Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = London penetration depth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 21356 KB  
Article
Utilizing Dual Polarized Array GPR System for Shallow Urban Road Pavement Foundation in Environmental Studies: A Case Study
by Lilong Zou, Ying Li and Amir M. Alani
Remote Sens. 2024, 16(23), 4396; https://doi.org/10.3390/rs16234396 - 24 Nov 2024
Cited by 2 | Viewed by 2112
Abstract
Maintaining the integrity of urban road pavements is vital for public safety, transportation efficiency, and economic stability. However, aging infrastructure and limited budgets make it challenging to detect subsurface defects that can lead to pavement collapses. Traditional inspection methods are often inadequate for [...] Read more.
Maintaining the integrity of urban road pavements is vital for public safety, transportation efficiency, and economic stability. However, aging infrastructure and limited budgets make it challenging to detect subsurface defects that can lead to pavement collapses. Traditional inspection methods are often inadequate for identifying such underground anomalies. Ground Penetrating Radar (GPR), especially dual-polarized array systems, offers a non-destructive, high-resolution solution for subsurface inspection. Despite its potential, effectively detecting and analyzing areas at risk of collapse in urban pavements remains a challenge. This study employed a dual-polarized array GPR system to inspect road pavements in London. The research involved comprehensive field testing, including data acquisition, signal processing, calibration, background noise removal, and 3D migration for enhanced imaging. Additionally, Short-Fourier Transform Spectrum (SFTS) analysis was applied to detect moisture-related anomalies. The results show that dual-polarized GPR systems effectively detect subsurface issues like voids, cracks, and moisture-induced weaknesses. The ability to capture data in multiple polarizations improves resolution and depth, enabling the identification of collapse-prone areas, particularly in regions with moisture infiltration. This study demonstrates the practical value of dual-polarized GPR technology in urban pavement inspection, offering a reliable tool for early detection of subsurface defects and contributing to the longevity and safety of road infrastructure. Full article
Show Figures

Figure 1

16 pages, 16982 KB  
Article
Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization
by Aiste Skog, Razmik A. Hovhannisyan and Vladimir M. Krasnov
Nanomaterials 2024, 14(20), 1634; https://doi.org/10.3390/nano14201634 - 12 Oct 2024
Viewed by 1390
Abstract
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex—the smallest quantized object in superconductors—can enable drastic miniaturization [...] Read more.
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex—the smallest quantized object in superconductors—can enable drastic miniaturization to the nanometer scale. In this work, we present the numerical modeling of such cells using time-dependent Ginzburg–Landau equations. The cell represents a fluxonic quantum dot containing a small superconducting island, an asymmetric notch for the vortex entrance, a guiding track, and a vortex trap. We determine the optimal geometrical parameters for operation at zero magnetic field and the conditions for controllable vortex manipulation by short current pulses. We report ultrafast vortex motion with velocities more than an order of magnitude faster than those expected for macroscopic superconductors. This phenomenon is attributed to strong interactions with the edges of a mesoscopic island, combined with the nonlinear reduction of flux-flow viscosity due to the nonequilibrium effects in the track. Our results show that such cells can be scaled down to sizes comparable to the London penetration depth, ∼100 nm, and can enable ultrafast switching on the picosecond scale with ultralow energy per operation, ∼1019 J. Full article
(This article belongs to the Special Issue Quantum Computing and Nanomaterial Simulations)
Show Figures

Figure 1

15 pages, 895 KB  
Article
Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements
by Erik Piatti, Daniele Torsello, Francesca Breccia, Tsuyoshi Tamegai, Gianluca Ghigo and Dario Daghero
Nanomaterials 2024, 14(15), 1319; https://doi.org/10.3390/nano14151319 - 5 Aug 2024
Cited by 1 | Viewed by 2049
Abstract
The iron-based superconductors (IBSs) of the recently discovered 1144 class, unlike many other IBSs, display superconductivity in their stoichiometric form and are intrinsically hole doped. The effects of chemical substitutions with electron donors are thus particularly interesting to investigate. Here, we study the [...] Read more.
The iron-based superconductors (IBSs) of the recently discovered 1144 class, unlike many other IBSs, display superconductivity in their stoichiometric form and are intrinsically hole doped. The effects of chemical substitutions with electron donors are thus particularly interesting to investigate. Here, we study the effect of Co substitution in the Fe site of CaKFe4As4 single crystals on the critical temperature, on the energy gaps, and on the superfluid density by using transport, point-contact Andreev-reflection spectroscopy (PCARS), and London penetration depth measurements. The pristine compound (Tc36 K) shows two isotropic gaps whose amplitudes (Δ1 = 1.4–3.9 meV and Δ2 = 5.2–8.5 meV) are perfectly compatible with those reported in the literature. Upon Co doping (up to ≈7% Co), Tc decreases down to ≃20 K, the spin-vortex-crystal order appears, and the low-temperature superfluid density is gradually suppressed. PCARS and London penetration depth measurements perfectly agree in demonstrating that the nodeless multigap structure is robust upon Co doping, while the gap amplitudes decrease as a function of Tc in a linear way with almost constant values of the gap ratios 2Δi/kBTc. Full article
Show Figures

Figure 1

11 pages, 2277 KB  
Communication
The Depairing Current Density of a Fe(Se,Te) Crystal Evaluated in Presence of Demagnetizing Factors
by Armando Galluzzi, Krastyo Buchkov, Vihren Tomov, Elena Nazarova, Antonio Leo, Gaia Grimaldi, Adrian Crisan and Massimiliano Polichetti
Condens. Matter 2023, 8(4), 91; https://doi.org/10.3390/condmat8040091 - 23 Oct 2023
Viewed by 2173
Abstract
The effect of the demagnetizing factor, regarding the determination of the de-pairing current density Jdep, has been studied in the case of a Fe(Se,Te) crystal, using DC magnetic measurements as a function of a magnetic field (H) [...] Read more.
The effect of the demagnetizing factor, regarding the determination of the de-pairing current density Jdep, has been studied in the case of a Fe(Se,Te) crystal, using DC magnetic measurements as a function of a magnetic field (H) at different temperatures (T). First, the lower critical field Hc1(T) values were obtained, and the demagnetization effects acting on them were investigated after calculating the demagnetizing factor. The temperature behaviors of both the original Hc1 values and the ones obtained after considering the demagnetization effects (Hc1demag) were analyzed, and the temperature dependence of the London penetration depth λL(T) was obtained in both cases. In particular, the λL(T) curves were fitted with a power law dependence, indicating the presence of low-energy quasiparticle excitations. Furthermore, by plotting λL2 as a function of T, we found that our sample behaves as a multigap superconductor, which is similar to other Fe-11 family iron-based compounds. After that, the coherence length ξ values were extracted, starting with the Hc2(T) curve. The knowledge of λL and ξ allowed us to determine the Jdep values and to observe how they are influenced by the demagnetizing factor. Full article
Show Figures

Figure 1

14 pages, 2937 KB  
Article
Characteristic Length for Pinning Force Density in Nb3Sn
by Evgeny F. Talantsev, Evgeniya G. Valova-Zaharevskaya, Irina L. Deryagina and Elena N. Popova
Materials 2023, 16(14), 5185; https://doi.org/10.3390/ma16145185 - 24 Jul 2023
Cited by 7 | Viewed by 1991
Abstract
The pinning force density, Fp, is one of the main parameters that characterize the resilience of a superconductor to carrying a dissipative-free transport current in an applied magnetic field. Kramer (1973) and Dew-Hughes (1974) proposed a widely used scaling law for [...] Read more.
The pinning force density, Fp, is one of the main parameters that characterize the resilience of a superconductor to carrying a dissipative-free transport current in an applied magnetic field. Kramer (1973) and Dew-Hughes (1974) proposed a widely used scaling law for this quantity, where one of the parameters is the pinning force density maximum, Fp,max, which represents the maximal performance of a given superconductor in an applied magnetic field at a given temperature. Since the late 1970s to the present, several research groups have reported experimental data on the dependence of Fp,max on the average grain size, d, in Nb3Sn-based conductors. Fp,maxd datasets were analyzed and a scaling law for the dependence Fp,maxd=A×ln1/d+B was proposed. Despite the fact that this scaling law is widely accepted, it has several problems; for instance, according to this law, at T=4.2 K and d650 nm, Nb3Sn should lose its superconductivity, which is in striking contrast to experiments. Here, we reanalyzed the full inventory of publicly available Fp,maxd data for Nb3Sn conductors and found that the dependence can be described by the exponential law, in which the characteristic length, δ, varies within a remarkably narrow range of δ=175±13 nm for samples fabricated using different technologies. The interpretation of this result is based on the idea that the in-field supercurrent flows within a thin surface layer (thickness of δ) near grain boundary surfaces (similar to London’s law, where the self-field supercurrent flows within a thin surface layer with a thickness of the London penetration depth, λ, and the surface is a superconductor–vacuum surface). An alternative interpretation is that δ represents the characteristic length of the exponential decay flux pinning potential from the dominant defects in Nb3Sn superconductors, which are grain boundaries. Full article
Show Figures

Figure 1

9 pages, 3078 KB  
Article
Vortex Glass—Vortex Liquid Transition in BaFe2(As1-xPx)2 and CaKFe4As4 Superconductors from Multi-Harmonic AC Magnetic Susceptibility Studies
by Ion Ivan, Alina M. Ionescu, Daniel N. Crisan and Adrian Crisan
Int. J. Mol. Sci. 2023, 24(9), 7896; https://doi.org/10.3390/ijms24097896 - 26 Apr 2023
Cited by 2 | Viewed by 1899
Abstract
For practical applications of superconductors, understanding the vortex matter and dynamics is of paramount importance. An important issue in this context is the transition of the vortex glass, which is a true superconducting phase, into a vortex liquid phase having a linear dissipation. [...] Read more.
For practical applications of superconductors, understanding the vortex matter and dynamics is of paramount importance. An important issue in this context is the transition of the vortex glass, which is a true superconducting phase, into a vortex liquid phase having a linear dissipation. By using multi-harmonic susceptibility studies, we have investigated the vortex glass—vortex liquid phase transitions in CaKFe4As4 and BaFe2(As0.68P0.32)2 single crystals. The principle of our method relates the on-set of the third-harmonic susceptibility response with the appearance of a vortex-glass phase in which the dissipation is non-linear. Similar to the high-critical temperature cuprate superconductors, we have shown that even in these iron-based superconductors with significant lower critical temperatures, such phase transition can be treated as a melting in the sense of Lindemann’s approach, considering an anisotropic Ginzburg-Landau model. The experimental data are consistent with a temperature-dependent London penetration depth given by a 3D XY fluctuations model. The fitting parameters allowed us to extrapolate the vortex melting lines down to the temperature of liquid hydrogen, and such extrapolation showed that CaKFe4As4 is a very promising superconducting material for high field applications in liquid hydrogen, with a melting field at 20 K of the order of 100 T. Full article
(This article belongs to the Special Issue Glass Transition and Related Phenomena 2.0)
Show Figures

Figure 1

17 pages, 6567 KB  
Article
Superconducting Stiffness and Coherence Length of FeSe0.5Te0.5 Measured in a Zero-Applied Field
by Amotz Peri, Itay Mangel and Amit Keren
Condens. Matter 2023, 8(2), 39; https://doi.org/10.3390/condmat8020039 - 23 Apr 2023
Cited by 2 | Viewed by 3593
Abstract
Superconducting stiffness ρs and coherence length ξ are usually determined by measuring the penetration depth λ of a magnetic field and the upper critical field Hc2 of a superconductor (SC), respectively. However, in magnetic SC, which is iron-based, this could [...] Read more.
Superconducting stiffness ρs and coherence length ξ are usually determined by measuring the penetration depth λ of a magnetic field and the upper critical field Hc2 of a superconductor (SC), respectively. However, in magnetic SC, which is iron-based, this could lead to erroneous results, since the internal field could be very different from the applied one. To overcome this problem in Fe1+ySexTe1x with x0.5 and y0 (FST), we measured both quantities with the Stiffnessometer technique. In this technique, one applies a rotor-free vector potential A to a superconducting ring and measures the current density j via the ring’s magnetic moment m. ρs and ξ are determined from London’s equation, j=ρsA, and its range of validity. This method is particularly accurate at temperatures close to the critical temperature Tc. We find weaker ρs and longer ξ than existing literature reports, and critical exponents which agree better with expectations based on the Ginzburg–Landau theory. Full article
Show Figures

Figure 1

10 pages, 8317 KB  
Article
Superconductivity in Hierarchical 3D Nanostructured Pb–In Alloys
by Artem F. Shevchun, Galina K. Strukova, Ivan M. Shmyt’ko, Gennady V. Strukov, Sergey A. Vitkalov, Dmitry S. Yakovlev, Ivan A. Nazhestkin and Dmitry V. Shovkun
Symmetry 2022, 14(10), 2142; https://doi.org/10.3390/sym14102142 - 13 Oct 2022
Cited by 4 | Viewed by 2367
Abstract
The superconducting properties of hierarchical nanostructured samples of Pb–In alloys have been studied by the measurement of dynamic susceptibility χ(T) temperature dependence. Symmetric samples with different shapes and sizes were formed on a brass metallic net by cathode-metal electrodeposition with [...] Read more.
The superconducting properties of hierarchical nanostructured samples of Pb–In alloys have been studied by the measurement of dynamic susceptibility χ(T) temperature dependence. Symmetric samples with different shapes and sizes were formed on a brass metallic net by cathode-metal electrodeposition with a programmed pulsing current. Two different kinds of χ(T) dependence were observed in synthesized structures. The first kind was a broad superconductive transition without energy dissipation with a very weak response to the external magnetic field. The second kind was, conversely, an abrupt transition signifying an energy dissipation with a significant field response. This behavior depends on the ratio between a superconducting domain size (defined by the London penetration depth λ) and a crystallite size. In these cases, one or several superconducting domains are present in a sample. This result paves the way to controlling a superconducting domain size in materials with the parameters of a pulsed current. Full article
(This article belongs to the Special Issue Quantum Dynamics in Josephson Junctions and Symmetry)
Show Figures

Figure 1

7 pages, 1856 KB  
Article
Isotope Effect in the Translation-Invariant Bipolaron Theory of High-Temperature Superconductivity
by Victor D. Lakhno
Condens. Matter 2020, 5(4), 80; https://doi.org/10.3390/condmat5040080 - 4 Dec 2020
Cited by 2 | Viewed by 3253
Abstract
It is shown that the translation-invariant bipolaron theory of superconductivity can explain the dependence of the isotope coefficient in high-temperature superconductors on the critical temperature of a superconducting transition: in the case of strong electron–phonon interaction, the isotope coefficient is low when doping [...] Read more.
It is shown that the translation-invariant bipolaron theory of superconductivity can explain the dependence of the isotope coefficient in high-temperature superconductors on the critical temperature of a superconducting transition: in the case of strong electron–phonon interaction, the isotope coefficient is low when doping is optimal and high when it is weak. It is demonstrated that in the case of London penetration depth, the absolute value of the isotope coefficient behaves in the opposite way. A conclusion of the great role of non-adiabaticity in the case of weak doping is made. The criteria for d-wave phonon input into the isotope effect is established. Full article
(This article belongs to the Section Superconductivity)
Show Figures

Figure 1

9 pages, 619 KB  
Review
The Path to Type-II Superconductivity
by Rudolf P. Huebener
Metals 2019, 9(6), 682; https://doi.org/10.3390/met9060682 - 14 Jun 2019
Cited by 6 | Viewed by 5263
Abstract
Following the discovery of superconductivity by Heike Kamerlingh Onnes in 1911, research concentrated on the electric conductivity of the materials investigated. Then, it was Max von Laue who in the early 1930s turned his attention to the magnetic properties of superconductors, such as [...] Read more.
Following the discovery of superconductivity by Heike Kamerlingh Onnes in 1911, research concentrated on the electric conductivity of the materials investigated. Then, it was Max von Laue who in the early 1930s turned his attention to the magnetic properties of superconductors, such as their demagnetizing effects in a weak magnetic field. As a consultant at the Physikalisch-Technische Reichsanstalt in Berlin, von Laue was in close contact with Walther Meissner at the Reichsanstalt. In 1933, Meisner together with Robert Ochsenfeld discovered the perfect diamagnetism of superconductors (Meissner–Ochsenfeld effect). This was a turning point, indicating that superconductivity represents a thermodynamic equilibrium state and leading to the London theory and the Ginzburg–Landau theory. In the early 1950s in Moscow, Nikolay Zavaritzkii carried out experiments on superconducting thin films. In the theoretical analysis of his experiments, he collaborated with Alexei A. Abrikosov and for the first time they considered the possibility that the coherence length ξ can be smaller than the magnetic penetration depth λ m . They called these materials the “second group”. Subsequently, Abrikosov discovered the famous Abrikosov vortex lattice and the superconducting mixed state. The important new field of type-II superconductivity was born. Full article
(This article belongs to the Special Issue Metallic Superconductors - The Workhorses of Superconductivity)
Show Figures

Figure 1

12 pages, 297 KB  
Article
London Penetration Depth as a Test of Order Parameter Symmetry in Sodium Cobaltate Superconductors
by Dmitry M. Dzebisashvili and Andrey B. Klyuchantsev
Symmetry 2019, 11(5), 633; https://doi.org/10.3390/sym11050633 - 5 May 2019
Cited by 1 | Viewed by 3110
Abstract
Temperature dependence of the magnetic field penetration depth λ was calculated for water intercalated sodium cobaltate superconductor Na x CoO 2 · y H 2 O. Assuming that the system is in the chiral d+id–wave superconducting state, it was shown that the shifting [...] Read more.
Temperature dependence of the magnetic field penetration depth λ was calculated for water intercalated sodium cobaltate superconductor Na x CoO 2 · y H 2 O. Assuming that the system is in the chiral d+id–wave superconducting state, it was shown that the shifting of the excitation spectrum nodal points off the normal phase Fermi surface due to variation of the sodium content x changes the functional form of the temperature dependence of λ 2 from exponential to linear in the low temperatures region. It is argued that this change in the functional form of T–dependence of the λ 2 can serve as a proof for the chiral symmetry of the superconducting order parameter in the sodium cobaltate. Full article
(This article belongs to the Special Issue Gap Symmetry and Structure of Superconductors)
Show Figures

Figure 1

24 pages, 723 KB  
Article
Superconducting Properties of 3D Low-Density TI-Bipolaron Gas in Magnetic Field
by Victor D. Lakhno
Condens. Matter 2019, 4(2), 43; https://doi.org/10.3390/condmat4020043 - 25 Apr 2019
Cited by 8 | Viewed by 3519
Abstract
Consideration is given to thermodynamical properties of a three-dimensional Bose-condensate of translation-invariant bipolarons (TI-bipolarons) in magnetic field. The critical temperature of transition, critical magnetic fields, energy, heat capacity and the transition heat of TI-bipolaron gas are calculated. Such values as maximum magnetic field, [...] Read more.
Consideration is given to thermodynamical properties of a three-dimensional Bose-condensate of translation-invariant bipolarons (TI-bipolarons) in magnetic field. The critical temperature of transition, critical magnetic fields, energy, heat capacity and the transition heat of TI-bipolaron gas are calculated. Such values as maximum magnetic field, London penetration depth and their temperature dependencies are calculated. The results obtained are used to explain experiments on high-temperature superconductors. Full article
Show Figures

Figure 1

9 pages, 4631 KB  
Letter
Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry
by Dominik Rohner, Lucas Thiel, Benedikt Müller, Mark Kasperczyk, Reinhold Kleiner, Dieter Koelle and Patrick Maletinsky
Sensors 2018, 18(11), 3790; https://doi.org/10.3390/s18113790 - 6 Nov 2018
Cited by 14 | Viewed by 6497
Abstract
We report on direct, real-space imaging of the stray magnetic field above a micro-scale disc of a thin film of the high-temperature superconductor YBa2Cu3O7−δ (YBCO) using scanning single spin magnetometry. Our experiments yield a direct measurement of [...] Read more.
We report on direct, real-space imaging of the stray magnetic field above a micro-scale disc of a thin film of the high-temperature superconductor YBa2Cu3O7−δ (YBCO) using scanning single spin magnetometry. Our experiments yield a direct measurement of the sample’s London penetration depth and allow for a quantitative reconstruction of the supercurrents flowing in the sample as a result of Meissner screening. These results show the potential of scanning single spin magnetometry for studies of the nanoscale magnetic properties of thin-film superconductors, which could be readily extended to elevated temperatures or magnetic fields. Full article
(This article belongs to the Special Issue Sensors Based on Quantum Phenomena)
Show Figures

Figure 1

7 pages, 284 KB  
Article
Numerical Solution of Maxwell Equations for S-Wave Superconductors
by Naoum Karchev and Tsvetan Vetsov
Condens. Matter 2017, 2(3), 31; https://doi.org/10.3390/condmat2030031 - 15 Sep 2017
Cited by 2 | Viewed by 3710
Abstract
The present paper is a sequel to the paper by Karchev (Condensed Matter 20 February 2017). We report the numerical solutions of the system of equations, which describes the electrodynamics of s-wave superconductors without normal quasi-particles for time-independent fields and half-plane superconductor geometry. [...] Read more.
The present paper is a sequel to the paper by Karchev (Condensed Matter 20 February 2017). We report the numerical solutions of the system of equations, which describes the electrodynamics of s-wave superconductors without normal quasi-particles for time-independent fields and half-plane superconductor geometry. The results are: (i) the applied magnetic field increases the Ginzburg–Landau (GL) coherence length and suppresses the superconductivity; (ii) the applied electric field decreases GL coherence length and supports the superconductivity; (iii) if the applied magnetic field is fixed and the applied electric field increases, the London penetration depth of the magnetic field decreases. The main conclusion is that by applying electric field at very low temperature where there are no normal quasi-particles one increases the critical magnetic field. This result is experimentally testable. Full article
Show Figures

Figure 1

Back to TopTop