Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = MAMP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 483 KB  
Review
Human Microbiome as an Immunoregulatory Axis: Mechanisms, Dysbiosis, and Therapeutic Modulation
by Matías Cortés, Paula Olate, Rodrigo Rodriguez, Rommy Diaz, Ailín Martínez, Genisley Hernández, Nestor Sepulveda, Erwin A. Paz and John Quiñones
Microorganisms 2025, 13(9), 2147; https://doi.org/10.3390/microorganisms13092147 - 14 Sep 2025
Viewed by 1306
Abstract
The human microbiome plays a central role in modulating the immune system and maintaining immunophysiological homeostasis, contributing to the prevention of immune-mediated diseases. In particular, the gut microbiota is a key ecosystem for immune system maturation, especially in early life. This review aimed [...] Read more.
The human microbiome plays a central role in modulating the immune system and maintaining immunophysiological homeostasis, contributing to the prevention of immune-mediated diseases. In particular, the gut microbiota is a key ecosystem for immune system maturation, especially in early life. This review aimed to analyze the molecular and cellular mechanisms linking the microbiome to immune and neuronal functions, as well as the impact of dysbiosis and emerging therapeutic strategies targeting the microbiome. The analysis was based on scientific databases, prioritizing studies published since 2000, with special emphasis on the past decade. The microbiome influences immune signaling through microorganism-associated molecular patterns (MAMPs) and pattern recognition receptors (PRRs), including Toll-like receptors (TLRs). Additionally, microbial metabolites—such as short-chain fatty acids (SCFAs), tryptophan derivatives, and secondary bile acids—exert significant immunomodulatory effects. The intestinal epithelial barrier is also described as an active immunological interface contributing to systemic regulation. The literature highlights innovative therapies, including fecal microbiota transplantation (FMT), probiotics, and microbiome editing with CRISPR-Cas technologies. These strategies aim to restore microbial balance and improve immune outcomes. The growing body of evidence positions the microbiome as a valuable clinical and diagnostic target, with significant potential for application in personalized medicine. Full article
(This article belongs to the Special Issue Advances in Human Microbiomes)
Show Figures

Graphical abstract

18 pages, 1571 KB  
Article
Genetic Parameters, Linear Associations, and Genome-Wide Association Study for Endotoxin-Induced Cortisol Response in Holstein heifers
by Bruno A. Galindo, Umesh K. Shandilya, Ankita Sharma, Flavio S. Schenkel, Angela Canovas, Bonnie A. Mallard and Niel A. Karrow
Animals 2025, 15(13), 1890; https://doi.org/10.3390/ani15131890 - 26 Jun 2025
Viewed by 514
Abstract
Lipopolysaccharide (LPS) endotoxin is a well-characterized microbe-associated molecular pattern (MAMP) that forms the outer membrane of both pathogenic and commensal Gram-negative bacteria. It plays a crucial role in triggering inflammatory disorders such as mastitis, acidosis, and septicemia. In heifers, an LPS challenge induces [...] Read more.
Lipopolysaccharide (LPS) endotoxin is a well-characterized microbe-associated molecular pattern (MAMP) that forms the outer membrane of both pathogenic and commensal Gram-negative bacteria. It plays a crucial role in triggering inflammatory disorders such as mastitis, acidosis, and septicemia. In heifers, an LPS challenge induces a dynamic stress response, marked by elevated cortisol levels, increased body temperature, and altered immune function. Research indicates that LPS administration leads to a significant rise in cortisol post-challenge. Building on this understanding, the present study aimed to estimate genetic parameters for serum cortisol response to LPS challenge in Holstein heifers and its linear associations with production, health, reproduction, and conformation traits. Additionally, a genome-wide association study (GWAS) was conducted to identify genetic regions associated with cortisol response. A total of 252 animals were evaluated for cortisol response, with correlations estimated between cortisol levels and 55 genomic breeding values for key traits. Genetic parameters and heritability for cortisol response were estimated using Residual Maximum Likelihood (REML) in the Blupf90+ v 2.57 software. Single-Step GWAS (ssGWAS) employing a 10-SNP window approach and 42,123 SNP markers was performed to identify genomic regions that explained at least 0.5% of additive genetic variance. Finally, candidate genes and QTLs located 50 kb up and downstream of those windows were identified. The cortisol response showed significant but weak linear associations with cystic ovaries, body maintenance requirements, lactation persistency, milk yield, and protein yield (p-value ≤ 0.05) and showed suggestive weak linear associations with udder texture, clinical ketosis, heel horn erosion, and milking speed (p-value ≤ 0.15). Cortisol response showed significant additive genetic variance, along with moderate heritability of 0.26 (±0.19). A total of 34 windows explained at least 0.5% of additive genetic variance, and 75 QTLs and 11 candidate genes, comprising the genes CCL20, DAW1, CSMD2, HMGB4, B3GAT2, PARD3, bta-mir-2285aw, CFH, CDH2, ENSBTAG00000052242, and ENSBTAG00000050498, were identified. The functional enrichment analysis allowed us to infer two instances where these gene products could interfere with cortisol production: the first instance is related to the complement system, and the second one is related to the EMT (Epithelium–Mesenchymal Transition) and pituitary gland formation. Among the QTLs, 13 were enriched in the dataset, corresponding to traits related to milk (potassium content), the exterior (udder traits, teat placement, foot angle, rear leg placement, and feet and leg conformation), production (length of productive life, net merit, and type), and reproduction (stillbirth and calving ease). In summary, the cortisol response to LPS challenge in Holstein heifers seems to be moderately heritable and has weak but significant linear associations with important production and health traits. Several candidate genes identified could perform important roles, in at least two ways, for cortisol production, and QTLs were identified close to regions of the genome that explained a significant amount of additive genetic variance for cortisol response. Therefore, further investigations are warranted to validate these findings with a larger dataset. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
Show Figures

Figure 1

22 pages, 5859 KB  
Article
A Multi-Active and Multi-Passive Sensor Fusion Algorithm for Multi-Target Tracking in Dense Group Clutter Environments
by Yongquan Zhang, Fan Yang, Wenbo Zhang, Aomen Shang and Zhibin Li
Remote Sens. 2024, 16(22), 4120; https://doi.org/10.3390/rs16224120 - 5 Nov 2024
Cited by 2 | Viewed by 1786
Abstract
Multi-target tracking (MTT) of multi-active and multi-passive sensor (MAMPS) systems in dense group clutter environments is facing significant challenges in measurement fusion. Due to the difference in measurement information characteristics in MAMPS fusion, it is difficult to effectively correlate and fuse different types [...] Read more.
Multi-target tracking (MTT) of multi-active and multi-passive sensor (MAMPS) systems in dense group clutter environments is facing significant challenges in measurement fusion. Due to the difference in measurement information characteristics in MAMPS fusion, it is difficult to effectively correlate and fuse different types of sensors’ measurements, leading to difficulty in taking full advantage of various types of sensors to improve target tracking accuracy. To this end, we present a novel MAMPS fusion algorithm, which is based on centralized measurement association fusion (MAF) and distributed deep neural network (DNN) track fusion, named the MAMPS-MAF-DNN algorithm. Firstly, to reduce the impact of the dense group clutter, a clutter pre-processing algorithm is elaborated, which combines the advantages of the CFDP (cluster by finding density peaks) and double threshold screening algorithms. Then, for the single-active and multi-passive sensor (SAMPS) system, a centralized MAF algorithm based on angle information is developed, called the SAMPS-MAF algorithm. Finally, the SAMPS-MAF algorithm is extended to the MAMPS system within the DNN framework, and the complete MAMPS-MAF-DNN algorithm is proposed. Experimental results indicate that, compared to the existing MAF and covariance intersection (CI) fusion algorithms, the proposed MAMPS-MAF-DNN algorithm can fully combine the advantages of multi-active and multi-passive sensors, efficiently reduce the computational complexity, and obviously improve the tracking accuracy. Full article
Show Figures

Figure 1

17 pages, 4060 KB  
Article
Energy Efficient Multi-Active/Multi-Passive Antenna Arrays for Portable Access Points
by Muhammad Haroon Tariq, Shuai Zhang, Christos Masouros and Constantinos B. Papadias
Micromachines 2024, 15(11), 1351; https://doi.org/10.3390/mi15111351 - 1 Nov 2024
Cited by 1 | Viewed by 1641
Abstract
This article is about better wireless network connectivity. The main goal is to provide wireless service to several use cases and scenarios that may not be adequately covered today. Some of the considered scenarios are home connectivity, street-based infrastructure, emergency situations, disaster areas, [...] Read more.
This article is about better wireless network connectivity. The main goal is to provide wireless service to several use cases and scenarios that may not be adequately covered today. Some of the considered scenarios are home connectivity, street-based infrastructure, emergency situations, disaster areas, special event areas, and remote areas that suffer from problematic/inadequate network and possibly power infrastructure. A target system that we consider for such scenarios is that of an energy-efficient self-backhauled base station (also called a “portable access point—PAP”) that is mounted on a drone to aid/expand the land-based network. For the wireless backhaul link of the PAP, as well as for the fronthaul of the street-mounted base station, we consider newly built multi-active/multi-passive parasitic antenna arrays (MAMPs). These antenna systems lead to increased range/signal strength with low hardware complexity and power needs. This is due to their reduced number of radio frequency chains, which decreases the cost and weight of the base station system. MAMPs can show a performance close to traditional multiple input/multiple output (MIMO) systems that use as many antenna elements as RF chains and to phased arrays. They can produce a directional beam in any desired direction with higher gain and narrow beamwidth by just tuning the load values of the parasitic elements. The MAMP is designed based on radiation conditions which were produced during the research to ensure that the radiation properties of the array were good. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

14 pages, 5026 KB  
Article
Lipoteichoic Acid from Heyndrickxia coagulans HOM5301 Modulates the Immune Response of RAW 264.7 Macrophages
by Shiqi Zhang, Pinglan Li, Xiao Zhang, Yan Ding, Tingting Wang, Suwon Lee, Ying Xu, Chongyoon Lim and Nan Shang
Nutrients 2024, 16(17), 3014; https://doi.org/10.3390/nu16173014 - 6 Sep 2024
Cited by 3 | Viewed by 1732
Abstract
Heyndrickxia coagulans (formerly Bacillus coagulans) has been increasingly utilized as an immunomodulatory probiotics. Oral administration of H. coagulans HOM5301 significantly boosted both innate and adaptive immunity in mice, particularly by increasing the phagocytic capacity of monocytes/macrophages. Lipoteichoic acid (LTA), a major microbe-associated [...] Read more.
Heyndrickxia coagulans (formerly Bacillus coagulans) has been increasingly utilized as an immunomodulatory probiotics. Oral administration of H. coagulans HOM5301 significantly boosted both innate and adaptive immunity in mice, particularly by increasing the phagocytic capacity of monocytes/macrophages. Lipoteichoic acid (LTA), a major microbe-associated molecular pattern (MAMP) in Gram-positive bacteria, exhibits differential immunomodulatory effects due to its structural heterogeneity. We extracted, purified, and characterized LTA from H. coagulans HOM5301. The results showed that HOM5301 LTA consists of a glycerophosphate backbone. Its molecular weight is in the range of 10–16 kDa. HOM5301 LTA induced greater productions of nitric oxide, TNFα, and IL-6 in RAW 264.7 macrophages compared to Staphylococcus aureus LTA. Comparative transcriptome and proteome analyses identified the differentially expressed genes and proteins triggered by HOM5301 LTA. KEGG analyses revealed that HOM5301 LTA transcriptionally and translationally activated macrophages through two immune-related pathways: cytokine–cytokine receptor interaction and phagosome formation. Protein–protein interaction network analysis indicated that the pro-inflammatory response elicited by HOM5301 LTA was TLR2-dependent, possibly requiring the coreceptor CD14, and is mediated via the MAPK and NF-kappaB pathways. Our results demonstrate that LTA is an important MAMP of H. coagulans HOM5301 that boosts immune responses, suggesting that HOM5301 LTA may be a promising immunoadjuvant. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

25 pages, 1870 KB  
Review
Future Prospects of the Assembly Model for MEP Systems in Chinese Buildings: A Whole Life Cycle Perspective
by Chun Wang, Peng Ouyang, Xiaodong Liu, Zhihua Zou, Yuanping Wang and Ruiling Wang
Appl. Sci. 2024, 14(15), 6818; https://doi.org/10.3390/app14156818 - 5 Aug 2024
Cited by 2 | Viewed by 2304 | Correction
Abstract
The assembly building M&E (Monitoring and Evaluation) system is a vital part of the transformation of China’s construction industry, featuring intelligent control, high efficiency, and high safety. The article provides a comprehensive review of research related to assembly M&E systems from the perspective [...] Read more.
The assembly building M&E (Monitoring and Evaluation) system is a vital part of the transformation of China’s construction industry, featuring intelligent control, high efficiency, and high safety. The article provides a comprehensive review of research related to assembly M&E systems from the perspective of the whole life cycle of assembly, containing 125 journal articles from 1993 to 2024. The article analyzes some policies with updated iterations in the United States, Japan, Germany, Denmark, France, and the European Union. The literature review and semi-structured interviews with experts identified significant constraints limiting the various stages of the entire life cycle of assembled MEP (mechanical, electrical, and plumbing) systems. The absence of uniform design standards, personnel collaboration, prefabricated component testing, transportation, information utilization, intelligent testing, and recycling of disassemblability that can occur in the entire life cycle of assembled MEP systems are summarized. Finally, the article suggests that assembly M&E systems can be shared and marketed to improve the economic viability of assembly M&E systems and their wide application in the areas of technology, platform, and demand. Full article
Show Figures

Figure 1

19 pages, 2218 KB  
Review
Plant Immunity: At the Crossroads of Pathogen Perception and Defense Response
by Sajad Ali, Anshika Tyagi and Zahoor Ahmad Mir
Plants 2024, 13(11), 1434; https://doi.org/10.3390/plants13111434 - 22 May 2024
Cited by 19 | Viewed by 10547
Abstract
Plants are challenged by different microbial pathogens that affect their growth and productivity. However, to defend pathogen attack, plants use diverse immune responses, such as pattern-triggered immunity (PTI), effector-triggered immunity (ETI), RNA silencing and autophagy, which are intricate and regulated by diverse signaling [...] Read more.
Plants are challenged by different microbial pathogens that affect their growth and productivity. However, to defend pathogen attack, plants use diverse immune responses, such as pattern-triggered immunity (PTI), effector-triggered immunity (ETI), RNA silencing and autophagy, which are intricate and regulated by diverse signaling cascades. Pattern-recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat (NLR) receptors are the hallmarks of plant innate immunity because they can detect pathogen or related immunogenic signals and trigger series of immune signaling cascades at different cellular compartments. In plants, most commonly, PRRs are receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that function as a first layer of inducible defense. In this review, we provide an update on how plants sense pathogens, microbe-associated molecular patterns (PAMPs or MAMPs), and effectors as a danger signals and activate different immune responses like PTI and ETI. Further, we discuss the role RNA silencing, autophagy, and systemic acquired resistance as a versatile host defense response against pathogens. We also discuss early biochemical signaling events such as calcium (Ca2+), reactive oxygen species (ROS), and hormones that trigger the activation of different plant immune responses. This review also highlights the impact of climate-driven environmental factors on host–pathogen interactions. Full article
Show Figures

Figure 1

29 pages, 4102 KB  
Review
cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis
by Vijay Kumar and John H. Stewart
Int. J. Mol. Sci. 2024, 25(3), 1828; https://doi.org/10.3390/ijms25031828 - 2 Feb 2024
Cited by 11 | Viewed by 3111
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling [...] Read more.
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers. Full article
(This article belongs to the Special Issue Insights into Cytotoxic Lymphocytes Maintaining Immune Homeostasis)
Show Figures

Figure 1

22 pages, 4918 KB  
Article
Kiwifruit Resistance to Sclerotinia sclerotiorum and Pseudomonas syringae pv. actinidiae and Defence Induction by Acibenzolar-S-methyl and Methyl Jasmonate Are Cultivar Dependent
by Tony Reglinski, Kirstin V. Wurms, Joel L. Vanneste, Annette Ah Chee, Magan Schipper, Deirdre Cornish, Janet Yu, Jordan McAlinden and Duncan Hedderley
Int. J. Mol. Sci. 2023, 24(21), 15952; https://doi.org/10.3390/ijms242115952 - 3 Nov 2023
Cited by 5 | Viewed by 1871
Abstract
Pathogen susceptibility and defence gene inducibility were compared between the Actinidia arguta cultivar ‘Hortgem Tahi’ and the two cultivars of A. chinensis ‘Hayward’ and ‘Zesy002′. Plants were treated with acibenzolar-s-methyl (ASM) or methyl jasmonate (MeJA) one week before inoculation with Pseudomonas syringae pv. [...] Read more.
Pathogen susceptibility and defence gene inducibility were compared between the Actinidia arguta cultivar ‘Hortgem Tahi’ and the two cultivars of A. chinensis ‘Hayward’ and ‘Zesy002′. Plants were treated with acibenzolar-s-methyl (ASM) or methyl jasmonate (MeJA) one week before inoculation with Pseudomonas syringae pv. actinidiae (Psa biovar3) or Sclerotinia sclerotiorum, or secondary induction with chitosan+glucan (Ch-Glu) as a potential pathogen proxy. Defence expression was evaluated by measuring the expression of 18 putative defence genes. ‘Hortgem Tahi’ was highly susceptible to sclerotinia and very resistant to Psa, whereas ‘Zesy002′ was highly resistant to both, and ‘Hayward’ was moderately susceptible to both. Gene expression in ‘Hayward’ and ‘Zesy002′ was alike but differed significantly from ‘Hortgem Tahi’ which had higher basal levels of PR1-i, PR5-i, JIH1, NPR3 and WRKY70 but lower expression of RD22 and PR2-i. Treatment with ASM caused upregulation of NIMIN2, PR1-i, WRKY70, DMR6 and PR5-i in all cultivars and induced resistance to Psa in ‘Zesy002′ and ‘Hayward’ but decreased resistance to sclerotinia in ‘Zesy002′. MeJA application caused upregulation of LOX2 and downregulation of NIMIN2, DMR6 and PR2-i but did not affect disease susceptibility. The Ch-Glu inducer induced PR-gene families in each cultivar, highlighting its possible effectiveness as an alternative to actual pathogen inoculation. The significance of variations in fundamental and inducible gene expression among the cultivars is explored. Full article
(This article belongs to the Special Issue Advances of Plants-Pathogen Interaction 2023)
Show Figures

Figure 1

19 pages, 2620 KB  
Review
Immunostimulating Commensal Bacteria and Their Potential Use as Therapeutics
by Bonita McCuaig and Yoshiyuki Goto
Int. J. Mol. Sci. 2023, 24(21), 15644; https://doi.org/10.3390/ijms242115644 - 27 Oct 2023
Cited by 11 | Viewed by 6060
Abstract
The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can [...] Read more.
The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can affect the immune status of the host through a stimulation of the innate immune system, training of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria improve immune response through the production of immunomodulating compounds such as microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use of these methods, as similar treatments have various results in individuals with different residential microbiomes and differential health statuses. A more complete understanding of the interaction between commensal species, host genetics, and the host immune system is needed for effective microbiome interventions to be developed and implemented in a clinical setting. Full article
(This article belongs to the Special Issue Molecular Research of Microbial Infection and Phage Therapy)
Show Figures

Figure 1

21 pages, 393 KB  
Review
Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now?
by Karolina H. Czarnecka-Chrebelska, Jacek Kordiak, Ewa Brzeziańska-Lasota and Dorota Pastuszak-Lewandoska
Cancers 2023, 15(20), 4935; https://doi.org/10.3390/cancers15204935 - 11 Oct 2023
Cited by 4 | Viewed by 2223
Abstract
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link [...] Read more.
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link between dysbiosis and lung cancer. However, it is not only important to identify “which bacteria are present” but also to understand “how” they affect lung carcinogenesis. The interactions between the host and lung microbiota are complex, and our knowledge of this relationship is limited. This review presents research findings on the bacterial lung microbiota and discusses the mechanisms by which lung-dwelling microorganisms may directly or indirectly contribute to the development of lung cancer. These mechanisms include influences on the host immune system regulation and the local immune microenvironment, the regulation of oncogenic signaling pathways in epithelial cells (causing cell cycle disorders, mutagenesis, and DNA damage), and lastly, the MAMPs-mediated path involving the effects of bacteriocins, TLRs signaling induction, and TNF release. A better understanding of lung microbiota’s role in lung tumor pathology could lead to identifying new diagnostic and therapeutic biomarkers and developing personalized therapeutic management for lung cancer patients. Full article
Show Figures

Graphical abstract

14 pages, 2066 KB  
Article
Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet
by Madini O. Alassafi, Ishtiaq Rasool Khan, Rayed AlGhamdi, Wajid Aziz, Abdulrahman A. Alshdadi, Mohamed M. Dessouky, Adel Bahaddad, Ali Altalbe and Nabeel Albishry
Healthcare 2023, 11(16), 2280; https://doi.org/10.3390/healthcare11162280 - 13 Aug 2023
Cited by 1 | Viewed by 1735
Abstract
An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological [...] Read more.
An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications. Full article
Show Figures

Figure 1

22 pages, 4661 KB  
Review
Suppression of Chitin-Triggered Immunity by Plant Fungal Pathogens: A Case Study of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii
by Nisrine Bakhat, Alejandra Vielba-Fernández, Isabel Padilla-Roji, Jesús Martínez-Cruz, Álvaro Polonio, Dolores Fernández-Ortuño and Alejandro Pérez-García
J. Fungi 2023, 9(7), 771; https://doi.org/10.3390/jof9070771 - 21 Jul 2023
Cited by 18 | Viewed by 5908
Abstract
Fungal pathogens are significant plant-destroying microorganisms that present an increasing threat to the world’s crop production. Chitin is a crucial component of fungal cell walls and a conserved MAMP (microbe-associated molecular pattern) that can be recognized by specific plant receptors, activating chitin-triggered immunity. [...] Read more.
Fungal pathogens are significant plant-destroying microorganisms that present an increasing threat to the world’s crop production. Chitin is a crucial component of fungal cell walls and a conserved MAMP (microbe-associated molecular pattern) that can be recognized by specific plant receptors, activating chitin-triggered immunity. The molecular mechanisms underlying the perception of chitin by specific receptors are well known in plants such as rice and Arabidopsis thaliana and are believed to function similarly in many other plants. To become a plant pathogen, fungi have to suppress the activation of chitin-triggered immunity. Therefore, fungal pathogens have evolved various strategies, such as prevention of chitin digestion or interference with plant chitin receptors or chitin signaling, which involve the secretion of fungal proteins in most cases. Since chitin immunity is a very effective defensive response, these fungal mechanisms are believed to work in close coordination. In this review, we first provide an overview of the current understanding of chitin-triggered immune signaling and the fungal proteins developed for its suppression. Second, as an example, we discuss the mechanisms operating in fungal biotrophs such as powdery mildew fungi, particularly in the model species Podosphaera xanthii, the main causal agent of powdery mildew in cucurbits. The key role of fungal effector proteins involved in the modification, degradation, or sequestration of immunogenic chitin oligomers is discussed in the context of fungal pathogenesis and the promotion of powdery mildew disease. Finally, the use of this fundamental knowledge for the development of intervention strategies against powdery mildew fungi is also discussed. Full article
(This article belongs to the Special Issue Plant Fungal Pathogenesis 2022)
Show Figures

Figure 1

19 pages, 4966 KB  
Article
Antagonistic Bacteria Bacillus velezensis VB7 Possess Nematicidal Action and Induce an Immune Response to Suppress the Infection of Root-Knot Nematode (RKN) in Tomato
by Vinothini Kamalanathan, Nakkeeran Sevugapperumal and Saranya Nallusamy
Genes 2023, 14(7), 1335; https://doi.org/10.3390/genes14071335 - 25 Jun 2023
Cited by 11 | Viewed by 2505
Abstract
Meloidogyne incognita, the root-knot nematode (RKN), a devastating plant parasitic nematode, causes considerable damage to agricultural crops worldwide. As a sedentary root parasite, it alters the root’s physiology and influences the host’s phytohormonal signaling to evade defense. The sustainable management of RKN [...] Read more.
Meloidogyne incognita, the root-knot nematode (RKN), a devastating plant parasitic nematode, causes considerable damage to agricultural crops worldwide. As a sedentary root parasite, it alters the root’s physiology and influences the host’s phytohormonal signaling to evade defense. The sustainable management of RKN remains a challenging task. Hence, we made an attempt to investigate the nematicide activity of Bacillus velezensis VB7 to trigger the innate immune response against the infection of RKN. In vitro assay, B. velezensis VB7 inhibited the hatchability of root-knot nematode eggs and juvenile mortality of M. incognita by 87.95% and 96.66%, respectively at 96 hrs. The application of B. velezensis VB7 challenged against RKN induced MAMP-triggered immunity via the expression of transcription factors/defense genes by several folds pertaining to WRKY, LOX, PAL, MYB, and PR in comparison to those RKN-inoculated and healthy control through RT-PCR. Additionally, Cytoscape analysis of defense genes indicated the coordinated expression of various other genes linked to immune response. Thus, the current study clearly demonstrated the effectiveness of B. velezensis VB7 as a potential nematicide and inducer of immune responses against RKN infestation in tomato. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2586 KB  
Article
Anti-Tumor Efficacy of In Situ Vaccination Using Bacterial Outer Membrane Vesicles
by Elena Caproni, Riccardo Corbellari, Michele Tomasi, Samine J. Isaac, Silvia Tamburini, Ilaria Zanella, Martina Grigolato, Assunta Gagliardi, Mattia Benedet, Chiara Baraldi, Lorenzo Croia, Gabriele Di Lascio, Alvise Berti, Silvia Valensin, Erika Bellini, Matteo Parri, Alberto Grandi and Guido Grandi
Cancers 2023, 15(13), 3328; https://doi.org/10.3390/cancers15133328 - 24 Jun 2023
Cited by 18 | Viewed by 2831
Abstract
In situ vaccination (ISV) is a promising cancer immunotherapy strategy that consists of the intratumoral administration of immunostimulatory molecules (adjuvants). The rationale is that tumor antigens are abundant at the tumor site, and therefore, to elicit an effective anti-tumor immune response, all that [...] Read more.
In situ vaccination (ISV) is a promising cancer immunotherapy strategy that consists of the intratumoral administration of immunostimulatory molecules (adjuvants). The rationale is that tumor antigens are abundant at the tumor site, and therefore, to elicit an effective anti-tumor immune response, all that is needed is an adjuvant, which can turn the immunosuppressive environment into an immunologically active one. Bacterial outer membrane vesicles (OMVs) are potent adjuvants since they contain several microbe-associated molecular patterns (MAMPs) naturally present in the outer membrane and in the periplasmic space of Gram-negative bacteria. Therefore, they appear particularly indicted for ISV. In this work, we first show that the OMVs from E. coli BL21(DE3)Δ60 strain promote a strong anti-tumor activity when intratumorally injected into the tumors of three different mouse models. Tumor inhibition correlates with a rapid infiltration of DCs and NK cells. We also show that the addition of neo-epitopes to OMVs synergizes with the vesicle adjuvanticity, as judged by a two-tumor mouse model. Overall, our data support the use of the OMVs in ISV and indicate that ISV efficacy can benefit from the addition of properly selected tumor-specific neo-antigens. Full article
Show Figures

Figure 1

Back to TopTop