Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = Lgr5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2307 KB  
Review
The Colonic Crypt: Cellular Dynamics and Signaling Pathways in Homeostasis and Cancer
by Anh L. Nguyen, Molly A. Lausten and Bruce M. Boman
Cells 2025, 14(18), 1428; https://doi.org/10.3390/cells14181428 - 11 Sep 2025
Viewed by 634
Abstract
The goal of this review is to expand our understanding of how the cellular organization of the normal colonic crypt is maintained and elucidate how this intricate architecture is disrupted during tumorigenesis. Additionally, it will focus on implications for new therapeutic strategies targeting [...] Read more.
The goal of this review is to expand our understanding of how the cellular organization of the normal colonic crypt is maintained and elucidate how this intricate architecture is disrupted during tumorigenesis. Additionally, it will focus on implications for new therapeutic strategies targeting Epithelial–Mesenchymal Transition (EMT). The colonic crypt is a highly structured epithelial unit that functions in maintaining homeostasis through a complex physiological function of diverse cell types: SCs, transit-amplifying (TA) progenitors, goblet cells, absorptive colonocytes, Paneth-like cells, M cells, tuft cells, and enteroendocrine cells. These cellular subpopulations are spatially organized and regulated by multiple crucial signaling pathways, including WNT, Notch, Bone Morphogenetic Protein (BMP), and Fibroblast Growth Factor (FGF). Specifically, we discuss how these regulatory networks control the precise locations and functions of crypt cell types that are necessary to achieve cellular organization and homeostasis in the normal colon crypt. In addition, we detail how the crypt’s hierarchical structure is profoundly perturbed in colorectal cancer (CRC) development. Tumorigenesis appears to be driven by LGR5+ cancer stem cells (CSCs) and the hyperproliferation of TA cells as colonocytes undergo metabolic reprogramming. Goblet cells lose their secretory phenotype, while REG4+ Paneth-like cells foster SC niches. Tumor microenvironment is also disrupted by upregulation of M cells and by tumor-immune crosstalk that is promoted by tuft cell expansion. Moreover, the presence of enteroendocrine cells in CRC has been implicated in treatment resistance due to its contribution to tumor heterogeneity. These cellular changes are caused by the disruption of homeostasis signaling whereby: overactivation of WNT/β-catenin promotes stemness, dysregulation of Notch inhibits differentiation, suppression of BMP promotes hyperproliferation, and imbalance of FGF/WNT/BMP/NOTCH enhances cellular plasticity and invasion. Further discussion of emerging therapies targeting epithelial markers and regulatory factors, emphasizing current development in novel, precision-based approaches in CRC treatment is also included. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Graphical abstract

14 pages, 587 KB  
Article
Detection of Clinically Significant BRCA Large Genomic Rearrangements in FFPE Ovarian Cancer Samples: A Comparative NGS Study
by Alessia Perrucci, Maria De Bonis, Giulia Maneri, Claudio Ricciardi Tenore, Paola Concolino, Matteo Corsi, Alessandra Conca, Jessica Evangelista, Alessia Piermattei, Camilla Nero, Luciano Giacò, Elisa De Paolis, Anna Fagotti and Angelo Minucci
Genes 2025, 16(9), 1052; https://doi.org/10.3390/genes16091052 - 8 Sep 2025
Viewed by 427
Abstract
Background: Copy number variations (CNVs), also referred to as large genomic rearrangements (LGRs), represent a crucial component of BRCA1/2 (BRCA) testing. Next-generation sequencing (NGS) has become an established approach for detecting LGRs by combining sequencing data with dedicated bioinformatics pipelines. However, CNV detection [...] Read more.
Background: Copy number variations (CNVs), also referred to as large genomic rearrangements (LGRs), represent a crucial component of BRCA1/2 (BRCA) testing. Next-generation sequencing (NGS) has become an established approach for detecting LGRs by combining sequencing data with dedicated bioinformatics pipelines. However, CNV detection in formalin-fixed paraffin-embedded (FFPE) samples remains technically challenging, and there is the need to implement a robust and optimized analysis strategy for routine clinical practice. Methods: This study evaluated 40 FFPE ovarian cancer (OC) samples from patients undergoing BRCA testing. The performance of the amplicon-based NGS Diatech Myriapod® NGS BRCA1/2 panel (Diatech Pharmacogenetics, Jesi, Italy) was assessed for its ability to detect BRCA CNVs and results were compared to two hybrid capture-based reference assays. Results: Among the 40 analyzed samples (17 CNV-positive and 23 CNV-negative for BRCA genes), the Diatech pipeline showed a good concordance with the reference method—all CNVs were correctly identified in 16 cases with good enough sequencing quality. Only one result was inconclusive due to low sequencing quality. Conclusions: These findings support the clinical utility of NGS-based CNV analysis in FFPE samples when combined with appropriate bioinformatics tools. Integrating visual inspection of CNV plots with automated CNV calling improves the reliability of CNV detection and enhances the interpretation of results from tumor tissue. Accurate CNV detection directly from tumor tissue may reduce the need for additional germline testing, thus shortening turnaround times. Nevertheless, blood-based testing remains mandatory to determine whether detected BRCA CNVs are of hereditary or somatic origin, particularly in cases with a strong clinical suspicion of inherited predisposition due to young age and a personal and/or family history of OC. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

31 pages, 4874 KB  
Article
Genome-Wide Association Studies in Japanese Quails of the F2 Resource Population Elucidate Molecular Markers and Candidate Genes for Body Weight Parameters
by Natalia A. Volkova, Michael N. Romanov, Nadezhda Yu. German, Polina V. Larionova, Anastasia N. Vetokh, Ludmila A. Volkova, Alexander A. Sermyagin, Alexey V. Shakhin, Darren K. Griffin, Johann Sölkner, John McEwan, Rudiger Brauning and Natalia A. Zinovieva
Int. J. Mol. Sci. 2025, 26(17), 8243; https://doi.org/10.3390/ijms26178243 - 25 Aug 2025
Viewed by 762
Abstract
Molecular research for genetic variants underlying body weight (BW) provides crucial information for this important selected trait when developing productive poultry breeds, lines and crosses. We searched for molecular markers—single nucleotide polymorphisms (SNPs)—and candidate genes associated with this trait in 240 F2 [...] Read more.
Molecular research for genetic variants underlying body weight (BW) provides crucial information for this important selected trait when developing productive poultry breeds, lines and crosses. We searched for molecular markers—single nucleotide polymorphisms (SNPs)—and candidate genes associated with this trait in 240 F2 resource population Japanese quails (Coturnix japonica). This population was produced by crossing two breeds with contrasting growth phenotypes, i.e., Japanese (with lower growth) and Texas White (with higher growth). The birds were genotyped using the genotyping-by-sequencing method followed by a genome-wide association study (GWAS). Using 74,387 SNPs, GWAS resulted in 142 significant SNPs and 42 candidate genes associated with BW at the age of 1, 14, 28, 35, 42, 49 and 56 days. Hereby, 25 SNPs simultaneously associated with BW at more than one age were established that colocalized with nine prioritized candidate genes (PCGs), including ITM2B, SLC35F3, ADAM33, UNC79, LEPR, RPP14, MVK, ASTN2, and ZBTB16. Twelve PCGs were identified in the regions of two or more significant SNPs, including MARCHF6, EGFR, ADGRL3, ADAM33, NPC2, LTBP2, ZC2HC1C, SATB2, ASTN2, ZBTB16, ADAR, and LGR6. These SNPs and PCGs can serve as molecular genetic markers for the genomic selection of quails with desirable BW phenotypes to enhance growth rates and meat productivity. Full article
(This article belongs to the Special Issue Molecular Research in Avian Genetics)
Show Figures

Figure 1

23 pages, 5107 KB  
Article
Linear Rolling Guide Surface Wear-State Identification Based on Multi-Scale Fuzzy Entropy and Random Forest
by Conghui Nie, Changguang Zhou, Tieqiang Wang, Xiaoyi Wang, Huaxi Zhou and Hutian Feng
Lubricants 2025, 13(8), 323; https://doi.org/10.3390/lubricants13080323 - 24 Jul 2025
Viewed by 462
Abstract
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, [...] Read more.
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, a hybrid approach combining multi-scale fuzzy entropy (MFE) with a gray wolf-optimized random forest (GWO-RF) algorithm was proposed to identify the surface wear state of the LRG. Preload degradation and vibration signals were collected at three surface wear stages throughout the LGR’s service life. The vibration signals were decomposed and reconstructed using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), followed by multi-scale fuzzy entropy analysis of the reconstructed signals. After dimensionality reduction via kernel principal component analysis (KPCA), the processed features were fed into the GWO-RF model for classification. Experimental results demonstrated a recognition accuracy of 97.9%. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

18 pages, 3942 KB  
Article
High Dietary Phosphorus Impairs Bone Microarchitecture and Induces Alterations in the LGR4–R-Spondins Axis in Rats with Normal Renal Function
by Sara Fernández-Villabrille, Francisco Baena-Huerta, Laura Suárez-Fernández, Elena Nefyodova, Paula Calvó, Nerea González-García, Helena Gil-Peña, Carlos Gómez-Alonso, Cristina Alonso-Montes, Manuel Naves-Díaz, Christa Maes, Natalia Carrillo-López and Sara Panizo
Nutrients 2025, 17(12), 2049; https://doi.org/10.3390/nu17122049 - 19 Jun 2025
Viewed by 2949
Abstract
Background: The increasing prevalence of processed foods has significantly elevated dietary phosphorus intake globally, posing a risk to skeletal health. Elevated serum phosphate promotes parathyroid hormone (PTH) release, leading to bone resorption and decreased bone formation. Objective: This study investigated the influence [...] Read more.
Background: The increasing prevalence of processed foods has significantly elevated dietary phosphorus intake globally, posing a risk to skeletal health. Elevated serum phosphate promotes parathyroid hormone (PTH) release, leading to bone resorption and decreased bone formation. Objective: This study investigated the influence of chronically elevated phosphorus intake on bone structure in rats with normal renal function, focusing on the Receptor Activator of Nuclear factor Kappa-B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway and its related components, leucine rich repeat containing G protein-coupled receptor 4 (LGR4), and R-spondins (RSPOs). Methods: Rats were fed a high-phosphorus diet, followed by assessment of the bone microstructure and of the expression of key signalling molecules. Results: Elevated phosphorus intake induced significant bone deterioration, particularly in the trabecular bone compartment, associated with alterations in the RANK/RANKL/OPG pathway and in the LGR4 and RSPO1 and RSPO4 signalling components in bone. Moreover, we also observed changes in RANKL, RSPO1 and RSPO4 serum levels in the rats that had received a high-phosphorus diet. Conclusions: These findings highlight the detrimental impact of excessive dietary phosphorus on skeletal health, even without renal impairment, and suggest that components of this pathway, particularly RSPO1 and RSPO4, could serve as potential biomarkers of bone deterioration. The widespread consumption of phosphorus-rich processed foods underscores the importance of nutritional education to mitigate these skeletal risks in industrialized populations. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

16 pages, 1989 KB  
Article
RacGAP1 Plays an Oncogenic Role in Lung Adenocarcinoma by Regulating the Wnt/β-Catenin Pathway
by Nicola Mosca, Mariaceleste Pezzullo, Ilenia De Leo, Anna Truda, Giovanna Marchese, Aniello Russo and Nicoletta Potenza
Cells 2025, 14(11), 773; https://doi.org/10.3390/cells14110773 - 23 May 2025
Viewed by 886
Abstract
Lung cancer is the most diagnosed cancer and the primary cause of cancer-related mortality worldwide, with lung adenocarcinoma (LUAD) becoming the prevalent histological subtype. Rac GTPase activating protein 1 (RacGAP1) has been found to be upregulated in several cancers, where it acts as [...] Read more.
Lung cancer is the most diagnosed cancer and the primary cause of cancer-related mortality worldwide, with lung adenocarcinoma (LUAD) becoming the prevalent histological subtype. Rac GTPase activating protein 1 (RacGAP1) has been found to be upregulated in several cancers, where it acts as an oncogene; nevertheless, its role in lung adenocarcinoma is largely unknown. The present study investigated the clinical relevance, the oncogenic function and the underlying molecular mechanisms of RacGAP1 in LUAD. Analyses of five patient cohorts’ datasets revealed that RacGAP1 was upregulated in adenocarcinoma tissues compared to normal lung tissues, and its overexpression was associated with unfavorable prognostic factors and poor survival; intriguingly, RacGAP1 expression was related to tobacco smoke, a well-known risk factor for LUAD. Then, experimental analyses demonstrated that RacGAP1 knockdown inhibited cell proliferation, migration and invasion, thus highlighting its role in promoting LUAD. Finally, the finding of significant correlations between RacGAP1 and Wnt-altered status or β-catenin in patients led to experiments demonstrating that silencing of RacGAP1 reduced β-catenin transcriptional activity, thereby downregulating the expression of Wnt-related genes, i.e., LGR5, Wnt2B and Wnt5A. Overall, our findings indicate that RacGAP1 plays an oncogenic role in adenocarcinoma, contributing to the abnormal activation of the Wnt/β-catenin signaling pathway. These findings may pave the way for innovative therapeutic strategies and the development of advanced diagnostic panels. Full article
(This article belongs to the Special Issue Ras Family of Genes and Proteins: Structure, Function and Regulation)
Show Figures

Graphical abstract

12 pages, 921 KB  
Article
Comparison of ECG Between Gameplay and Seated Rest: Machine Learning-Based Classification
by Emi Yuda, Hiroyuki Edamatsu, Yutaka Yoshida and Takahiro Ueno
Appl. Sci. 2025, 15(10), 5783; https://doi.org/10.3390/app15105783 - 21 May 2025
Viewed by 522
Abstract
The influence of gameplay on autonomic nervous system activity was investigated by comparing electrocardiogram (ECG) data during seated rest and gameplay. A total of 13 participants (6 in the gameplay group and 7 in the control group) were analyzed. RR interval time series [...] Read more.
The influence of gameplay on autonomic nervous system activity was investigated by comparing electrocardiogram (ECG) data during seated rest and gameplay. A total of 13 participants (6 in the gameplay group and 7 in the control group) were analyzed. RR interval time series (2 Hz) and heart-rate variability (HRV) indices, including mean RR, SDRR, VLF, LF, HF, LF/HF, and HF peak frequency, were extracted from ECG signals over 5 min and 10 min segments. HRV indices were calculated using fast Fourier transform (FFT). The classification was performed using Logistic Regression (LGR), Random Forest (RF), XGBoost (XGB, v2.9.2), One-Class SVM (OCS), Isolation Forest (ILF), and Local Outlier Factor (LOF). A balanced dataset of 5 min and 10 min segments was evaluated using k-fold cross-validation (k = 3, 4, 5). Performance metrics, including recall, F-score, and PR-AUC, were computed for each classifier. Grid search was applied to optimize parameters for LGR, RF, and XGB, while default settings were used for the other classifiers. Among all models, OCS with k = 3 achieved the highest classification accuracy for both 5 min and 10 min data. These findings suggest that machine learning-based classification can effectively distinguish ECG patterns between gameplay and rest. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Bioinformatics)
Show Figures

Figure 1

13 pages, 3816 KB  
Review
Petosemtamab, a Bispecific Antibody Targeting Epidermal Growth Factor Receptor (EGFR) and Leucine-Rich G Repeat-Containing Protein-Coupled Receptor (LGR5) Designed for Broad Clinical Applications
by Ante S. Lundberg, Cecile A. W. Geuijen, Sally Hill, Jeroen J. Lammerts van Bueren, Arianna Fumagalli, John de Kruif, Peter B. Silverman and Josep Tabernero
Cancers 2025, 17(10), 1665; https://doi.org/10.3390/cancers17101665 - 14 May 2025
Cited by 1 | Viewed by 4388
Abstract
Disease progression and treatment resistance in colorectal and other cancers are driven by a subset of cells within the tumor that have stem-cell-like properties and long-term tumorigenic potential. These stem-cell-like cells express the leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) and have characteristics [...] Read more.
Disease progression and treatment resistance in colorectal and other cancers are driven by a subset of cells within the tumor that have stem-cell-like properties and long-term tumorigenic potential. These stem-cell-like cells express the leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) and have characteristics similar to tissue-resident stem cells in normal adult tissues such as the colon. Organoid models of murine and human colorectal and other cancers contain LGR5-expressing (LGR5+) stem-cell-like cells and can be used to investigate the underlying mechanisms of cancer development, progression, therapy vulnerability, and resistance. A large biobank of organoids derived from colorectal cancer or adjacent normal tissue was developed. We performed a large-scale unbiased functional screen to identify bispecific antibodies (BsAbs) that preferentially inhibit the growth of colon tumor-derived, as compared to normal tissue-derived, organoids. We identified the most potent BsAb in the screen as petosemtamab, a Biclonics® BsAb targeting both LGR5 and the epidermal growth factor receptor (EGFR). Petosemtamab employs three distinct mechanisms of action: EGFR ligand blocking, EGFR receptor internalization and degradation in LGR5+ cells, and Fc-mediated activation of the innate immune system by antibody-dependent cellular phagocytosis (ADCP) and enhanced antibody-dependent cellular cytotoxicity (ADCC) (see graphical abstract). Petosemtamab has demonstrated substantial clinical activity in recurrent/metastatic head and neck squamous cell carcinoma (r/m HNSCC). The safety profile is generally favorable, with low rates of skin and gastrointestinal toxicity. Phase 3 trials are ongoing in both first-line programmed death-ligand 1-positive (PD-L1+) and second/third-line r/m HNSCC. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

4 pages, 10863 KB  
Correction
Correction: Kitakaze et al. All-Trans Retinoic Acid-Responsive LGR6 Is Transiently Expressed during Myogenic Differentiation and Is Required for Myoblast Differentiation and Fusion. Int. J. Mol. Sci. 2023, 24, 9035
by Tomoya Kitakaze, Rina Tatsumi, Mayu Yamaguchi, Mai Kubota, Aino Nakatsuji, Naoki Harada and Ryoichi Yamaji
Int. J. Mol. Sci. 2025, 26(9), 3942; https://doi.org/10.3390/ijms26093942 - 22 Apr 2025
Viewed by 453
Abstract
The journal’s Editorial Office and Editorial Board are jointly issuing a resolution and removal of the Journal Notice linked to this article [...] Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 3234 KB  
Article
Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids
by Boyd H. T. Gouw, Flavia C. M. Oliveira, Hans S. Kooistra, Bart Spee, Lisa van Uden and Louis C. Penning
Vet. Sci. 2025, 12(4), 362; https://doi.org/10.3390/vetsci12040362 - 13 Apr 2025
Cited by 1 | Viewed by 961
Abstract
Background: Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. Objective: The aim of this study is to establish functional differentiated canine pancreatic β-cells that [...] Read more.
Background: Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. Objective: The aim of this study is to establish functional differentiated canine pancreatic β-cells that release insulin upon glucose stimulus. Methods: Pancreatic tissue was obtained from surplus material of healthy dogs (n = 4), euthanized for non-pancreatic related research. Ductal cells were isolated and expanded in dog pancreas expansion media (dpEM) and differentiated and maturated in five sequentially added pancreas differentiation media (PDMs). Gene expression was analyzed by reversed transcriptase qPCR (RT-qPCR), and insulin release was analyzed with a canine-specific ELISA. Results: Canine pancreatic ductal cells (LGR5 and SOX9 expression) were differentiated into β-cells expressing key β-cell-related genes: Pancreatic and duodenal homeobox 1 (PDX1), NK6 Homeobox 1 (NKX6.1), Glucose Transporter Type 2 (GLUT2), Proprotein convertase subtilisin/kexin type 1 (PCSK1), and low levels of insulin. Neither Glucagon (α-cells) nor LGR5 and SOX9 were expressed, and somatostatin was expressed at low levels. The differentiated cells released insulin upon glucose stimulation. Conclusion and implications: The step-by-step differentiation protocol, mimicking pancreatic organogenesis, resulted in β-cells secreting insulin levels suitable for β-cell disease modelling. It remains to be seen if stem cells from diseased animals behave similarly. Full article
Show Figures

Figure 1

19 pages, 4142 KB  
Article
Development of Sheep Duodenum Intestinal Organoids and Implementation of High-Throughput Screening Platform for Veterinary Applications
by Giulio Galli, Estela Melcón-Fernández, María Gracia de Garnica García, Beatriz Martínez-Fernández, Mahsa Dehnavi, Sonia Andrés, Yolanda Pérez-Pertejo, Rosa M. Reguera, Carlos García-Estrada, María Martínez-Valladares and Rafael Balaña-Fouce
Int. J. Mol. Sci. 2025, 26(7), 3452; https://doi.org/10.3390/ijms26073452 - 7 Apr 2025
Viewed by 1252
Abstract
New therapeutic molecules for farm animals are needed to address worldwide problems in the food industry, like the rise of resistance among ruminant parasites and pathogenic microbes. Since in vivo testing would involve an excessive number of animals, with consequent ethical and economic [...] Read more.
New therapeutic molecules for farm animals are needed to address worldwide problems in the food industry, like the rise of resistance among ruminant parasites and pathogenic microbes. Since in vivo testing would involve an excessive number of animals, with consequent ethical and economic issues, the generation of sheep intestinal organoids represents a promising close-to-reality in vitro model for veterinary drug development; however, the characterization and application of such organoids remain limited. In this study, ovine intestinal organoids were generated from adult LGR5+ stem cells from the intestinal crypts of freshly slaughtered lambs, and developed in an in vitro culture system. Morphological analysis via brightfield microscopy and immunocytochemical staining revealed a pseudostratified epithelium with multiple cell types, and distinct apical–basal polarity, while RNA sequencing validated the preservation of the physiological characteristics of the original organ. The development and characterization of a robust and reproducible protocol for culturing sheep duodenum intestinal organoids in a high-throughput screening (HTS) compatible format demonstrated reliability in HTS applications, with Z’-factor tests indicating robust assay performance. Dose–response studies using pre-identified compounds showed comparable pharmacodynamic profiles between mouse and sheep organoids. These findings establish sheep intestinal organoids as an innovative tool for veterinary pharmacology and toxicology, offering a cost-effective and sustainable platform to address challenges such as drug resistance and improve livestock health. Full article
Show Figures

Graphical abstract

17 pages, 2687 KB  
Article
Transcriptomic and Metabolomic Analysis of the Uterine Tissue of Yaoshan Chicken and Its Crossbreeds to Reveal the Molecular Mechanism Influencing Eggshell Quality
by Xiaomeng Miao, Jia Liu, Qian Gong, Fugui Li, Yalan Zhang, Qiyue Liang, Diyan Li and Zhonghua Ning
Genes 2025, 16(4), 383; https://doi.org/10.3390/genes16040383 - 27 Mar 2025
Cited by 1 | Viewed by 1030
Abstract
Background/Objectives: Eggshell quality is a critical factor influencing consumer preference and the economic benefits of poultry enterprises, and the uterus is the key site for eggshell synthesis. Yaoshan chicken (YS), an indigenous chicken breed in China, is renowned for its flavorful meat and [...] Read more.
Background/Objectives: Eggshell quality is a critical factor influencing consumer preference and the economic benefits of poultry enterprises, and the uterus is the key site for eggshell synthesis. Yaoshan chicken (YS), an indigenous chicken breed in China, is renowned for its flavorful meat and high-quality eggs. However, its egg production is lower compared to specialized strains. Therefore, the GYR crossbreed was developed by three-line hybridization for YS chicken, which can produce green-shelled eggs with better eggshell thickness and strength than YS chicken (p < 0.01). To explore the molecular mechanisms underlying the differences in eggshell quality between GYR and YS chickens, we conducted an integrated transcriptomic and metabolomic analysis. Methods: Twelve uterus samples (six from GYR and six from YS chickens) were collected during the period of eggshell calcification at 260 days of age. RNA sequencing (RNA-seq) and liquid chromatography–mass spectrometry (LC-MS/MS) were performed to identify differentially expressed genes (DEGs) and differential metabolites (DMs), respectively. Results: A total of 877 DEGs were identified in the GYR group, including 196 upregulated and 681 downregulated genes (|log2 (fold change)| > 1, p-value < 0.05). Additionally, 79 DMs were detected, comprising 50 upregulated and 29 downregulated metabolites (|log₂ (fold change)| > 1, VIP > 1). Notably, the key DEGs (SLCO1B3, SLCO1B1, PTGR1, LGR6, MELTF, CRISP2, GVINP1, and OVSTL), important DMs (prostaglandin-related DMs and biliverdin) and signaling pathways (calcium signaling, neuroactive ligand–receptor interaction, arachidonic acid metabolism, bile secretion, and primary bile acid biosynthesis) were major regulators of the eggshell quality. Furthermore, an integrated transcriptomic and metabolomic analysis revealed two significant gene–metabolite pairs associated with eggshell quality: PTGDS–prostaglandin E2 and PTGS1–prostaglandin E2. Conclusions: This study provides a theoretical foundation for the improved eggshell quality of Yaoshan chicken. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3888 KB  
Article
Wound-Induced Regeneration in Feather Follicles: A Stepwise Strategy to Regenerate Stem Cells
by Ting-Xin Jiang, Ping Wu, Ang Li, Randall B. Widelitz and Cheng-Ming Chuong
J. Dev. Biol. 2025, 13(2), 10; https://doi.org/10.3390/jdb13020010 - 27 Mar 2025
Viewed by 2488
Abstract
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic [...] Read more.
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic stem cell niche. During normal feather cycling, growth-phase proximal follicle collar bulge stem cells adopt a ring configuration. At the resting and initiation phases, these stem cells descend to the dermal papilla to form papillary ectoderm and ascend to the proximal follicle in a new growth phase. Plucking resting-phase feathers accelerates papillary ectoderm cell activation. Plucking growth-phase feathers depletes collar bulge stem cells; however, a blastema reforms the collar bulge stem cells, expressing KRT15, LGR6, Sox9, integrin-α6, and tenascin C. Removing the follicle base and dermal papilla prevents feather regeneration. Yet, transplanting an exogenous dermal papilla to the follicle base can induce re-epithelialization from the lower follicle sheath, followed by feather regeneration. Thus, there is a stepwise regenerative strategy using stem cells located in the collar bulge, papillary ectoderm, and de-differentiated lower follicle sheath to generate new feathers after different levels of injuries. This adaptable regenerative mechanism is based on the hierarchy of stem cell regenerative capacity and underscores the remarkable resilience of feather follicle regenerative abilities. Full article
(This article belongs to the Special Issue Skin Wound Healing and Regeneration in Vertebrates)
Show Figures

Figure 1

18 pages, 12151 KB  
Article
LGR-Net: A Lightweight Defect Detection Network Aimed at Elevator Guide Rail Pressure Plates
by Ruizhen Gao, Meng Chen, Yue Pan, Jiaxin Zhang, Haipeng Zhang and Ziyue Zhao
Sensors 2025, 25(6), 1702; https://doi.org/10.3390/s25061702 - 10 Mar 2025
Cited by 1 | Viewed by 864
Abstract
In elevator systems, pressure plates secure guide rails and limit displacement, but defects compromise their performance under stress. Current detection algorithms face challenges in achieving high localization accuracy and computational efficiency when detecting small defects in guide rail pressure plates. To overcome these [...] Read more.
In elevator systems, pressure plates secure guide rails and limit displacement, but defects compromise their performance under stress. Current detection algorithms face challenges in achieving high localization accuracy and computational efficiency when detecting small defects in guide rail pressure plates. To overcome these limitations, this paper proposes a lightweight defect detection network (LGR-Net) for guide rail pressure plates based on the YOLOv8n algorithm. To solve the problem of excessive model parameters in the original algorithm, we enhance the baseline model’s backbone network by incorporating the lightweight MobileNetV3 and optimize the neck network using the Ghost convolution module (GhostConv). To improve the localization accuracy for small defects, we add a high-resolution small object detection layer (P2 layer) and integrate the Convolutional Block Attention Module (CBAM) to construct a four-scale feature fusion network. This study employs various data augmentation methods to construct a custom dataset for guide rail pressure plate defect detection. The experimental results show that LGR-Net outperforms other YOLO-series models in terms of overall performance, achieving optimal results in terms of precision (p = 98.7%), recall (R = 98.9%), mAP (99.4%), and parameter count (2,412,118). LGR-Net achieves low computational complexity and high detection accuracy, providing an efficient and effective solution for defect detection in elevator guide rail pressure plates. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 1671 KB  
Review
LGR4 (GPR48): The Emerging Inter-Bridge in Osteoimmunology
by Wonbong Lim
Biomedicines 2025, 13(3), 607; https://doi.org/10.3390/biomedicines13030607 - 2 Mar 2025
Cited by 2 | Viewed by 1393
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) [...] Read more.
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) during osteoclast differentiation. However, a comprehensive investigation of its functions and applications in bone immunology is lacking. This review discusses the molecular characteristics, signaling pathways, and role of LGR4 in osteoimmunology, with a particular focus on its interactions with RANKL during osteoclast differentiation, while identifying gaps that warrant further research. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

Back to TopTop