Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = Limonium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1452 KB  
Article
Characterization of the Phytochemical Profile of Halophytes (Limonium Mill., Plumbaginaceae) with Natural Deep Eutectic Solvents Extraction
by Antonio Ruiz-Medina, David J. Parras-Guijarro, Carlos Salazar-Mendías and Eulogio J. Llorent-Martínez
Plants 2025, 14(17), 2609; https://doi.org/10.3390/plants14172609 - 22 Aug 2025
Viewed by 190
Abstract
Limonium Mill. (Plumbaginaceae) is a genus comprising many species, some of which are reported to possess high bioactivity and are used as food, medicinal herbs, and fodder. Here we report the use of different deep eutectic solvents (DESs) and natural DESs (NADESs) to [...] Read more.
Limonium Mill. (Plumbaginaceae) is a genus comprising many species, some of which are reported to possess high bioactivity and are used as food, medicinal herbs, and fodder. Here we report the use of different deep eutectic solvents (DESs) and natural DESs (NADESs) to study the phytochemical composition of plants of the genus Limonium Mill. Most of the organic solvents commonly used for extracting phytochemicals from plants are hazardous to health and may harm the environment. Hence, their replacement with environmentally friendly solvents, particularly NADESs, is desirable. We performed ultrasound-assisted extractions of aerial parts of Limonium species using these solvents, followed by characterization of the phytochemicals with liquid chromatography with high-resolution mass spectrometry. Gallic acid and myricetin derivatives accounted for approximately 60 and 27% of all the compounds, respectively, therefore representing more than 80% of the characterized compounds in the analyzed plants. The best extraction yield for both flavonoids and organic acids was achieved using the NADES chloride choline/ethylene glycol (ratio 1:3), improving the recoveries by approximately 20% compared to the use of methanol and methanol/water mixtures. These results indicate the possibility of replacing conventional organic solvents with more environmentally friendly ones, reducing the use of toxic solvents and improving the sample treatment. In addition, possible new Limonium plant species were studied in the south of Spain with the optimized method. Full article
Show Figures

Figure 1

19 pages, 3354 KB  
Article
Microbial Assembly and Stress-Tolerance Mechanisms in Salt-Adapted Plants Along the Shore of a Salt Lake: Implications for Saline–Alkaline Soil Remediation
by Xiaodong Wang, Liu Xu, Xinyu Qi, Jianrong Huang, Mingxian Han, Chuanxu Wang, Xin Li and Hongchen Jiang
Microorganisms 2025, 13(8), 1942; https://doi.org/10.3390/microorganisms13081942 - 20 Aug 2025
Viewed by 386
Abstract
Investigating the microbial community structure and stress-tolerance mechanisms in the rhizospheres of salt-adapted plants along saline lakes is critical for understanding plant–microbe interactions in extreme environments and developing effective strategies for saline–alkaline soil remediation. This study explored the rhizosphere microbiomes of four salt-adapted [...] Read more.
Investigating the microbial community structure and stress-tolerance mechanisms in the rhizospheres of salt-adapted plants along saline lakes is critical for understanding plant–microbe interactions in extreme environments and developing effective strategies for saline–alkaline soil remediation. This study explored the rhizosphere microbiomes of four salt-adapted species (Suaeda glauca, Artemisia carvifolia, Chloris virgata, and Limonium bicolor) from the Yuncheng Salt Lake region in China using high-throughput sequencing. Cultivable salt-tolerant plant growth-promoting rhizobacteria (PGPR) were isolated and characterized to identify functional genes related to stress resistance. Results revealed that plant identity and soil physicochemical properties jointly shaped the microbial community composition, with total organic carbon being a dominant driver explaining 17.6% of the variation. Cyanobacteria dominated low-salinity environments, while Firmicutes thrived in high-salinity niches. Isolated PGPR strains exhibited tolerance up to 15% salinity and harbored genes associated with heat (htpX), osmotic stress (otsA), oxidative stress (katE), and UV radiation (uvrA). Notably, Peribacillus and Isoptericola strains demonstrated broad functional versatility and robust halotolerance. Our findings highlight that TOC (total organic carbon) plays a pivotal role in microbial assembly under extreme salinity, surpassing host genetic influences. The identified PGPR strains, with their stress-resistance traits and functional gene repertoires, hold significant promise for biotechnological applications in saline–alkaline soil remediation and sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

16 pages, 1211 KB  
Article
Exploring the Chemical Composition and Antimicrobial Activity of Extracts from the Roots and Aboveground Parts of Limonium gmelini
by Dariya Kassymova, Francesco Cairone, Donatella Ambroselli, Rosa Lanzetta, Bruno Casciaro, Aizhan Zhussupova, Deborah Quaglio, Angela Casillo, Galiya E. Zhusupova, Maria Michela Corsaro, Bruno Botta, Silvia Cammarone, Maria Luisa Mangoni, Cinzia Ingallina and Francesca Ghirga
Molecules 2025, 30(14), 3024; https://doi.org/10.3390/molecules30143024 - 18 Jul 2025
Viewed by 460
Abstract
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and [...] Read more.
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and polyphenolic compounds extracted from both the roots and aboveground parts of Limonium gmelini. Several methods of extraction, including ultrasound-assisted extraction (UAE), conventional maceration (CM), and supercritical fluid extraction (SFE), were employed to obtain bioactive fractions. Chemical profiling, primarily represented by monosaccharides and polyphenolic compounds, was characterized and analyzed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) techniques. While polyphenol-rich fractions exhibited significant antibacterial activity, particularly against Staphylococcus epidermidis, polysaccharide-rich aqueous fractions showed minimal antibacterial activity. Among the methods, CM and UAE yielded higher polyphenol content, whereas SFE provided more selective extractions. Notably, methanolic SPE fractions derived from the roots were especially enriched in active polyphenols such as gallic acid, myricetin, and naringenin, and they exhibited the highest antibacterial activity against Staphylococcus epidermidis. In contrast, extracts from the aboveground parts showed more moderate activity and a partially different chemical profile. These findings underscore the importance of plant part selection and support the targeted use of root-derived polyphenol-enriched fractions from L. gmelini as promising candidates for the development of natural antibacterial agents. Further investigation is needed to isolate and validate the most active constituents for potential therapeutic applications. Full article
Show Figures

Figure 1

21 pages, 394 KB  
Systematic Review
The Role of African Medicinal Plants in Dermatological Treatments: A Systematic Review of Antimicrobial, Wound-Healing and Melanogenesis Inhibition
by Lubna M. S. Elmahaishi, Farzana Fisher, Ahmed Hussein and Charlene W. J. Africa
Cosmetics 2025, 12(4), 132; https://doi.org/10.3390/cosmetics12040132 - 24 Jun 2025
Viewed by 865
Abstract
Background: Medicinal plants are widely used across the globe as complementary and alternative therapies for managing various health conditions. The use of medicinal plants is a fundamental component of the African traditional healthcare system and most diverse therapeutic practices. Africa harbors a variety [...] Read more.
Background: Medicinal plants are widely used across the globe as complementary and alternative therapies for managing various health conditions. The use of medicinal plants is a fundamental component of the African traditional healthcare system and most diverse therapeutic practices. Africa harbors a variety of plant species, many of which are estimated to be endemic, making it a rich source of medicinal plants with potential relevance to human health. Aim of the study: The study aimed to review and highlight the information in the literature related to the antimicrobial activity, wound-healing activity, and melanogenesis inhibition of African medicinal plants. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, a literature search was conducted on ScienceDirect, Google Scholar, Medline Ebscohost, and PubMed, which were searched for articles published between 2018 and 2024. Due to high heterogeneity and variability in study designs, data were synthesized using a narrative approach. Result: A total of 37 studies were included. Emilia coccinea, Entada africana, Trichilia dregeana, Physalis angulata, and Prunus africana demonstrated strong wound-healing activity (100%) at concentrations between 5 and 10%. For melanogenesis inhibition, Ormocarpum trichocarpum (IC50 = 2.95 µg/mL), Limonium cercinense (IC50 = 3 µg/mL), and L. boitardii (IC50 = 5 µg/mL) showed the most potent effects. The strongest antimicrobial effects were reported for Harpagophytum procumbens (MIC = 10 µg/mL) against Staphylococcus aureus and S. epidermidis and Pistacia atlantica (MIC = 78.1 µg/mL) against Listeria monocytogenes and Candida albicans (MIC = 39 µg/mL). Conclusions: This study highlights the broad therapeutic potential of African medicinal plant extracts in addressing various health conditions, including skin infections, wound management, and skin pigmentation. While several extracts demonstrated strong bioactivity, inconsistent reporting of statistical data limited quantitative synthesis. Future studies should adopt standardized methodologies and report complete statistical outcomes to enable robust meta-analyses and support clinical translation. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

31 pages, 7771 KB  
Article
Sustainable Biogenic Synthesis of High-Performance CaO/NiO Nanocomposite for Antimicrobial, Antioxidant, and Antidiabetic Applications
by Saravanan Priyadharshini, Muniappan Ayyanar, Ravichandran Krishnasamy, Manimaran Sundarraj, Gabriela Sandoval-Hevia, Arun Thirumurugan and Natarajan Chidhambaram
Ceramics 2025, 8(2), 46; https://doi.org/10.3390/ceramics8020046 - 29 Apr 2025
Cited by 1 | Viewed by 871
Abstract
Herein, we present in-depth investigations of the biological activities of a CaO/NiO nanocomposite synthesized via a sustainable eco-friendly approach, utilizing Citrus limonium fruit extract as a natural stabilizing and facilitating agent. The efficacy of the nanocomposite is compared with those of individual CaO [...] Read more.
Herein, we present in-depth investigations of the biological activities of a CaO/NiO nanocomposite synthesized via a sustainable eco-friendly approach, utilizing Citrus limonium fruit extract as a natural stabilizing and facilitating agent. The efficacy of the nanocomposite is compared with those of individual CaO and NiO nanoparticles. X-ray diffraction analysis confirms the cubic phase of CaO as well as NiO within a unified matrix, demonstrating a refined crystallite size of 48 nm, which is smaller than that of the individual nanoparticles. FTIR study substantiates the occurrence of strong Ca-O-Ni-O bonds, along with CO32−, C–H, and CH2 bonds. The CaO, NiO, and CaO/NiO samples exhibit bandgap values of 1.70, 3.46, and 3.44 eV, respectively. Surface morphology analysis reveals that CaO/NiO holds a well-defined heterostructure with porous morphology. An XPS study confirms that Ca and Ni elements exist in the 2+ oxidation state in the CaO/NiO. The nanocomposite exhibits superior antibacterial activity, with inhibition zones of 24.3 mm against Bacillus subtilis and 20.6 mm against Salmonella typhi, and MIC values of 23.4 and 46.8 µg/mL, respectively. It also demonstrates strong antioxidant potential, with IC50 values of 96.8 ± 0.4 µg/mL (DPPH) and 91.8 ± 0.1 µg/mL (superoxide anion). Furthermore, it shows the lowest IC50 for α-amylase (98.6 ± 0.7 µg/mL) and strong α-glucosidase inhibition (81.96 ± 0.5 µg/mL). Consequently, this insightful study reveals how biogenic synthesis helps develop high-performance multifunctional CaO/NiO nanocomposites for biomedical applications. Full article
(This article belongs to the Special Issue Ceramics Containing Active Molecules for Biomedical Applications)
Show Figures

Graphical abstract

20 pages, 5482 KB  
Article
Diversity and Functional Insights into Endophytic Fungi in Halophytes from West Ordos Desert Ecosystems
by Xingzhe Wang, Yan Zhang, Jingpeng Li, Yiteng Ding, Xiaodan Ma, Peng Zhang, Haijing Liu, Jie Wei and Yuying Bao
J. Fungi 2025, 11(1), 30; https://doi.org/10.3390/jof11010030 - 4 Jan 2025
Cited by 1 | Viewed by 1367
Abstract
Arid desert regions are among the harshest ecological environments on Earth. Halophytes, with their unique physiological characteristics and adaptability, have become the dominant vegetation in these areas. Currently, research on halophytes in this region is relatively limited, particularly concerning studies related to their [...] Read more.
Arid desert regions are among the harshest ecological environments on Earth. Halophytes, with their unique physiological characteristics and adaptability, have become the dominant vegetation in these areas. Currently, research on halophytes in this region is relatively limited, particularly concerning studies related to their root endophytic fungi, which have been rarely reported on. Therefore, investigating the diversity and composition of endophytic fungi in halophytes is crucial for maintaining ecological balance in such an arid environment. This study focuses on eight representative angiosperm halophytes from the West Ordos Desert in China (including Nitraria tangutorum, Salsola passerina, Suaeda glauca, Reaumuria trigyna, Reaumuria kaschgarica, Limonium aureum, Apocynum venetum, and Tripolium vulgare), utilizing Illumina MiSeq high-throughput sequencing technology combined with soil physicochemical factor data to analyze the diversity, composition, and ecological functions of their root-associated fungal communities. Ascomycota dominated the fungal composition in most halophytes, particularly among the recretohalophytes, where it accounted for an average of 88.45%, while Basidiomycota was predominant in Suaeda glauca. A Circos analysis of the top 10 most abundant genera revealed Fusarium, Dipodascus, Curvularia, Penicillium, and other dominant genera. Co-occurrence network analysis showed significant differences in fungal networks across halophyte types, with the most complex network observed in excreting halophytes, characterized by the highest number of nodes and connections, indicating tighter fungal symbiotic relationships. In contrast, fungal networks in pseudohalophytes were relatively simple, reflecting lower community cohesiveness. Redundancy analysis (RDA) and Mantel tests demonstrated that soil factors such as organic matter, available sulfur, and urease significantly influenced fungal diversity, richness, and evenness, suggesting that soil physicochemical properties play a critical role in regulating fungal–plant symbiosis. Functional predictions indicated that endophytic fungi play important roles in metabolic pathways such as nucleotide biosynthesis, carbohydrate degradation, and lipid metabolism, which may enhance plant survival in saline–alkaline and arid environments. Furthermore, the high abundance of plant pathogens and saprotrophs in some fungal communities suggests their potential roles in plant defense and organic matter decomposition. The results of this study provide a reference for advancing the development and utilization of halophyte endophytic fungal resources, with applications in desert ecosystem restoration and halophyte cultivation. Full article
Show Figures

Figure 1

13 pages, 908 KB  
Article
Nitrous Oxide Treatment after Pollination Induces Ploidy Changes in Statice (Limonium sp.)
by Juana Cordoba-Sanchez, Keith Funnell, Duncan Hedderley, Nick Roskruge and Ed Morgan
Horticulturae 2024, 10(8), 816; https://doi.org/10.3390/horticulturae10080816 - 1 Aug 2024
Viewed by 1197
Abstract
The production of statice (Limonium sp.) plants with higher ploidy through induction of whole-genome duplication (WGD) via the spindle disrupter nitrous oxide (N2O) was examined as a strategy to increase the germplasm diversity of the species. Furthermore, the impact of [...] Read more.
The production of statice (Limonium sp.) plants with higher ploidy through induction of whole-genome duplication (WGD) via the spindle disrupter nitrous oxide (N2O) was examined as a strategy to increase the germplasm diversity of the species. Furthermore, the impact of the resulting ploidy changes on the morphological features of the progeny was examined. Intraspecific crosses between diploid plants of Limonium sinuatum (L.) Mill and L. perezii (Stapf) Hubb. were conducted daily for seven consecutive days, with subsequent exposure to N2O. Within the resulting progeny, between 16% and 35% of plants were polyploid when N2O was applied between one and four days after pollination. A comparative analysis between diploid and tetraploid progeny was conducted, using a selection of 10 L. sinuatum (5 diploids and 5 tetraploids) and 7 L. perezii (4 diploids and 3 tetraploids) genotypes. The results revealed differences between tetraploids and their diploid counterparts for most of the evaluated characteristics. Tetraploid plants of L. sinuatum and L. perezii exhibited pollen grains 1.5 times larger in plan area; the leaves and main floral stem diameter were 1.2 and 1.5 times thicker for L. sinuatum and L. perezii, respectively, the guard cell length was 1.4 times greater for both species, while the stomatal density was 0.6 times lower for L. perezii and 0.8 for L. sinuatum. The leaf area and main floral stem wings were affected by the ploidy increase only for L. sinuatum. In this regard, tetraploid plants of L. sinuatum displayed leaves 1.8 times bigger and main floral steam wings 2.4 times wider in comparison to diploid plants. In conclusion, the production of tetraploid Limonium plants using N2O shortly after pollination creates new diversity for breeding. These findings underscore the potential for leveraging polyploidy as a strategy to enhance desirable traits in Limonium species. Full article
(This article belongs to the Special Issue Germplasm Resources and Genetic Breeding of Ornamental Plants)
Show Figures

Figure 1

17 pages, 320 KB  
Review
Neuroprotective and Mental Health Benefits of Salt-Tolerant Plants: A Comprehensive Review of Traditional Uses and Biological Properties
by Maria João Rodrigues, Catarina Guerreiro Pereira and Luísa Custódio
Appl. Sci. 2024, 14(13), 5534; https://doi.org/10.3390/app14135534 - 26 Jun 2024
Viewed by 2586
Abstract
This study undertakes a thorough review of the ethnomedicinal properties of salt-tolerant plants and their potential to treat neurological disorders and enhance mental health. Aimed at bridging the gap between historical knowledge and contemporary scientific validation, our research meticulously evaluates both the traditional [...] Read more.
This study undertakes a thorough review of the ethnomedicinal properties of salt-tolerant plants and their potential to treat neurological disorders and enhance mental health. Aimed at bridging the gap between historical knowledge and contemporary scientific validation, our research meticulously evaluates both the traditional uses and the existing scientific evidence supporting the neuroprotective effects of these plants, leveraging in vitro and in vivo experimental findings. Through a comprehensive search of articles from 2001 to December 2023 across scientific databases, we identified sixteen species across nine plant families with demonstrated in vitro neuroprotective properties. Among these, the Chenopodiaceae and Juncaceae families emerged as the most represented, including plants such as Salicornia sp., Juncus sp., and Limonium sp., primarily recognized for their cholinesterase inhibitory activity. However, a notable disparity exists between traditional applications and scientific examination, with only six species undergoing in vivo testing. This discrepancy underscores the imperative for future research to delve deeper into validating traditional uses and elucidating the mechanisms underlying neuroprotection. Our findings highlight the need for research on salt-tolerant plants traditionally used for neurological benefits. Key steps include systematic screening, identification of active compounds through bioassay-guided fractionation, and in vivo testing. Integrating traditional knowledge with modern pharmacology, while emphasizing sustainable and ethical approaches, is essential for advancing neuroprotective drug discovery. Full article
(This article belongs to the Special Issue Natural Products: Sources and Applications)
17 pages, 15384 KB  
Article
Ethanol Extract of Limonium bicolor Improves Dextran Sulfate Sodium-Induced Ulcerative Colitis by Alleviating Inflammation and Restoring Gut Microbiota Dysbiosis in Mice
by Wei Jia, Siyu Yu, Xi Liu, Qingqing Le, Xiwen He, Lutao Yu, Jianlin He, Longhe Yang and Huiyuan Gao
Mar. Drugs 2024, 22(4), 175; https://doi.org/10.3390/md22040175 - 15 Apr 2024
Cited by 5 | Viewed by 2886
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel condition characterized by inflammation within the mucous membrane, rectal bleeding, diarrhea, and pain experienced in the abdominal region. Existing medications for UC have limited treatment efficacy and primarily focus on symptom relief. Limonium bicolor [...] Read more.
Ulcerative colitis (UC) is a kind of inflammatory bowel condition characterized by inflammation within the mucous membrane, rectal bleeding, diarrhea, and pain experienced in the abdominal region. Existing medications for UC have limited treatment efficacy and primarily focus on symptom relief. Limonium bicolor (LB), an aquatic traditional Chinese medicine (TCM), exerts multi-targeted therapeutic effects with few side effects and is used to treat anemia and hemostasis. Nevertheless, the impact of LB on UC and its mechanism of action remain unclear. Therefore, the objective of this study was to investigate the anti-inflammatory effects and mechanism of action of ethanol extract of LB (LBE) in lipopolysaccharide-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced UC. The results showed that LBE suppressed the secretion of cytokines in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. LBE had protective effects against DSS-induced colitis in mice, decreased the disease activity index (DAI) score, alleviated symptoms, increased colon length, and improved histological characteristics, thus having protective effects against DSS-induced colitis in mice. In addition, it reversed disturbances in the abundance of proteobacteria and probiotics such as Lactobacillus and Blautia in mice with DSS-induced UC. Based on the results of network pharmacology analysis, we identified four main compounds in LBE that are associated with five inflammatory genes (Ptgs2, Plg, Ppar-γ, F2, and Gpr35). These results improve comprehension of the biological activity and functionality of LB and may facilitate the development of LB-based compounds for the treatment of UC. Full article
Show Figures

Figure 1

9 pages, 2613 KB  
Article
Antibacterial Metabolites Produced by Limonium lopadusanum, an Endemic Plant of Lampedusa Island
by Ernesto Gargiulo, Emanuela Roscetto, Umberto Galdiero, Giuseppe Surico, Maria Rosaria Catania, Antonio Evidente and Orazio Taglialatela-Scafati
Biomolecules 2024, 14(1), 134; https://doi.org/10.3390/biom14010134 - 22 Jan 2024
Cited by 4 | Viewed by 2313
Abstract
Lampedusa, the largest island of the Pelagie archipelago, Sicily, Italy, has proven to be a rich source of plants and shrubs used in folk medicine. These plants, often native to the island, have been very poorly investigated for their phytochemical composition and biological [...] Read more.
Lampedusa, the largest island of the Pelagie archipelago, Sicily, Italy, has proven to be a rich source of plants and shrubs used in folk medicine. These plants, often native to the island, have been very poorly investigated for their phytochemical composition and biological potential to be translated into pharmacological applications. To start achieving this purpose, a specimen of Limonium lopadusanum, a plant native to Lampedusa, was investigated for the first time. This manuscript reports the results of a preliminary biological assay, focused on antimicrobial activity, carried out using the plant organic extracts, and the isolation and chemical and biological characterization of the secondary metabolites obtained. Thus 3-hydroxy-4-methoxybenzoic acid methyl ester (syn: methyl isovanillate, (1), methyl syringate (2), pinoresinol (3), erythrinassinate C (4) and tyrosol palmitate (5) were isolated. Their antimicrobial activity was tested on several strains and compound 4 showed promising antibacterial activity against Enterococcus faecalis. Thus, this metabolite has antibiotic potential against the drug-resistant opportunistic pathogen E. faecalis. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

21 pages, 2700 KB  
Article
Seasonal and Geographic Dynamics in Bioproperties and Phytochemical Profile of Limonium algarvense Erben
by Catarina Guerreiro Pereira, Maria João Rodrigues, Izabela Nawrot-Hadzik, Adam Matkowski and Luísa Custódio
Molecules 2024, 29(2), 481; https://doi.org/10.3390/molecules29020481 - 18 Jan 2024
Cited by 4 | Viewed by 1644
Abstract
This study delved into the influence of ecological and seasonal dynamics on the synthesis of secondary metabolites in the medicinal halophyte Limonium algarvense Erben, commonly known as sea lavender, and examined their antioxidant and anti-inflammatory properties. Aerial parts of sea lavender were systematically [...] Read more.
This study delved into the influence of ecological and seasonal dynamics on the synthesis of secondary metabolites in the medicinal halophyte Limonium algarvense Erben, commonly known as sea lavender, and examined their antioxidant and anti-inflammatory properties. Aerial parts of sea lavender were systematically collected across winter, spring, summer, and autumn seasons from distinct geographic locations in southern Portugal, specifically “Ria de Alvor” in Portimão and “Ria Formosa” in Tavira. The investigation involved determining the total polyphenolic profile through spectrophotometric methods, establishing the chemical profile via liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), and evaluating in vitro antioxidant properties using radical and metal-based methods, along with assessing anti-inflammatory capacity through a cell model. Results unveiled varying polyphenol levels and profiles across seasons, with spring and autumn samples exhibiting the highest content, accompanied by the most notable antioxidant and anti-inflammatory capacities. Geographic location emerged as an influential factor, particularly distinguishing plants from “Ria de Alvor”. Seasonal fluctuations were associated with environmental factors, including temperature, which, when excessively high, can impair plant metabolism, but also with the presence of flowers and seeds in spring and autumn samples, which also seems to contribute to elevated polyphenol levels and enhanced bioproperties of these samples. Additionally, genetic factors may be related to differences observed between ecotypes (geographical location). This study underscores sea lavender’s potential as a natural source of antioxidant and anti-inflammatory agents, emphasizing the significance of considering both geographic location and seasonal dynamics in the assessment of phenolic composition and bioactive properties in medicinal plant species. Full article
Show Figures

Figure 1

24 pages, 3578 KB  
Article
Salt Tolerance and Ion Accumulation in Several Halophytic Plant Species Depending on the Type of Anion
by Astra Jēkabsone, Jekaterina Kuļika, Māris Romanovs, Una Andersone-Ozola and Gederts Ievinsh
Int. J. Plant Biol. 2023, 14(4), 1131-1154; https://doi.org/10.3390/ijpb14040083 - 1 Dec 2023
Cited by 6 | Viewed by 2148
Abstract
The question of the effect of the anion type on halophyte salt tolerance and ion accumulation is still far from the necessary generalization due to the lack of comparative studies. The aim of the present study was to compare the relatively long-term effect [...] Read more.
The question of the effect of the anion type on halophyte salt tolerance and ion accumulation is still far from the necessary generalization due to the lack of comparative studies. The aim of the present study was to compare the relatively long-term effect of treatment with various salts formed by different anions on the growth and ion accumulation of several halophyte species in controlled conditions. The main experiments with the largest variety of individual salt types were performed with Cochlearia officinalis L. and two cultivars of Limonium sinuatum (L.) Mill. In addition, experiments with Lobularia maritima (L.) Desv., Plantago maritima L., and Tripolium pannonicum (Jacq.) Dobrocz. focused on the comparison of neutral (NaCl) and alkaline (NaHCO3) salts as well as NaNO3. Acetate salts appeared to be the most toxic, with only Plantago and Tripolium plants being able to withstand full treatment while having a pronounced inhibition in growth. Only the two Limonium cultivars were more susceptible to treatment with alkaline salts in comparison to that with neutral salts. In treatments with alkaline salts, the ion accumulation potential was lower in comparison to plants treated with chlorides and nitrates. It can be concluded that the type of anion is a significant determinant of salinity tolerance and ion accumulation in halophytes, but a high genotype dependence of the responses makes it difficult to generalize the obtained results. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Graphical abstract

18 pages, 2848 KB  
Article
Phytochemical Profiles and In Vitro Immunomodulatory Activities of Extracts Obtained from Limonium gmelinii Using Different Extraction Methods
by Dariya Kassymova, Galiya Zhusupova, Vyacheslav Ogay, Aizhan Zhussupova, Kumar Katragunta, Bharathi Avula and Ikhlas A. Khan
Plants 2023, 12(23), 4019; https://doi.org/10.3390/plants12234019 - 29 Nov 2023
Cited by 1 | Viewed by 1692
Abstract
Limonium (L.) gmelinii is a valuable pharmacopoeial Kazakhstani plant. Several studies have reported on the various biological activities of the plant. The purpose of our research was to study and compare the extraction yields, immunomodulatory activities, and chemical compositions of extracts from the [...] Read more.
Limonium (L.) gmelinii is a valuable pharmacopoeial Kazakhstani plant. Several studies have reported on the various biological activities of the plant. The purpose of our research was to study and compare the extraction yields, immunomodulatory activities, and chemical compositions of extracts from the above-ground parts of L. gmelinii obtained via conventional extraction (CE; Extract 1) and ultrasound-assisted extraction (UAE; Extract 2). The extracts were characterized by a considerable number of polyphenols and flavonoids: 378.1 ± 4.5 and 382.2 ± 3.3 GAE mg/g, and 90.22 ± 2.8 and 94.61 ± 1.9 QE mg/g in Extract 1 and Extract 2, respectively. Extract 2 had a slightly higher extraction yield (33.5 ± 2.4%) than Extract 1 (30.2 ± 1.6%). Liquid Chromatography–Diode-Array Detection–Electrospray Ionization–Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS) revealed the presence of 54 biologically active compounds in both extracts. It was shown that the studied extracts stimulate the secretion of TNF-α and IL-6 by intact mouse peritoneal macrophages and splenic lymphocytes, whilst they have an inhibitory effect on the secretion of these cytokines by activated immune cells. Both extracts demonstrated similar patterns of stimulation and inhibition in a splenocyte proliferation assay. Altogether, the L. gmelinii extracts obtained via CE and UAE might be suggested as effective immunomodulatory agents. The application of UAE for this purpose seems to be more efficient with a view of obtaining of a highly potent extract in a much shorter time. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants IV)
Show Figures

Figure 1

30 pages, 4626 KB  
Article
Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages
by Zhen Yang, Jingyuan Man, Yu Liu, Hongjuan Zhang, Di Wu, Dan Shao, Baocheng Hao and Shengyi Wang
Int. J. Mol. Sci. 2023, 24(22), 16272; https://doi.org/10.3390/ijms242216272 - 13 Nov 2023
Cited by 4 | Viewed by 1831
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is [...] Read more.
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

12 pages, 334 KB  
Article
Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile
by Seria Youssef, Luisa Custódio, Maria João Rodrigues, Catarina G. Pereira, Ricardo C. Calhelha, József Jekő, Zoltán Cziáky and Karim Ben Hamed
Plants 2023, 12(19), 3391; https://doi.org/10.3390/plants12193391 - 26 Sep 2023
Cited by 6 | Viewed by 2288
Abstract
This study assessed the halophyte species Limonium spathulatum (Desf.) as a possible source of natural ingredients with the capacity to inhibit enzymes related to relevant human health disorders and food browning. Extracts using food-grade solvents such as water and ethanol were prepared by [...] Read more.
This study assessed the halophyte species Limonium spathulatum (Desf.) as a possible source of natural ingredients with the capacity to inhibit enzymes related to relevant human health disorders and food browning. Extracts using food-grade solvents such as water and ethanol were prepared by maceration from dried L. spathulatum leaves. They were evaluated for in vitro inhibition activity of enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), α-glucosidase, tyrosinase and lipase, related to Alzheimer’s disease, type-2-diabetes mellitus, skin hyperpigmentation, and obesity, respectively. These extracts were also appraised for in vitro acute toxicity on tumoral and non-tumoral cell lines and their chemical composition by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were more effective towards BChE than AChE. The best results were obtained with the hydroethanolic and water extracts, with IC50 values of 0.03 mg/mL and 0.06 mg/mL, respectively. The hydroethanolic extract had the highest capacity to inhibit α-glucosidase (IC50: 0.04 mg/mL), higher than the positive control used (acarbose, IC50 = 3.14 mg/mL). The ethanol extract displayed the best inhibitory activity against tyrosinase (IC50 = 0.34 mg/mL). The tested samples did not inhibit lipase and exhibited low to moderate cytotoxic activity against the tested cell lines. The hydroethanolic extract had a higher diversity of compounds, followed by the ethanol and water samples. Similar molecules were identified in all the extracts and were mainly hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. Taken together, these results suggest that L. spathulatum should be further explored as a source of bioactive ingredients for the food, cosmetic, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Bioprospecting of Natural Products from Medicinal Plants)
Back to TopTop