation characteristics, while Cr and W are mainly distributed in the dendritic arm region and exhibit positive segregation characteristics. The initial dissolution temperatures for Laves phase, eutectic (γ + γ′) and η phase are 1140–1150 °C, 1150–1160 °C and 1170–1180 °C, respectively. The diffusion activation energies of Nb, Ta and W are 313 kJ/mol, 323 kJ/mol and 345 kJ/mol, respectively. The hot deformation activation energy of Ta-GH4151 alloy after homogenization is 1694.173 kJ/mol. Based on the constitutive equation and hot processing map, the optimum hot deformation temperature and strain rate range are determined to be 1160–1170 °C/0.3–1 s−1. The addition of Ta not only increases the redissolution temperature of the Laves phase, eutectic (γ + γ′) and η phase but also increases the segregation of Nb, Ta and W, diffusion activation energy and homogenization. The results are expected to provide a more comprehensive understanding of the modification and accelerated application of GH4151 alloy. Full article
Show Figures

Figure 1

14 pages, 8832 KB  
Article
Evaluation of the Microstructure and Properties of As-Cast Magnesium Alloys with 9% Al and 9% Zn Additions
by Lechosław Tuz, Vít Novák and František Tatíček
Materials 2025, 18(1), 10; https://doi.org/10.3390/ma18010010 - 24 Dec 2024
Cited by 3 | Viewed by 1416
Abstract
The need to reduce energy consumption means that it is necessary to reduce the weight of vehicles. However, a thick wall of massive elements promotes the formation of casting defects, which must be removed by either plastic processing (straightening) or welding methods (surface [...] Read more.
The need to reduce energy consumption means that it is necessary to reduce the weight of vehicles. However, a thick wall of massive elements promotes the formation of casting defects, which must be removed by either plastic processing (straightening) or welding methods (surface and internal discontinuities). Basic alloys contain Al and Zn as the main alloying elements. The studies involved an evaluation of the microstructure and properties of alloys at ambient and elevated temperatures. The microstructure observation revealed a dendritic structure with the presence of low-melting eutectic, and intermetallic and Laves phases in the interdendritic areas. The presence of these phases may pose significant limitations during welding work. Thermal conductivity coefficient measurements showed that it is constant at temperatures up to 200 °C and is 49 W/mK for 9% Al and 77 W/mK for 9% Zn. The tensile test reveal that the most favorable tensile strength (120 MPa) occurs at temperatures of 150 °C for the 9% Zn alloy and at 180 °C for the 9% Al alloy. Full article
Show Figures

Figure 1

18 pages, 22142 KB  
Article
Hot Deformation Characteristics and Microstructure Evolution of CoCrFeNiZr0.3 Hypoeutectic High-Entropy Alloy
by Peng Lyu, Haoming Yuan, Hao Wang, Feiyu Ge, Qingfeng Guan, Haixia Liu and Xinlin Liu
Metals 2024, 14(6), 632; https://doi.org/10.3390/met14060632 - 26 May 2024
Cited by 5 | Viewed by 1830
Abstract
CoCrFeNiZr0.3 is a two-phase coexisting (Laves + FCC) high-entropy alloy with high strength, excellent corrosion resistance, and thermal stability. However, the inhomogeneous distribution of the eutectic structure among the dendrites has a detrimental effect on the coordinated deformation of the material. The [...] Read more.
CoCrFeNiZr0.3 is a two-phase coexisting (Laves + FCC) high-entropy alloy with high strength, excellent corrosion resistance, and thermal stability. However, the inhomogeneous distribution of the eutectic structure among the dendrites has a detrimental effect on the coordinated deformation of the material. The current study shows that the grain size, weave structure, and second phase distribution of high-entropy alloys can be significantly changed by thermal deformation, which affects the mechanical and physical properties, as well as the chemical stability of the alloys. In this study, the thermal deformation behavior of CoCrFeNiZr0.3 biphasic hypoeutectic high-entropy alloy was investigated using a Gleeble-3500 thermal simulation tester under the conditions of deformation temperature of 950–1100 °C and deformation rate of 0.001–1 s−1. The results show that CoCrFeNiZr0.3 high-entropy alloy has higher deformation activation energy, which means its deformation resistance is larger. In addition, the microstructure with finer grain size and uniform distribution of Laves phase can be obtained by EBSD analysis after compression at 1000 °C and 0.01 s−1. Full article
Show Figures

Figure 1

19 pages, 25574 KB  
Article
Different Heat-Exposure Temperatures on the Microstructure and Properties of Dissimilar GH4169/IC10 Superalloy Vacuum Electron Beam Welded Joint
by Hualin Cai, Zhixuan Ma, Jiayi Zhang, Liang Qi, Jinbing Hu and Jiayi Zhou
Metals 2024, 14(3), 348; https://doi.org/10.3390/met14030348 - 18 Mar 2024
Viewed by 1721
Abstract
Vacuum electron-beam welding (EBW) was used to join the precipitation-strengthened GH4169 superalloy and a new nickel-based superalloy IC10 to fabricate the turbine blade discs. In this study, a solid solution (1050 °C/2 h for GH4169 and 1150 °C/2 h for IC10) and different [...] Read more.
Vacuum electron-beam welding (EBW) was used to join the precipitation-strengthened GH4169 superalloy and a new nickel-based superalloy IC10 to fabricate the turbine blade discs. In this study, a solid solution (1050 °C/2 h for GH4169 and 1150 °C/2 h for IC10) and different heat-exposure temperatures (650 °C, 750 °C, 950 °C and 1050 °C/200 h, respectively) were used to study the high-temperature tensile properties and microstructure evolution of welded joints; meanwhile, the formation and evolution of the second phases of the joints were analyzed. After EBW, the welded joint exhibited a typical nail morphology, and the fusion zone (FZ) consisted of columnar and cellular structures. During the solidification process of the molten pool, Mo elements are enriched in the dendrites and inter-dendrites, and that of Nb and Ti elements was enriched in the dendrites, which lead to forming a non-uniform distribution of Laves eutectic and MC carbides in the FZ. The microhardness of the FZ gradually increased during thermal exposure at 650 °C and reached 300–320 HV, and the γ′ and γ″ phases were gradually precipitated with size of about 50 nm. Meanwhile, the microhardness of the FZ decreased to 260–280 HV at 750 °C, and the higher temperature resulted in the coarsening of the γ″ phase (with a final size of about 100 nm) and the formation of the acicular δ-phase. At 950 °C and 1050 °C, the microhardness of FZ decreased sharply, reaching up to 170~190 HV and 160~180 HV, respectively. Moreover, the Laves eutectic and MC carbides are dissolved to a greater extent without the formation of γ″ and δ phases; as a result, the absent of γ″ and δ phases are attributed to the significant improvement of segregation at higher temperatures. Full article
Show Figures

Figure 1

37 pages, 19071 KB  
Article
On the Microstructure and Properties of Complex Concentrated bcc Solid Solution and Tetragonal D8m M5Si3 Silicide Phases in a Refractory Complex Concentrated Alloy
by Nik Tankov, Claire Utton and Panos Tsakiropoulos
Alloys 2024, 3(1), 59-95; https://doi.org/10.3390/alloys3010005 - 7 Mar 2024
Cited by 1 | Viewed by 3394
Abstract
In this work, the refractory complex concentrated alloy (RCCA) 3.5Al–4Cr–6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was studied in the as cast and heat treated conditions (100 h or 200 h at 1500 °C). There was strong macrosegregation of Si in the 0.6 kg button/ingot of the cast [...] Read more.
In this work, the refractory complex concentrated alloy (RCCA) 3.5Al–4Cr–6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was studied in the as cast and heat treated conditions (100 h or 200 h at 1500 °C). There was strong macrosegregation of Si in the 0.6 kg button/ingot of the cast alloy, in which A2 solid solution, D8m βNb5Si3, C14-NbCr2 Laves phase and Tiss and a ternary eutectic of the A2, D8m and C14 phases were formed. The partitioning of Ti in the as cast and heat treated microstructure and its relationships with other solutes was shown to be important for the properties of the A2 solid solution and the D8m βNb5Si3, which were the stable phases at 1500 °C. The near surface microstructure of the alloy was contaminated with oxygen after heat treatment under flowing Ar. For the aforementioned phases, it was shown, for the first time, that there are relationships between solutes, between solutes and the parameters VEC, Δχ and δ, between the said parameters, and between parameters and phase properties. For the contaminated with oxygen solid solution and silicide, trends in relationships between solutes, between solutes and oxygen content and between the aforementioned parameters and oxygen content also were shown for the first time. The nano-hardness and Young’s modulus of the A2 solid solution and the D8m βNb5Si3 of the as cast and heat-treated alloy were measured using nanoindentation. Changes of nano-hardness and Young’s modulus of the A2 solid solution and D8m βNb5Si3 per solute addition for this multiphase RCCA were discussed. The nano-hardness and Young’s modulus of the solid solution and the βNb5Si3, respectively, were 9.5 ± 0.2 GPa and 177.4 ± 5.5 GPa, and 17.55 ± 0.5 GPa and 250.27 ± 6.3 GPa after 200 h at 1500 °C. The aforementioned relationships and properties of the two phases demonstrated the importance of synergy and entanglement of solutes, parameters and phases in the microstructure and properties of the RCCA. Implications of synergy and entanglement for the design of metallic ultra-high temperature materials were emphasised. Full article
(This article belongs to the Collection Feature Paper Collection of Advanced Research on Alloys)
Show Figures

Figure 1

13 pages, 7083 KB  
Article
High-Temperature Thermal Stability of Hot Isostatic Pressed Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) Eutectic High-Entropy Alloy
by Dongyue Li, Chengshuang Wu, Lu Xie, Yong Zhang and Wenrui Wang
Metals 2024, 14(2), 204; https://doi.org/10.3390/met14020204 - 7 Feb 2024
Cited by 5 | Viewed by 1993
Abstract
An eutectic high-entropy alloy (EHEA) consisting mainly of a face-centered cubic (FCC) phase and a C14 Laves phase with the compositions of Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) was successfully prepared by hot isostatic pressing. The [...] Read more.
An eutectic high-entropy alloy (EHEA) consisting mainly of a face-centered cubic (FCC) phase and a C14 Laves phase with the compositions of Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) was successfully prepared by hot isostatic pressing. The present EHEA exhibits a skeleton-type Laves phase structure, deviating from typical EHEA structures. After a series of annealing treatments at 1000 °C for different durations (ranging from 0 to 150 h), the Co3Ta phase precipitated after annealing. The mechanical properties measured at 850 °C showed a tensile strength of 441 MPa and an elongation of 3.3%. The results of the high-temperature tests showed that the mechanical properties of this alloy did not change significantly before and after annealing, and its microstructure showed a high degree of stability, which suggests that the material has some potential for use in high-temperature environments. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

15 pages, 8105 KB  
Article
Study on Mechanical Properties of AlFeCrMoNi1.8Nb1.5 Eutectic High-Entropy Alloy Coating Prepared by Wide-Band Laser Cladding
by Feng Li, Shisong Zheng and Fang Zhou
Coatings 2023, 13(6), 1077; https://doi.org/10.3390/coatings13061077 - 11 Jun 2023
Cited by 4 | Viewed by 1553
Abstract
In this study, AlFeCrMoNi1.8Nb1.5 (at.%) eutectic high-entropy alloy (EHEA) coating was successfully prepared on the surface of M2 high-speed steel (HSS) by wide-laser cladding. The effects of laser defocusing amount, laser power, scanning speed, and preset powder thickness on the [...] Read more.
In this study, AlFeCrMoNi1.8Nb1.5 (at.%) eutectic high-entropy alloy (EHEA) coating was successfully prepared on the surface of M2 high-speed steel (HSS) by wide-laser cladding. The effects of laser defocusing amount, laser power, scanning speed, and preset powder thickness on the formation quality of the EHEA coating were studied by the orthogonal experimental design, then the mechanical properties of the coating prepared by water-cooled solidification under optimal process parameters were studied. The experimental results showed that the optimal laser cladding process parameters are defocusing with an amount of −30 mm, laser power of 4 kW, scanning speed of 3 mm/s, and preset powder thickness of 1.5 mm. The substrate exhibited a favorable metallurgical bond with the coating, characterized by a stable interface devoid of any holes or cracks. Furthermore, the coating, which was prepared using water cooling, displayed a finer lamellar eutectic structure comprising FCC and Laves phases. The microhardness of the coating (544 HV0.2) was significantly higher than that of the substrate M2 HSS (~220 HV0.2), accompanied by good wear resistance. Full article
(This article belongs to the Special Issue Recent Advances in Functional Surfaces and Interfaces)
Show Figures

Figure 1

43 pages, 94001 KB  
Article
The Effect of Fe Addition in the RM(Nb)IC Alloy Nb–30Ti–10Si–2Al–5Cr–3Fe–5Sn–2Hf (at.%) on Its Microstructure, Complex Concentrated and High Entropy Phases, Pest Oxidation, Strength and Contamination with Oxygen, and a Comparison with Other RM(Nb)ICs, Refractory Complex Concentrated Alloys (RCCAs) and Refractory High Entropy Alloys (RHEAs)
by Nikos Vellios and Panos Tsakiropoulos
Materials 2022, 15(17), 5815; https://doi.org/10.3390/ma15175815 - 23 Aug 2022
Cited by 4 | Viewed by 2054
Abstract
In this work, the RM(Nb)IC alloy Nb–30Ti–10Si–5Cr–5Sn–3Fe–2Al–2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb–24Ti–18Si–5Cr–5Fe–5Sn [...] Read more.
In this work, the RM(Nb)IC alloy Nb–30Ti–10Si–5Cr–5Sn–3Fe–2Al–2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb–24Ti–18Si–5Cr–5Fe–5Sn (NV5)—and with RCCAs and RHEAs. The addition of Fe (a) stabilised Nbss; A15–Nb3X (X = Al, Si and Sn) and Nb3Si; metastable Nb3Si-m’ and Nb5Si3 silicides; (b) supported the formation of eutectic Nbss + Nb5Si3; (c) suppressed pest oxidation at all three temperatures and (d) stabilised a Cr- and Fe-rich phase instead of a C14–Nb(Cr,Fe)2 Laves phase. Complex concentrated (or compositionally complex) and/or high entropy phases co-existed with “conventional” phases in all conditions and after oxidation at 800 °C. In NV2, the macrosegregation of Si decreased but liquation occurred at T >1200 °C. A solid solution free of Si and rich in Cr and Ti was stable after the heat treatments. The relationships between solutes in the various phases, between solutes and alloy parameters and between alloy hardness or specific strength and the alloy parameters were established (parameters δ, Δχ and VEC). The oxidation of NV2 at 700 °C was better than the other Sn-containing RM(Nb)ICs with/without Fe addition, even better than RM(Nb)IC alloys with lower vol.% Nbss. At 800 °C, the mass change of NV2 was slightly higher than that of NV5, and at 900 °C, both alloys showed scale spallation. At 800 °C, both alloys formed a more or less continuous layer of A15–Nb3X below the oxide scale, but in NV5, this compound was Sn-rich and severely oxidised. At 800 °C, in the diffusion zone (DZ) and the bulk of NV2, Nbss was more severely contaminated with oxygen than Nb5Si3, and the contamination of A15–Nb3X was in-between these phases. The contamination of all three phases was more severe in the DZ. The contamination of all three phases in the bulk of NV5 was more severe compared with NV2. The specific strength of NV2 was comparable with that of RCCAs and RHEAs, and its oxidation at all three temperatures was significantly better than RHEAs and RCCAs. Full article
(This article belongs to the Special Issue Compositional Complex Alloys: From Amorphous to High-Entropy)
Show Figures

Figure 1

66 pages, 91614 KB  
Article
A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide-Based Alloys-RM(Nb)ICs with Ti Addition and Comparison with Refractory Complex Concentrated Alloys (RCCAs)
by Eleftherios Zacharis, Claire Utton and Panos Tsakiropoulos
Materials 2022, 15(13), 4596; https://doi.org/10.3390/ma15134596 - 30 Jun 2022
Cited by 7 | Viewed by 2527
Abstract
In this paper, we present a systematic study of the as-cast and heat-treated microstructures of three refractory metal intermetallic composites based on Nb (i.e., RM(Nb)ICs), namely the alloys EZ2, EZ5, and EZ6, and one RM(Nb)IC/RCCA (refractory complex concentrated alloy), namely the alloy EZ8. [...] Read more.
In this paper, we present a systematic study of the as-cast and heat-treated microstructures of three refractory metal intermetallic composites based on Nb (i.e., RM(Nb)ICs), namely the alloys EZ2, EZ5, and EZ6, and one RM(Nb)IC/RCCA (refractory complex concentrated alloy), namely the alloy EZ8. We also examine the hardness and phases of these alloys. The nominal compositions (at.%) of the alloys were Nb-24Ti-18Si-5Hf-5Sn (EZ2), Nb-24Ti-18Si-5Al-5Hf-5Sn (EZ5), Nb-24Ti-18Si-5Cr-5Hf-5Sn (EZ6), and Nb-24Ti-18Si-5Al-5Cr-5Hf-5Sn (EZ8). All four alloys had density less than 7.3 g/cm3. The Nbss was stable in EZ2 and EZ6 and the C14-NbCr2 Laves phase in EZ6 and EZ8. In all four alloys, the A15-Nb3X (X = Al,Si,Sn) and the tetragonal and hexagonal Nb5Si3 were stable. Eutectics of Nbss + Nb5Si3 and Nbss + C14-NbCr2 formed in the cast alloys without and with Cr addition, respectively. In all four alloys, Nb3Si was not formed. In the heat-treated alloys EZ5 and EZ8, A15-Nb3X precipitated in the Nb5Si3 grains. The chemical compositions of Nbss + C14-NbCr2 eutectics and some Nb5Si3 silicides and lamellar microstructures corresponded to high-entropy or complex concentrated phases (compositionally complex phases). Microstructures and properties were considered from the perspective of the alloy design methodology NICE. The vol.% Nbss increased with increasing ΔχNbss. The hardness of the alloys respectively increased and decreased with increasing vol.% of A15-Nb3X and Nbss. The hardness of the A15-Nb3X increased with its parameter Δχ, and the hardness of the Nbss increased with its parameters δ and Δχ. The room-temperature-specific strength of the alloys was in the range 271.7 to 416.5 MPa cm3g−1. The effect of the synergy of Hf and Sn, or Hf and B, or Hf and Ge on the macrosegregation of solutes, microstructures, and properties of RM(Nb)ICs/RCCAs from this study and others is compared. Phase transformations involving compositionally complex phases are discussed. Full article
(This article belongs to the Special Issue Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

15 pages, 18587 KB  
Article
Eutectic Reaction and Microstructure Stability in CoCrFeNiNbx High-Entropy Alloys
by Xu Cao, Changjun Wu, Ya Liu, Haoping Peng and Xuping Su
Metals 2022, 12(5), 756; https://doi.org/10.3390/met12050756 - 28 Apr 2022
Cited by 11 | Viewed by 3517
Abstract
Seven arc-melted and then annealed CoCrFeNiNbx (x = 0.3–0.6) alloys are experimentally and thermodynamically investigated in the present work. All the as-cast and 1000 °C annealed CoCrFeNiNbx alloys are composed of face-centered cubic (FCC) and C14 Laves phases. Nb content in [...] Read more.
Seven arc-melted and then annealed CoCrFeNiNbx (x = 0.3–0.6) alloys are experimentally and thermodynamically investigated in the present work. All the as-cast and 1000 °C annealed CoCrFeNiNbx alloys are composed of face-centered cubic (FCC) and C14 Laves phases. Nb content in the C14 phase stays at around 24.5 at.%, and the Liquid → FCC + C14 eutectic reaction occurred at around 10.8 at.% Nb in a narrow temperature range. It is found that the microstructure in the CoCrFeNiNbx alloys is dramatically affected by the cooling rate and annealing treatment. The C14 phase easily spheroidizes and coarsens under high temperature, which indicates that the interface energy between FCC and C14 is very large. Moreover, the solubility of Nb in the FCC phase decreases with decreasing temperature. After annealing at 800 °C, a needle-like nano Mg3Cd-type τ phase precipitates from the pro-eutectic FCC phase and increases alloy hardness for ~100 HV. This should be a method to strengthen alloys. Full article
(This article belongs to the Special Issue Plastic Forming, Microstructure, and Property Optimization of Metals)
Show Figures

Figure 1

26 pages, 4648 KB  
Article
Refractory Metal Intermetallic Composites, High-Entropy Alloys, and Complex Concentrated Alloys: A Route to Selecting Substrate Alloys and Bond Coat Alloys for Environmental Coatings
by Panos Tsakiropoulos
Materials 2022, 15(8), 2832; https://doi.org/10.3390/ma15082832 - 12 Apr 2022
Cited by 8 | Viewed by 2590
Abstract
This paper considers metallic ultrahigh-temperature materials (UHTMs) and the alloying behaviour and properties of alloys and their phases by using maps of the parameters δ (based on atomic size), Δχ (based on electronegativity), and valence electron concentration (VEC), and discusses what connects and [...] Read more.
This paper considers metallic ultrahigh-temperature materials (UHTMs) and the alloying behaviour and properties of alloys and their phases by using maps of the parameters δ (based on atomic size), Δχ (based on electronegativity), and valence electron concentration (VEC), and discusses what connects and what differentiates material groups in the maps. The formation of high-entropy or complex concentrated intermetallics, namely 5-3 silicides, C14 Laves and A15 compounds, and bcc solid solutions and eutectics in metallic UHTMs and their co-existence with “conventional” phases is discussed. The practicality of maps for the design/selection of substrate alloys is deliberated upon. The need for environmental coatings for metallic UHTMs was considered and the design of bond coat alloys is discussed by using relevant maps. Full article
Show Figures

Figure 1

12 pages, 3288 KB  
Article
Effective Design of Cr-Co-Ni-Ta Eutectic Medium Entropy Alloys with High Compressive Properties Using Combined CALPHAD and Experimental Approaches
by Taiwen Huang, Jiachen Zhang, Jun Zhang and Lin Liu
Appl. Sci. 2021, 11(13), 6102; https://doi.org/10.3390/app11136102 - 30 Jun 2021
Cited by 10 | Viewed by 2594
Abstract
Alloy design of Cr-Co-Ni-Ta eutectic medium entropy alloys (EMEAs) was performed through a CALPHAD method coupled with experimental study, with the aim to attain high phase stability as well as excellent mechanical properties. Based on calculated pseudo-binary diagram, CrCoNiTax (x = 0.1, 0.3, [...] Read more.
Alloy design of Cr-Co-Ni-Ta eutectic medium entropy alloys (EMEAs) was performed through a CALPHAD method coupled with experimental study, with the aim to attain high phase stability as well as excellent mechanical properties. Based on calculated pseudo-binary diagram, CrCoNiTax (x = 0.1, 0.3, 0.4, 0.5, 0.7) medium entropy alloys were investigated. Two phases, FCC solid solution and Laves phase, were identified in the alloys. With increasing Ta content, the volume fraction of hard and brittle Laves phase increased, microstructure changed from hypoeutectic (Ta0.1, Ta0.3) to eutectic (Ta0.4) and then to hypereutectic (Ta0.5, Ta0.7). The stability of phases was assessed by considering the thermodynamic parameter Ω and valence electron concentration (VEC). The eutectic phases become stable when 1.42 < Ω < 0.74 and 7.5 < VEC < 8.25. In addition, based on nanoindentation, the results indicated that solid solution strengthening in γ phase was significantly enhanced, eutectic phase in CrCoNiTa0.4 EMEA was found to process the highest microhardness and elastic modulus. Finally, the hardness of alloys was positively correlated with the content of Ta and the plastic strain of alloys obviously decreased, while the compression strength firstly increased and then decreased. CrCoNiTa0.4 was the most promising alloy with the highest compression strength (2502 MPa) and high plastic strain (20.6%). Full article
Show Figures

Figure 1

23 pages, 6314 KB  
Article
Weldability Evaluation of Alloy 718 Investment Castings with Different Si Contents and Thermal Stories and Hot Cracking Mechanism in Their Laser Beam Welds
by Pedro Álvarez, Alberto Cobos, Lexuri Vázquez, Noelia Ruiz, Pedro Pablo Rodríguez, Ana Magaña, Andrea Niklas and Fernando Santos
Metals 2021, 11(3), 402; https://doi.org/10.3390/met11030402 - 1 Mar 2021
Cited by 6 | Viewed by 3932
Abstract
In this work, weldability and hot cracking susceptibility of five alloy 718 investment castings in laser beam welding (LBW) were investigated. Influence of chemical composition, with varying Si contents from 0.05 to 0.17 wt %, solidification rate, and pre-weld heat treatment were studied [...] Read more.
In this work, weldability and hot cracking susceptibility of five alloy 718 investment castings in laser beam welding (LBW) were investigated. Influence of chemical composition, with varying Si contents from 0.05 to 0.17 wt %, solidification rate, and pre-weld heat treatment were studied by carrying out three different weldability tests, i.e., hot ductility, Varestraint, and bead-on-plate tests, after hot isostatic pressing (HIP) and solution annealing treatment. Onset of hot ductility drop was directly related to the presence of residual Laves phase, whereas the hot ductility recovery behaviour was connected to the Si content and γ grain size. LBW Varestraint tests gave rise to enhanced fusion zone (FZ) cracking with much more reduced heat-affected zone (HAZ) cracking that was mostly independent of Si content and residual Laves phase. Microstructural characterisation of bead-on-plate welding samples showed that HAZ cracking susceptibility was closely related to welding morphology. Multiple HAZ cracks were detected in nail or mushroom welding shapes, typical in keyhole mode LBW, irrespective of the chemical composition and thermal story of castings. In all LBW welds, Laves phase with a composition similar to the eutectic of the pseudo-binary equilibrium diagram of alloy 718 was formed in the FZ. The composition of this regenerated Laves phase matched with the continuous Laves phase film observed along HAZ cracks. This was strong evidence of backfilling mechanism, which is described as wetting and infiltration of terminal liquid along γ grain boundaries of parent material. The current results suggest that this cracking mechanism was activated in three-point intersections resulting from perpendicular crossing of columnar grain boundaries with fusion line and was enhanced by nail or mushroom weld shapes and narrow and columnar γ grain characteristics of castings. Neither Varestraint nor hot ductility weldability tests can reproduce this particular cracking mechanism. Full article
(This article belongs to the Special Issue Advanced Welding Technology in Metals)
Show Figures

Figure 1

12 pages, 3877 KB  
Article
Microstructure and Corrosion Properties of La2Zr2O7/NiCoAlY Thermal Barrier Coatings Deposited on Inconel 718 Superalloy by Laser Cladding
by Kaijin Huang, Wei Li, Kai Pan, Xin Lin and Aihua Wang
Coatings 2021, 11(1), 101; https://doi.org/10.3390/coatings11010101 - 18 Jan 2021
Cited by 11 | Viewed by 3457
Abstract
In order to improve the seawater corrosion resistance of Inconel 718 superalloy, a La2Zr2O7/NiCoCrAlY thermal barrier coating corrosion resistant to 3.5 wt.% NaCl aqueous solution was prepared by laser cladding on Inconel 718 superalloy. X-ray diffraction (XRD), [...] Read more.
In order to improve the seawater corrosion resistance of Inconel 718 superalloy, a La2Zr2O7/NiCoCrAlY thermal barrier coating corrosion resistant to 3.5 wt.% NaCl aqueous solution was prepared by laser cladding on Inconel 718 superalloy. X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and electrochemical techniques were used to study the microstructure and the corrosion performance of the coating in 3.5 wt.% NaCl solution. The results show that the thermal barrier coating is mainly composed of primary La2Zr2O7 phase and γ + laves/δ phase eutectic structure. The corrosion potential and corrosion current of the coating in 3.5 wt.% NaCl solution are higher and lower than that of the Inconel 718 substrate, respectively, indicating that the corrosion performance of the coating is better than that of the Inconel 718 substrate. The presence of La2Zr2O7 phase in the thermal barrier coating is the main reason for its corrosion resistance to 3.5 wt.% NaCl solution. Full article
(This article belongs to the Special Issue Coatings for High Temperature Applications)
Show Figures

Figure 1

15 pages, 14896 KB  
Article
A Comparative Study on the Tribological Properties of a Cobalt-Free Superaustenitic Stainless Steel at Elevated Temperature
by Frederic van gen Hassend and Sebastian Weber
Metals 2020, 10(9), 1123; https://doi.org/10.3390/met10091123 - 21 Aug 2020
Cited by 2 | Viewed by 3074
Abstract
The properties of a cobalt-free cast superaustenitic stainless steel (SASS) is investigated comparatively to the commercial high-cobalt alloyed GX15CrNiCo21-20-20 (1.4957, N-155) steel regarding its global hardness and wear resistance at elevated temperature by means of in situ hot hardness tests and cyclic abrasive [...] Read more.
The properties of a cobalt-free cast superaustenitic stainless steel (SASS) is investigated comparatively to the commercial high-cobalt alloyed GX15CrNiCo21-20-20 (1.4957, N-155) steel regarding its global hardness and wear resistance at elevated temperature by means of in situ hot hardness tests and cyclic abrasive sliding wear tests against an Al2O3 (corundum) counter-body at 600 °C. In the aged condition, results show that the 1.4957 steel suffers a higher material loss due to brittle failure initiated by coarse eutectic Cr-rich carbides which are incorporated into a mechanically mixed layer during abrasive loading. In contrast, within the Co-free steel eutectic M6(C,N) carbonitrides are distributed more homogeneously showing less tendency to form network structures. Due to the combination of primary Nb-rich globular-blocky MX-type carbonitrides and eutectic M6(C,N) carbonitrides dispersed within an Laves phase strengthened austenitic matrix, this steel provides comparable hardness and significantly improved wear resistance at elevated temperature. Thus, it may be an adequate alternative material to commercial SASS and offers the possibility to save cobalt for future applications. Full article
(This article belongs to the Special Issue Tribological Study of Metals)
Show Figures

Figure 1

Back to TopTop