Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzymatic Inhibition
2.2. Cytotoxic Properties
2.3. Chemical Composition of the Extracts
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Preparation of the Extracts
3.4. Enzymatic Inhibition
3.4.1. Inhibition of AChE and BChE
3.4.2. Inhibition of Baker’s Yeast α-Glucosidase
3.4.3. Inhibition of Tyrosinase
3.4.4. Inhibition of Lipase from Porcine Pancreas
3.5. In Vitro Toxicological Evaluation
3.6. High-Performance Liquid Chromatography Coupled with Electrospray Ionization Mass Spectrometry (HPLC-ESI-MS/MS) Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, N.J.; Łuczaj, Ł.J.; Migliorini, P.; Pieroni, A.; Dreon, A.L.; Sacchetti, L.E.; Paoletti, M.G. Edible and tended wild plants, traditional ecological knowledge and agroecology. CRC Crit. Rev. Plant Sci. 2011, 30, 198–225. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Barata, A.M. The consumption of wild edible plants. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R., Morales, P., Barros, L., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2016; pp. 159–198. [Google Scholar]
- Belaabed, S.; Khalfaoui, A.; Parisi, V.; Santoro, V.; Russo, D.; Ponticelli, M.; Monné, M.; Rebbas, K.; Milella, L.; Donadio, G. Rhanteriol, a New Rhanterium suaveolens Desf. Lignan with Pharmacological Potential as an Inhibitor of Enzymes Involved in Neurodegeneration and Type 2 Diabetes. Plants 2023, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Guo, H.Y.; Quan, Z.S.; Shen, Q.K.; Cui, H.; Li, X. Research progress of natural products and their derivatives against Alzheimer’s disease. J. Enzym. Inhib. Med. Chem. 2023, 38, 1. [Google Scholar] [CrossRef]
- Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2012, 20, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Dinicolantonio, J.J.; Bhutani, J.; O’keefe, J.H. Acarbose: Safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2015, 2, e000327. [Google Scholar] [CrossRef] [PubMed]
- Eckroat, T.J.; Manross, D.L.; Cowan, S.C. Merged tacrine-based, multitarget-directed acetylcholinesterase inhibitors 2015- present: Synthesis and biological activity. Int. J. Mol. Sci. 2020, 21, 5965. [Google Scholar] [CrossRef]
- Yan, T.; Cao, J.; Ye, L. Recent advances on discovery of enzyme inhibitors from natural products using bioactivity screening. J. Sep. Sci. 2022, 45, 2766–2787. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Rozema, J.; Cornelisse, D.; Zhang, Y.; Li, H.; Bruning, B.; Katschnig, D.; Broekman, R.; Ji, B.; van Bodegom, P. Comparing salt tolerance of beet cultivars and their halophytic ancestor: Consequences of domestication and breeding programmes. AoB Plants 2014, 7, plu083. [Google Scholar] [CrossRef]
- Sekmen, A.; Turkan, I.; Tanyolaç, Ö.; Ozfidan-Konakci, C.; Dinc, A. Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environ. Exp. Bot. 2012, 77, 63–76. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002, 25, 131–139. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Breusegem, F.V. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Akyol, T.Y.; Yilmaz, O.; Uzilday, B.; Uzilday, R.Ö.; Türkan, I. Plant response to salinity: An analysis of ROS formation, signaling, and antioxidant defense. Turk. J. Bot. 2020, 44, 1–13. [Google Scholar]
- Brullo, S. Il genere Limonium Miller in Cirenaica. Webbia 1978, 33, 137–158. [Google Scholar] [CrossRef]
- Brullo, S. Taxonomic and nomenclatural notes on the genus Limonium in Sicily. Bot. Notiser. 1980, 133, 281–293. [Google Scholar]
- Brullo, S.; Erben, M. The genus Limonium (Plumbaginaceae) in Tunisia; Mitt. Bot. 28; Staatssamml Munchen: Munchen, Germany, 1998; pp. 419–500. [Google Scholar]
- Brullo, S.; Erben, M. The genus Limonium (Plumbaginaceae) in Greece. Phytotaxa 2016, 240, 1–212. [Google Scholar] [CrossRef]
- Dobignard, A.; Chatelain, C.; Fischer, M.; Orso, J.; Jeanmonod, D. Index Synonymique et Bibliographique de la Flore d’Afrique du Nord; CJBG: Genève, Switzerland, 2013; 465p. [Google Scholar]
- Souid, A.; Bellani, L.; Gabriele, M.; Pucci, L.; Smaoui, A.; Abdelly, C.; Ben Hamed, K.; Longo, V. Phytochemical and biological activities in Limonium species collected in different biotopes of Tunisia. Chem. Biodivers. 2019, 16, e1900216. [Google Scholar] [CrossRef]
- Mazouz, W.; Haouli, N.E.; Gali, L.; Vezza, T.; Bensouici, C.; Mebrek, S.; Hamel, T.; Galvez, J.; Djeddi, S. Antioxidant, anti-alzheimer, anti-diabetic, and anti-inflammatory activities of the endemic halophyte Limonium spathulatum (Desf.) kuntze on LPS-stimulated RAW264 macrophages. S. Afr. J. Bot. 2020, 135, 101–108. [Google Scholar] [CrossRef]
- Youssef, S.; Custódio, L.; Rodrigues, M.J.; Pereira, C.G.; Calhelha, R.C.; Pinela, J.; Barros, L.; Jekő, J.; Cziáky, Z.; Ben Hamed, K. Nutritional anti-nutritional chemical composition and antioxidant activities of the leaves of the sea cliff dewelling species Limonium spathulatum (Desf.) Kuntze. Front. Plant Sci. 2022, 13, 979343. [Google Scholar] [CrossRef]
- Chen, Z.-R.; Huang, J.-B.; Yang, S.-L.; Hong, F.-F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Du, X.; Wang, X.; Geng, M. Alzheimer’s Disease Hypothesis and Related Therapies. Transl. Neurodegener. 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Bekdash, R. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 1273. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, H.; Sun, J.; Ni, M.; Zhang, L.; Chen, C.; Hong, X.; Fang, F.; Zhang, W.; Ma, P. Circular RNA expression profile of Alzheimer’s disease and its clinical significance as biomarkers for the disease risk and progression. Int. J. Biochem. Cell Biol. 2020, 123, 105747. [Google Scholar] [CrossRef]
- Simchovitz, A.; Heneka, M.T.; Soreq, H. Personalized genetics of the cholinergic blockade of neuroinflammation. J. Neurochem. 2017, 142, 178–187. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Oliveira, M.; Neves, V.; Ovelheiro, A.; Pereira, C.A.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Coupling sea lavender (Limonium algarvense Erben) and green tea (Camellia sinensis (L.) Kuntze) to produce an innovative herbal beverage with enhanced enzymatic inhibitory properties. S. Afr. J. Bot. 2019, 120, 87–94. [Google Scholar] [CrossRef]
- Mesulam, M.M.; Guillozet, A.; Shaw, P.; Levey, A.; Duysen, E.G.; Lockridge, O. Acetylcholinesterase Knockouts Establish Central Cholinergic Pathways and Can Use Butyrylcholinesterase to Hydrolyze Acetylcholine. Neuroscience 2002, 110, 627–639. [Google Scholar] [CrossRef]
- Martinez, A.; Castro, A. Novel Cholinesterase Inhibitors as Future Effective Drugs for the Treatment of Alzheimer’s Disease. Expert Opin. Investig. Drugs 2006, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy. Curr. Neuropharmacol. 2013, 11, 388–413. [Google Scholar] [CrossRef]
- Clive, G.B.; Nigel, H.G.; Angela, L.G.B.; Albert, E.; Sultan, D. Cholinesterases: Roles in the Brain during Health and Disease. Curr. Alzheimer Res. 2005, 2, 307–318. [Google Scholar] [CrossRef]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Senizza, B.; Zhang, L.; Rocchetti, G.; Zengin, G.; Ak, G.; Yıldıztugay, E.; Elbasan, F.; Jugreet, S.; Mahomoodally, M.F.; Lucini, L. Metabolomic profiling and biological properties of six Limonium species: Novel perspectives for nutraceutical purposes. Food Funct. 2021, 12, 3443. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, J.; Wang, C.; Wu, L.; Liu, Y. Screening bifunctional flavonoids of anti-cholinesterase and anti-glucosidase by in vitro and in silico studies: Quercetin, kaempferol and myricetin. Food Biosci. 2023, 51, 102312. [Google Scholar] [CrossRef]
- Chen, L.Y.; Gu, B.X.; Zhu, G.P.; Wu, Y.F.; Liu, S.Q.; Xu, C.X. Tyrosinase biosensor based on zinc oxide nanorods. Nano 2007, 2, 281–284. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, L.C.; Yang, W.F.; Bordon, J.; Wang, H.D.M. An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr. Org. Chem. 2015, 19, 4–18. [Google Scholar] [CrossRef]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Adv. 2021, 11, 22159–22198. [Google Scholar] [CrossRef] [PubMed]
- Dorga, S.; Sarangal, R. Pigmentary disorders: An insight. Pigment Int. 2014, 1, 5–7. [Google Scholar]
- Nouveau, S.; Agrawal, D.; Kohli, M.; Bernerd, F.; Misra, N.; Nayak, C.S. Skin hyperpigmentation in Indian population: Insights and best practice. Indian J. Dermatol. 2016, 61, 487–495. [Google Scholar]
- Şöhretoğlu, D.; Sari, S.; Barut, B.; Özel, A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorg. Chem. 2018, 81, 168–174. [Google Scholar] [CrossRef]
- Karakaya, G.; Türe, A.; Ercan, A.; Öncül, S.; Aytemir, M.D. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg. Chem. 2019, 88, 102950. [Google Scholar] [CrossRef]
- Huang, H.W. Current status and future trends of high-pressure processing in food industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Kusumawati, I.G.A.W.; Putra, I.M.W.A.; Yogeswara, I.B.A. In vitro ACE inhibitory activity and bioactive- compounds of aqueous extract of Citrus amblycarpa. Trad. Med. J. 2021, 26, 118–122. [Google Scholar] [CrossRef]
- Ruiz-Riaguas, A.; Zengin, G.; Sinan, K.; Salazar-Mendías, C.; Llorent-Martínez, E.J. Phenolic Profile, Antioxidant Activity, and Enzyme Inhibitory Properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. J. Chem. 2020, 2020, 1016208. [Google Scholar] [CrossRef]
- Taherkhani, N.; Gheibi, N. Inhibitory Effects of Quercetin and Kaempferol as two Propolis Derived Flavonoids on Tyrosinase Enzyme. Biotechnol. Health Sci. 2014, 1, e22242. [Google Scholar] [CrossRef]
- Zuo, A.R.; Dong, H.H.; Yu, Y.Y.; Shu, Q.L.; Zheng, L.X.; Yu, X.Y.; Cao, S.W. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin. Med. 2018, 13, 51. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Hakamata, W.; Kurihara, M.; Okuda, H.; Nishio, T.; Oku, T. Design and screening strategies for alpha-glucosidase inhibitors based on enzymological information. Curr. Top. Med. Chem. 2009, 9, 312. [Google Scholar] [CrossRef]
- Godbout, A.; Chiasson, J.L. Who should benefit from the use of alpha-glucosidase inhibitors. Curr. Diab. Rep. 2007, 7, 333–339. [Google Scholar] [CrossRef]
- Sefi, O.; Bourgou, S.; Ksouri, W.M.; Libiad, M.; Khabbach, A.; El Haissoufi, M.; Lamchouri, F.; Krigas, N.; Gammar, Z.G. Bioactivities and phenolic composition of Limonium boitardii Maire and L. cercinense Brullo & Erben (Plumbaginaceae): Two Tunisian strict endemic plants. Int. J. Environ. Health Res. 2021, 32, 2496–2511. [Google Scholar] [CrossRef]
- Zhusupova, G.E. Amino-acid and mineral composition of substances from the aerial part and roots of Limonium gmelinii. Chem. Nat. Compd. 2006, 42, 123–124. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, H.; Putri, C.Y.N.K. Evaluation of α-amylase and α-glucosidase inhibitory activity of flavonoids. Int. J. Food Nutr. Sci. 2015, 2, 1–6. [Google Scholar]
- Arumugam, T.; Pillay, Y.; Ghazi, T.; Nagiah, S.; Abdul, N.S.; Chuturgoon, A.A. Fumonisin B(1)-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2). Cells Mycotoxin Res. 2019, 35, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, E.; Yin, S.; Zhao, C.; Fan, L.; Hu, H. Activation of the IRE1α Arm, but not the PERK Arm, of the Unfolded Protein Response Contributes to Fumonisin B1-Induced Hepatotoxicity. Toxins 2020, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Baysal, I.; Ekizoglu, M.; Ertas, A.; Temiz, B.; Agalar, H.G.; Yabanoglu-Ciftci, S.; Temel, H.; Ucar, G.; Turkmenoglu, F.P. Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum. Molecules 2021, 26, 4040. [Google Scholar] [CrossRef] [PubMed]
- Foddai, M.; Kasabri, V.; Petretto, G.L.; Azara, E.; Sias, A.; Afifi, F.U.; Delagu, G.; Chessa, M.; Pintore, G. In vitro inhibitory effects of Limonium contortirameum and L. virgatum extracts from Sardinia on alpha-amylase, alpha-glucosidase and pancreatic lipase. Nat. Prod. Commun. 2014, 9, 181–184. [Google Scholar]
- Heydari, M.; Rauf, A.; Thiruvengadam, M.; Chen, X.; Hashempur, M.H. Editorial: Clinical safety of natural products, an evidence-based approach. Front. Pharmacol. 2022, 13, 960556. [Google Scholar] [CrossRef]
- Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; pp. 71–133. [Google Scholar]
- Korul’Kina, L.; Shul’ts, E.; Zhusupova, G.; Abilov, Z.A.; Erzhanov, K.; Chaudri, M. Biologically active compounds from Limonium gmelinii and L. popovii. Chem. Nat. Compd. 2004, 40, 465–471. [Google Scholar] [CrossRef]
- Uysal, S.; Sinan, K.I.; Jekő, J.; Cziáky, Z.; Zengin, G. Chemical characterization, comprehensive antioxidant capacity, and enzyme inhibitory potential of leaves from Pistacia terebinthus L. (Anacardiaceae). Food Biosci. 2022, 48, 101820. [Google Scholar]
- Rodríguez, J.L.; Berrios, P.; Clavo, Z.M.; Marin-Bravo, M.; Inostroza-Ruiz, L.; Ramos-Gonzalez, M.; Quispe-Solano, M.; Fernández-Alfonso, M.S.; Palomino, O.; Goya, L. Chemical Characterization, Antioxidant Capacity and Anti-Oxidative Stress Potential of South American Fabaceae Desmodium tortuosum. Nutrients 2023, 15, 746. [Google Scholar] [CrossRef]
- El-Kousy, S.M.; Emam, S.S.; Hassan, A.R.; Sanad, I.M. Metabolites profiling of Limonium tubiflorum (Delile) Kuntze var tubiflorum via UPLC-qTOF-MS technique in relation to its cytotoxic activity. JJBS 2021, 14, 663–669. [Google Scholar]
- Yazdi, S.E.; Prinsloo, G.; Heyman, H.M.; Oosthuizen, C.B.; Klimkait, T.; Meyer, J.J.M. Anti-HIV-1 activity of quinic acid isolated from Helichrysum mimetes using NMR-based metabolomics and computational analysis. S. Afr. J. Bot. 2019, 126, 328–339. [Google Scholar] [CrossRef]
- Ross, S.A. Myricetin-3’methyl ether-7-glucoside from Limonium sinuatum. J. Nat. Prod. 1984, 47, 862–864. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Castañeda-Loaiza, V.; Monteiro, I.; Pinela, J.; Barros, L.; Abreu, R.; Oliveira, M.C.; Reis, C.; Soares, F.; Pousão-Ferreira, P.; et al. Metabolomic Profile and Biological Properties of Sea Lavender (Limonium algarvense Erben) Plants Cultivated with Aquaculture Wastewaters: Implications for Its Use in Herbal Formulations and Food Additives. Foods 2021, 10, 3104. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Custódio, L.; Lopes, A.; Oliveira, M.; Neng, N.R.; Nogueira, J.M.; Martins, A.; Rauter, A.P.; Varela, J.; Barreira, L. Unlocking the in vitro anti-inflammatory and antidiabetic potential of Polygonum maritimum. Pharm. Biol. 2017, 55, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Mandim, F.; Petropoulos, S.A.; Pinela, J.; Inês, M.; Giannoulis, K.D.; Kostic, M.; Sokovic, M.; Queijo, B.; Santos-Buelga, C.; Ferreira, I.C.F.R.; et al. Chemical composition and biological activity of cardoon (Cynara cardunculus var. altilis) seeds harvested at different maturity stages. Food Chem. 2022, 369, 130875. [Google Scholar] [CrossRef]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
Extract | AChE | BChE | α-Glucosidase | Tyrosinase | Lipase |
---|---|---|---|---|---|
Ethanol | 1.75 ± 0.06 c | 0.27 ± 0.09 c | 0.16 ± 0.01 a | 0.34 ± 0.01 a | na |
Water | 0.23 ± 0.04 b | 0.06 ± 0.02 b | 0.16 ± 0.03 a | 1.10 ± 0.04 c | na |
Hydroethanolic | 0.31 ± 0.05 b | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 1.91 ± 0.55 c | na |
Positive controls | |||||
Galantamine | 0.01 ± 0.00 a | 0.31 ± 0.03 c | - | - | - |
Acarbose | - | - | 3.14 ± 0.23 b | - | - |
Orlistat | - | - | - | - | 0.11 ± 0.02 |
Arbutin | - | - | - | 0.17 ± 0.01 b | - |
Hydroethanolic | Ethanol | Water | Positive Control | |
---|---|---|---|---|
Cytotoxicity | ||||
Tumor cells | Ellipticine | |||
AGS (gastric adenocarcinoma) | 93 ± 5 | 63 ± 2 | 42 ± 4 | 1.23 ± 0.03 |
Caco2 (colorectal adenocarcinoma) | 72 ± 5 | 40 ± 4 | 90 ± 1 | 1.21 ± 0.02 |
MCF-7 (human breast carcinoma) | 60 ± 1 | 177 ± 12 | 49 ± 3 | 1.21 ± 0.02 |
NCI-H460 (non-small cell lung cancer) | 42 ± 1 | 83 ± 4 | 40 ± 1 | 0.9 ± 0.1 |
Non-tumor cells | Ellipticine | |||
PLP2 (porcine liver primary culture) | >400 | 79 ± 8 | 40 ± 2 | 1.4 ± 0.1 |
VERO (monkey kidney epithelial cells) | 55 ± 3 | 64 ± 2 | 23 ± 2 | 1.41 ± 0.06 |
Formula | RT | [M + H]+ | [M − H]– | Hydroethanolic Extract | Water Extract | Ethanol Extract * | |
---|---|---|---|---|---|---|---|
Quinic acid | C7H12O6 | 2.11 | 191.05557 | + | - | + | |
Shikimic acid | C7H10O5 | 2.16 | 173.04500 | + | + | + | |
Galloylhexose | C13H16O10 | 2.87 | 331.06653 | + | + | + | |
Gallic acid (3,4,5-Trihydroxybenzoic acid) | C7H6O5 | 3.18 | 169.01370 | + | + | + | |
Prodelphinidin B | C30H26O14 | 4.39 | 609.12444 | - | + | - | |
Gallocatechin (Gallocatechol) | C15H14O7 | 5.63 | 305.06613 | + | + | + | |
Coumaroylhexose sulfate isomer 1 | C15H18O11S | 7.79 | 405.04916 | + | + | + | |
Caffeoylhexose sulfate isomer 1 | C15H18O12S | 9.00 | 421.04408 | + | + | + | |
Uralenneoside or isomer | C12H14O8 | 11.03 | 285.06105 | + | + | + | |
Caffeoylhexose | C15H18O9 | 11.81 | 341.08726 | + | + | + | |
Coumaroylhexose sulfate isomer 2 | C15H18O11S | 12.22 | 405.04916 | + | + | + | |
Caffeoylhexose sulfate isomer 2 | C15H18O12S | 12.80 | 421.04408 | + | + | + | |
Epigallocatechin (Epigallocatechol) | C15H14O7 | 13.45 | 305.06613 | + | + | + | |
Prodelphinidin A gallate | C37H28O18 | 13.59 | 607.10879 | + | - | - | |
Chlorogenicacid (3-O-Caffeoylquinic acid) | C16H18O9 | 14.42 | 355.10291 | + | + | + | |
Coumaroylhexose isomer 1 | C15H18O8 | 14.46 | 325.09235 | + | + | + | |
Uralenneoside or isomer sulfate | C12H14O11S | 14.53 | 365.01786 | - | + | - | |
Caffeic acid | C9H8O4 | 14.60 | 179.03444 | + | + | + | |
Biflorin | C16H18O9 | 14.78 | 355.10291 | + | + | + | |
Digalloylhexose | C20H20O14 | 14.98 | 483.07749 | + | + | + | |
Coumaroylhexose isomer 2 | C15H18O8 | 15.16 | 325.09235 | + | + | + | |
Isobiflorin | C16H18O9 | 15.56 | 355.10291 | + | + | + | |
Epigallocatechin-3-O-gallate (Teatannin II) | C22H18O11 | 16.25 | 457.07709 | + | + | + | |
Dihydrokaempferol-O-hexoside | C21H22O11 | 17.18 | 449.10839 | + | + | + | |
Ethyl gallate | C9H10O5 | 17.65 | 197.04500 | + | - | - | |
Coumaroyl-hexosylglycerate | C18H22O11 | 18.09 | 413.10839 | + | + | + | |
Riboflavin | C17H20N4O6 | 18.46 | 377.14611 | + | - | - | |
Isololiolide | C11H16O3 | 18.63 | 197.11777 | + | + | + | |
Myricetin-O-galloylhexoside | C28H24O17 | 19.04 | 631.09353 | + | - | - | |
Ferulic acid | C10H10O4 | 19.36 | 193.05009 | + | + | + | |
Unidentified alkaloid | C13H12N2O3 | 19.55 | 245.09262 | + | + | + | |
Loliolide | C11H16O3 | 19.84 | 197.11777 | + | + | + | |
Myricetin-O-hexoside | C21H20O13 | 20.37 | 479.08257 | + | + | + | |
Myricetin-3-O-rutinoside | C27H30O17 | 21.05 | 625.14048 | + | + | + | |
Myricetin-O-pentoside | C20H18O12 | 21.50 | 449.07201 | + | + | + | |
Myricitrin (Myricetin-3-O-rhamnoside) | C21H20O12 | 21.68 | 463.08765 | + | + | + | |
N-cis-Feruloyltyramine | C18H19NO4 | 22.35 | 314.13924 | + | + | + | |
Hyperoside or Isoquercitrin | C21H20O12 | 22.31 | 463.08765 | + | + | + | |
Rutin (quercetin-3-O-rutinoside) | C27H30O16 | 22.60 | 609.14557 | + | + | + | |
Coatline A or isomer | C21H24O10 | 22.74 | 435.12913 | + | + | + | |
Methoxy-pentahydroxy(iso)flavone-O-hexoside | C22H22O13 | 22.87 | 493.09822 | + | + | + | |
Myricetin (3,3′,4′,5,5′,7-Hexahydroxyflavone) | C15H10O8 | 23.80 | 317.02974 | + | + | + | |
Kaempferol-7-O-glucoside | C21H20O11 | 23.84 | 447.09274 | + | + | + | |
Phlorizin | C21H24O10 | 24.05 | 435.12913 | + | + | + | |
Quercitrin (Quercetin-3-O-rhamnoside) | C21H20O11 | 24.21 | 447.09274 | + | + | + | |
Astragalin (Kaempferol-3-O-glucoside) | C21H20O11 | 24.41 | 447.09274 | + | + | + | |
Kaempferol-3-O-rutinoside (Nicotiflorin) | C27H30O15 | 24.54 | 593.15065 | + | + | + | |
N-trans-Feruloyltyramine | C18H19NO4 | 24.60 | 314.13924 | + | + | + | |
Dimethoxy-tetrahydroxy(iso)flavone isomer 1 | C17H14O8 | 25.79 | 345.06104 | + | + | + | |
Afzelin (Kaempferol-3-O-rhamnoside) | C21H20O10 | 26.19 | 431.09782 | + | + | + | |
Myricetin-O-(di-O-acetyl)rhamnosideisómer 1 | C25H24O14 | 26.54 | 547.10879 | + | - | - | |
Dihydroactinidiolide | C11H16O2 | 26.66 | 345.09743 | + | + | + | |
Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) | C15H10O7 | 26.71 | 301.03483 | + | + | + | |
Naringenin (4′,5,7-Trihydroxyflavanone) | C15H12O5 | 27.23 | 271.06065 | + | + | + | |
Myricetin-O-(di-O-acetyl)rhamnosidesómer 2 | C25H24O14 | 27.65 | 547.10879 | + | - | - | |
Quercetin-3-O-methyl ether | C16H12O7 | 28.10 | 315.05048 | + | + | + | |
Phloretin (dihydronaringenin) | C15H14O5 | 28.23 | 273.07630 | + | + | + | |
Dimethoxy-tetrahydroxy(iso)flavone isomer 2 | C17H14O8 | 28.34 | 345.06104 | + | + | + | |
Trihydroxy-trimethoxy(iso)flavone isomer 1 | C18H16O8 | 30.37 | 359.07670 | + | + | + | |
Trihydroxy-trimethoxy(iso)flavone isomer 2 | C18H16O8 | 31.10 | 359.07670 | + | + | + | |
Malyngic acid or isomer | C18H32O5 | 32.30 | 327.21715 | + | + | + | |
Trihydroxy-trimethoxy(iso)flavone isomer 3 | C18H16O8 | 32.63 | 359.07670 | + | + | + | |
Dimethoxy-trihydroxy(iso)flavones | C17H14O7 | 32.85 | 329.06613 | + | + | + | |
Dihydroxy-tetramethoxy(iso)flavones | C19H18O8 | 33.26 | 373.09235 | + | + | + | |
Pinellic acid | C18H34O5 | 33.61 | 329.23280 | + | + | + | |
Dihydroxy-trimethoxy(iso)flavones | C18H16O7 | 35.03 | 345.09743 | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, S.; Custódio, L.; Rodrigues, M.J.; Pereira, C.G.; Calhelha, R.C.; Jekő, J.; Cziáky, Z.; Ben Hamed, K. Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile. Plants 2023, 12, 3391. https://doi.org/10.3390/plants12193391
Youssef S, Custódio L, Rodrigues MJ, Pereira CG, Calhelha RC, Jekő J, Cziáky Z, Ben Hamed K. Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile. Plants. 2023; 12(19):3391. https://doi.org/10.3390/plants12193391
Chicago/Turabian StyleYoussef, Seria, Luisa Custódio, Maria João Rodrigues, Catarina G. Pereira, Ricardo C. Calhelha, József Jekő, Zoltán Cziáky, and Karim Ben Hamed. 2023. "Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile" Plants 12, no. 19: 3391. https://doi.org/10.3390/plants12193391
APA StyleYoussef, S., Custódio, L., Rodrigues, M. J., Pereira, C. G., Calhelha, R. C., Jekő, J., Cziáky, Z., & Ben Hamed, K. (2023). Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile. Plants, 12(19), 3391. https://doi.org/10.3390/plants12193391