Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = MBR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2823 KB  
Article
Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor
by Oriol Morató Torras, Hiren D. Raval, Bianca Zappulla-Sabio, Ignasi Rodriguez-Roda, Hèctor Monclús and Gaetan Blandin
Membranes 2025, 15(11), 323; https://doi.org/10.3390/membranes15110323 - 22 Oct 2025
Viewed by 240
Abstract
Following on from a circular economy in water, membrane technologies can play a role in resource recovery and high-quality water production but should also consider membrane industry circularity. Anaerobic membrane bioreactors (AnMBRs) are being used for advanced wastewater treatment, and their applications are [...] Read more.
Following on from a circular economy in water, membrane technologies can play a role in resource recovery and high-quality water production but should also consider membrane industry circularity. Anaerobic membrane bioreactors (AnMBRs) are being used for advanced wastewater treatment, and their applications are growing due to advantages like lower sludge volume, better permeate quality, and the generation of biogas. High-Rejection (HR) AnMBRs retain a higher fraction of dissolved and particulate components to further promote resource recovery and obtain improved effluent quality. With the development of membrane technologies, end-of-life (EOL) membrane recycling is emerging for various applications. The feasibility of transforming EOL Reverse Osmosis (RO) membranes into ultrafiltration (UF)- and nanofiltration (NF)-like membranes and applying these membranes to submerged HR-AnMBR applications was evaluated. A small pilot AnMBR with granular biomass was operated with EOL RO membranes converted to submerged UF- and NF-like membranes and compared to commercial microfiltration (MF) membranes. UF- and NF-like plates were constructed, characterized, and introduced step-by-step into the AnMBR by the substitution of MF plates. A chemical oxygen demand (COD) removal study showed that while 77% removal of COD was possible with MF membranes, improved COD removal (i.e., 81.40% and 88.39%) was achieved using UF-like and NF-like membranes, respectively. Because of the higher retention of salts of the NF-like membrane, the salinity in the membrane bioreactor increased from 1300 to 1680 µS·cm−1 but stabilized quickly and without a negative impact on system performance. Even without cleaning, minimal fouling and flux decline were observed for all tested configurations thanks to the use of granular biomass and low permeation flux. Permeate flux in the case of the NF-like membrane was slightly lower due to the required higher pressure. The present study demonstrated that the EOL-RO membranes may find applications in HR-AnMBRs to achieve superior permeate quality and move toward circular membrane processes. Full article
Show Figures

Figure 1

28 pages, 4672 KB  
Article
Gelatin-Based Rapid Blue Light-Irradiation In Situ Gelation Hydrogel Platform for Combination Therapy in Brain Tumors
by Chiung-Yin Huang, Hung-Wei Yang, Hung-Chun Wang, Chia-Yu Hsu, Kuo-Chen Wei, Pin-Yuan Chen and Hao-Han Pang
Pharmaceutics 2025, 17(10), 1353; https://doi.org/10.3390/pharmaceutics17101353 - 20 Oct 2025
Viewed by 295
Abstract
Background/Objectives: Glioblastoma (GBM) is a fatal tumor in the central nervous system (CNS) with a poor prognosis. Preventing tumors from post-surgical recurrence is a significant clinical challenge, since current methods deliver chemotherapeutic agents in a rapid manner and are not effective against [...] Read more.
Background/Objectives: Glioblastoma (GBM) is a fatal tumor in the central nervous system (CNS) with a poor prognosis. Preventing tumors from post-surgical recurrence is a significant clinical challenge, since current methods deliver chemotherapeutic agents in a rapid manner and are not effective against the residual tumor cells. To address these limitations, we develop a blue light-crosslinking hydrogel which can be rapidly gelled in situ and tightly adhere on the tissues for controlled chemotherapy, radiotherapy, and enhanced laser interstitial thermal therapy (LITT) to inhibit residual tumor cells from post-surgical recurrence. Methods: We utilize gelatin-MA based hydrogel with crosslinker VA-086 as hydrogel scaffold to encapsulate small-molecule drugs (Epirubicin and Cisplatin) and LITT agent polypyrrole-coated graphine oxide (PPy@GO). The mixture can form into hydrogel in situ by blue light irradiation and performed chemo-LITT and radio therapy simultaneously. Then we determine the prevailing factors that affect efficient encapsulation of therapeutic agents within hydrogels, efficiency of gelation, LITT enhancement, and drug release. Then evaluate efficiency in human cancer cells and an in vivo tumor model. Results: Our results demonstrate that 18 wt% Gelatin MA formulation achieved >95% gelation within 2 min, with drug-loaded gels forming within 5 min. The gelation can perform both in vitro and in vivo without affect the drug efficiency. This multi-treatment system can effectively prevent tumor recurrence and significantly prolong the medium survival of glioma-bearing (MBR-614 or U87-MGFL) mice to above 65 days compared with the control group (36 days). Conclusions: The results demonstrated promising effect of this system as a multi-therapeutic platform which combined chemo-LITT and RT. This synergistic strategy presents a new approach to the development of a local drug delivery system for the prevention of brain tumor recurrence. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

26 pages, 5245 KB  
Article
Sedimentary Environment and Organic Matter Enrichment of the First Member in the Upper Triassic Xujiahe Formation, Southeastern Sichuan Basin
by Hao Huang, Zhongyun Chen, Tingshan Zhang, Xi Zhang and Jingxuan Zhang
Minerals 2025, 15(10), 1071; https://doi.org/10.3390/min15101071 - 13 Oct 2025
Viewed by 321
Abstract
The Xujiahe Formation (FM) is a significant source rock layer in the Sichuan Basin. In recent years, a growing number of scholars believe that the shale gas potential of the Xujiahe Formation is equally substantial, with the first member of the formation being [...] Read more.
The Xujiahe Formation (FM) is a significant source rock layer in the Sichuan Basin. In recent years, a growing number of scholars believe that the shale gas potential of the Xujiahe Formation is equally substantial, with the first member of the formation being the richest resource. The deposition of Member (Mbr) 1 of Xujiahe FM represents the first and most extensive transgression event within the entire Xujiahe Formation. This study investigates the sedimentary environment and organic matter (OM) enrichment mechanisms of the dark mud shales in the Mbr1 of Xujiahe FM on the southeastern margin of the Sichuan Basin, utilizing methods such as elemental geochemistry and organic geochemistry analyses. The results indicate that these dark mud shales possess a relatively high OM abundance, averaging 2.20% and reaching a maximum of 6.22%. The OM is primarily Type II2 to Type III. Furthermore, the paleoclimate during the Mbr1 period in the study area was warm and humid with lush aquatic vegetation. Intense weathering and ample precipitation transported large amounts of nutrients into the lacustrine/marine basin, promoting the growth and reproduction of algae and terrestrial plants. Correlation analysis between the Total Organic Carbon (TOC) content and various geochemical proxies in the Mbr1 mud shales suggests that OM enrichment in the study area was primarily controlled by the climate and sedimentation rate; substantial OM accumulation occurred only with abundant terrigenous OM input and a relatively high sedimentation rate. Redox conditions, primarily productivity, and terrigenous detrital input acted as secondary factors, collectively modulating OM enrichment. Event-driven transgressions also played an important role in creating conditions favorable for OM preservation. Synthesizing the influence of these multiple factors on OM enrichment, this study proposes two distinct composite models for OM enrichment, dominated by climate and sedimentation rate. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

21 pages, 2136 KB  
Article
Assessment of Potentially Toxic Elements in Water from the Protected Natural Area Barranca de Metztitlán, Mexico, and Human Health and Ecological Risk
by Ariadna Y. Gamero-Vega, Rosa I. Beltrán-Hernández, Luz M. Del Razo, Iriana Zuria and Carlos A. Lucho Constantino
Environments 2025, 12(10), 367; https://doi.org/10.3390/environments12100367 - 8 Oct 2025
Viewed by 680
Abstract
Water is a critical resource for both environmental integrity and human health. This study assessed the concentrations of potentially toxic elements (PTEs)—Pb, Cd and Hg—in surface waters adjacent to six urban settlements within the Barranca de Metztitlán Biosphere Reserve (MBR), Mexico. Ecological and [...] Read more.
Water is a critical resource for both environmental integrity and human health. This study assessed the concentrations of potentially toxic elements (PTEs)—Pb, Cd and Hg—in surface waters adjacent to six urban settlements within the Barranca de Metztitlán Biosphere Reserve (MBR), Mexico. Ecological and health risks were evaluated for vulnerable groups, including children, adolescents, and the elderly. Cd and Hg water concentrations surpassed the national and international water quality criteria at three locations. Ecological and health risk analysis of Pb was not conducted as Pb concentrations were below LOD (0.02 ppm). Ecological risk analysis revealed a low potential risk for Cd exposure but a high risk for Hg at its highest concentration in the reserve. Health risk assessment revealed that Cd and Hg pose a non-carcinogenic risk, particularly to children under three years old. Hazard quotients (HQ) and cumulative risk indices (HI) exceeded safe thresholds at multiple sites. Infants (0–11 months) were the most susceptible, even at contaminant levels near detection limits. These findings emphasize the importance of routine monitoring and early intervention strategies to mitigate exposure risks, especially in vulnerable populations within the MBR. Full article
(This article belongs to the Special Issue Environmental Pollution Risk Assessment)
Show Figures

Graphical abstract

29 pages, 1463 KB  
Review
AI-Enabled Membrane Bioreactors: A Review of Control Architectures and Operating-Parameter Optimization for Nitrogen and Phosphorus Removal
by Mingze Xu and Di Liu
Water 2025, 17(19), 2899; https://doi.org/10.3390/w17192899 - 7 Oct 2025
Viewed by 710
Abstract
Stricter requirements on nutrient removal in wastewater treatment are being imposed by rapid urbanization and tightening water-quality standards. Despite their excellent solid–liquid separation and effective biological treatment, MBRs in conventional operation remain hindered by membrane fouling, limited robustness to influent variability, and elevated [...] Read more.
Stricter requirements on nutrient removal in wastewater treatment are being imposed by rapid urbanization and tightening water-quality standards. Despite their excellent solid–liquid separation and effective biological treatment, MBRs in conventional operation remain hindered by membrane fouling, limited robustness to influent variability, and elevated energy consumption. In recent years, precise process control and resource-oriented operation have been enabled by the integration of artificial intelligence (AI) with MBRs. Advances in four areas are synthesized in this review: optimization of MBR control architectures, intelligent adaptation to multi-source wastewater, regulation of membrane operating parameters, and enhancement of nitrogen and phosphorus removal. According to reported studies, increases in total nitrogen and total phosphorus removal have been achieved by AI-driven strategies while energy use and operating costs have been reduced; under heterogeneous influent and dynamic operating conditions, stronger generalization and more effective real-time regulation have been demonstrated relative to traditional approaches. For large-scale deployment, key challenges are identified as improvements in model interpretability and applicability, the overcoming of data silos, and the realization of multi-objective collaborative optimization. Addressing these challenges is regarded as central to the realization of robust, scalable, and low-carbon intelligent wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 1990 KB  
Article
The Influence of Rainwater and Snowmelt (Inflow and Infiltration) on the Performance of Wastewater Treatment in a Plant Using Membrane Bioreactors (MBR)
by Piotr Bugajski, Zbigniew Mucha and Bartłomiej Kois
Appl. Sci. 2025, 15(19), 10608; https://doi.org/10.3390/app151910608 - 30 Sep 2025
Viewed by 201
Abstract
This article presents an analysis of wastewater inflow to a treatment plant and the impact of incidental (stormwater) inflow on the variability of its volume and quality. The study was conducted over a four-year period and showed that the average daily inflow of [...] Read more.
This article presents an analysis of wastewater inflow to a treatment plant and the impact of incidental (stormwater) inflow on the variability of its volume and quality. The study was conducted over a four-year period and showed that the average daily inflow of wastewater was 1133.2 m3 per day, which accounted for 56.7% of the plant’s design capacity. The variability of wastewater inflow was found to be significant, with stormwater having a considerable effect on increasing the volume of wastewater, especially during days with intense rainfall. Depending on precipitation levels, incidental water contributed between 12.2% and 46.2% of the total wastewater inflow. The analysis of the influent wastewater quality indicated a high variability in the concentrations of key pollution indicators. Despite this, the treatment processes in the membrane bioreactors (MBR) proved effective, consistently maintaining pollutant concentrations in the effluent below permissible limits. The conclusions highlight the necessity of considering stormwater in the design and operation of wastewater treatment plants to ensure their effective performance. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

17 pages, 3387 KB  
Article
Comprehensive Investigation of Iron Salt Effects on Membrane Bioreactor from Perspective of Controlling Iron Leakage
by Qiaoying Wang, Bingbing Zhang, Jicheng Sun, Wenjia Zheng, Jie Zhang and Zhichao Wu
Membranes 2025, 15(10), 297; https://doi.org/10.3390/membranes15100297 - 30 Sep 2025
Viewed by 376
Abstract
Although adding iron salts can improve phosphorus removal in membrane bioreactor (MBR) processes, overdosing iron salts may result in excessive iron concentrations in the effluent and pose risks of surface water contamination. In this study, an optimized iron salt dosing method was proposed [...] Read more.
Although adding iron salts can improve phosphorus removal in membrane bioreactor (MBR) processes, overdosing iron salts may result in excessive iron concentrations in the effluent and pose risks of surface water contamination. In this study, an optimized iron salt dosing method was proposed to comprehensively investigate its effects on the performance of MBRs and the control of iron leakage. The results showed that batch dosing of solid iron salts (Fe2(SO4)3) into the influent or activated sludge maintained an effluent Fe3+ concentration below 1.0 mg/L and a total phosphorus (TP) concentration below 0.30 mg/L. Long-term operation of the MBR (under conditions of HRT = 4.3 h, SRT = 20 d, and MLSS = 12 g/L) showed that batch dosing of solid iron salts led to an increase in the effluent ammonia–nitrogen (NH3-N) concentration, and the nitrification effect was restored after supplementing the alkalinity. Iron salts increased the TP removal rate by approximately 40% while inhibiting the biological phosphorus removal capacity. The average Fe3+ concentration in the membrane effluent (0.23 ± 0.11 mg/L) met China’s Environmental Quality Standard for Surface Water (GB3838-2002). This study demonstrates that batch dosing of solid iron salts effectively controls iron concentration in the MBR effluent while preventing secondary pollution. The mechanisms of the impact of iron salts on MBR performance provide crucial theoretical and technical support for MBR process optimization. Full article
Show Figures

Figure 1

12 pages, 951 KB  
Article
Fundus Blood Flow in Patients with Sellar Lesions with Optic Nerve Bending and Chiasmal Compression
by Yoichiro Shinohara, Rei Yamaguchi, Masahiko Tosaka, Soichi Oya and Hideo Akiyama
J. Clin. Med. 2025, 14(16), 5790; https://doi.org/10.3390/jcm14165790 - 15 Aug 2025
Viewed by 541
Abstract
Background/objectives: Optic nerve bending and chiasmal compression impair vision in patients with sellar lesions; however, their effect on optic nerve head (ONH) blood flow remains unclear. This study used laser speckle flowgraphy to examine the relationship between clinical features and ONH blood [...] Read more.
Background/objectives: Optic nerve bending and chiasmal compression impair vision in patients with sellar lesions; however, their effect on optic nerve head (ONH) blood flow remains unclear. This study used laser speckle flowgraphy to examine the relationship between clinical features and ONH blood flow in patients with optic nerve bending and chiasmal compression. Methods: This retrospective study included 32 eyes (16 eyes with and 16 without optic nerve bending on the contralateral side) from 16 patients with sellar lesions. The best-corrected visual acuity (BCVA), simple visual field impairment score (SVFIS), optic nerve head mean blur rate (ONH-MBR), and six-segmented macular ganglion cell layer + inner plexiform layer (GCL + IPL) thickness were examined. Results: Preoperative BCVA and SVFIS in eyes with optic nerve bending were significantly worse than those in eyes without bending, and significantly correlated with the optic nerve-canal bending angle (ONCBA). After tumor resection, BCVA and SVFIS significantly improved in both groups. Preoperative ONH-MBR was significantly lower in bending eyes but increased significantly post-treatment in both groups. Preoperative ONH-MBR correlated with ONCBA, while postoperative ONH-MBR correlated with nasal GCL + IPL thickness. Conclusions: Optic nerve bending and chiasmal compression showed reduced blood flow to the ONH. These changes in blood flow may be associated with GCL + IPL thickness and optic nerve bending angle. Full article
(This article belongs to the Special Issue New Advances in Optic Nerve Diseases)
Show Figures

Graphical abstract

11 pages, 857 KB  
Article
Investigation of Ocular Blood Flow in Males with Metabolic Syndrome
by Takahiro Maruyama, Tomoaki Shiba, Tatsuhiko Kobayashi, Seiji Takagi and Yuichi Hori
Diagnostics 2025, 15(16), 2021; https://doi.org/10.3390/diagnostics15162021 - 12 Aug 2025
Viewed by 380
Abstract
Objectives: This study aims to investigate ocular blood flow in male subjects with metabolic syndrome (MetS) using laser speckle flowgraphy (LSFG). Methods: Subjects who underwent LSFG ocular blood flow testing during physical examinations were separated into a MetS group and a control group. [...] Read more.
Objectives: This study aims to investigate ocular blood flow in male subjects with metabolic syndrome (MetS) using laser speckle flowgraphy (LSFG). Methods: Subjects who underwent LSFG ocular blood flow testing during physical examinations were separated into a MetS group and a control group. The groups were propensity score-matched by age, with 138 male subjects compared in each group. The subjects’ ocular blood flow (mean blur rate, MBR) in the optic nerve head (ONH) and choroid was measured via LSFG. Pulse waveform parameters, the blowout score (BOS), blowout time (BOT), and rising rate (RR), were also measured. The ONH region was measured as a whole and as tissue and vascular regions. Results: The MBR-Choroid was significantly lower in the MetS group versus the control group. There was no significant difference in the MBR in the ONH. Compared to the control group, the RR values in the MetS group were significantly lower in all regions. The whole tissue region and vascular region BOS values were significantly higher in the MetS group. A single-regression analysis revealed that among the evaluated parameters, only the number of MetS components was significantly negatively correlated with the MBR-Choroid. A multiple regression analysis identified HbA1c as a factor contributing independently to the MBR-Choroid among the MetS-related factors. Conclusions: This investigation of adult males clarified that in the early stage of MetS, the MBR in the choroid area decreases in parallel with the accumulation of MetS components. The MetS component with the strongest influence on the MBR-Choroid was HbA1c. Full article
(This article belongs to the Special Issue Advances in Eye Imaging)
Show Figures

Figure 1

13 pages, 2939 KB  
Review
A Review of Maricultural Wastewater Treatment Using an MBR: Insights into the Mechanism of Membrane Fouling Mitigation Through a Microalgal–Bacterial Symbiotic and Microbial Ecological Network
by Yijun You, Shuyu Zhao, Binghan Xie, Zhipeng Li, Weijia Gong, Guoyu Zhang, Qinghao Li, Xiangqian Zhao, Zhaofeng Xin, Jinkang Wu, Yuanyuan Gao and Han Xiang
Membranes 2025, 15(8), 234; https://doi.org/10.3390/membranes15080234 - 1 Aug 2025
Cited by 2 | Viewed by 1183
Abstract
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and [...] Read more.
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and improving the salinity tolerance of bacteria and algae. This study centered on the mechanisms of membrane fouling mitigation via the microalgal–bacterial interactions in the MBSS, including improving the pollutant removal, optimizing the system parameters, and controlling the gel layer formation. Moreover, the contribution of electrochemistry to decreasing the inhibitory effects of high-salinity stress was investigated in the MBSS. Furthermore, patterns of shifts in microbial communities and the impacts have been explored using metagenomic technology. Finally, this review aims to offer new insights for membrane fouling mitigation in actual maricultural wastewater treatment. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

13 pages, 5177 KB  
Article
Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System
by Ayesha Ilyas and Ivo F. J. Vankelecom
Membranes 2025, 15(8), 228; https://doi.org/10.3390/membranes15080228 - 31 Jul 2025
Viewed by 1107
Abstract
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already [...] Read more.
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already been studied extensively at lab-scale to prepare patterned membranes for various applications including membrane bioreactors (MBR), reverse osmosis (RO) and forward osmosis (FO). Although studied at the lab scale, membranes prepared at a larger scale can significantly differ in performance; therefore, phase inversion parameters, including polymer concentration, molecular weight, and additive type (i.e., polyethylene glycol (PEG) or polyvinylpyrolidine (PVP)) and concentration, were systematically varied when casting on a roll-to-roll, 12″ wide pilot line to identify optimal conditions for achieving defect-free, high-performance, patterned PSf membranes. The membranes were characterized for their pure water permeance, BSA rejection, casting solution viscosities, and resulting morphology. s-NIPS patterned membranes exhibit 150–350% increase in water flux as compared to their reference flat membrane, thanks to very high pattern heights up to 825 µm and formation of finger-like macrovoids. This work bridges the gap between lab-scale and pilot-scale membrane preparation, while proposing an upscaled membrane with great potential for use in water treatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

26 pages, 2652 KB  
Article
Predictive Framework for Membrane Fouling in Full-Scale Membrane Bioreactors (MBRs): Integrating AI-Driven Feature Engineering and Explainable AI (XAI)
by Jie Liang, Sangyoup Lee, Xianghao Ren, Yingjie Guo, Jeonghyun Park, Sung-Gwan Park, Ji-Yeon Kim and Moon-Hyun Hwang
Processes 2025, 13(8), 2352; https://doi.org/10.3390/pr13082352 - 24 Jul 2025
Viewed by 1202
Abstract
Membrane fouling remains a major challenge in full-scale membrane bioreactor (MBR) systems, reducing operational efficiency and increasing maintenance needs. This study introduces a predictive and analytic framework for membrane fouling by integrating artificial intelligence (AI)-driven feature engineering and explainable AI (XAI) using real-world [...] Read more.
Membrane fouling remains a major challenge in full-scale membrane bioreactor (MBR) systems, reducing operational efficiency and increasing maintenance needs. This study introduces a predictive and analytic framework for membrane fouling by integrating artificial intelligence (AI)-driven feature engineering and explainable AI (XAI) using real-world data from an MBR treating food processing wastewater. The framework refines the target parameter to specific flux (flux/transmembrane pressure (TMP)), incorporates chemical oxygen demand (COD) removal efficiency to reflect biological performance, and applies a moving average function to capture temporal fouling dynamics. Among tested models, CatBoost achieved the highest predictive accuracy (R2 = 0.8374), outperforming traditional statistical and other machine learning models. XAI analysis identified the food-to-microorganism (F/M) ratio and mixed liquor suspended solids (MLSSs) as the most influential variables affecting fouling. This robust and interpretable approach enables proactive fouling prediction and supports informed decision making in practical MBR operations, even with limited data. The methodology establishes a foundation for future integration with real-time monitoring and adaptive control, contributing to more sustainable and efficient membrane-based wastewater treatment operations. However, this study is based on data from a single full-scale MBR treating food processing wastewater and lacks severe fouling or cleaning events, so further validation with diverse datasets is needed to confirm broader applicability. Full article
(This article belongs to the Special Issue Membrane Technologies for Desalination and Wastewater Treatment)
Show Figures

Figure 1

11 pages, 2384 KB  
Article
Effects of Trapezius Muscle Self-Stretching on Muscle Stiffness and Choroidal Circulatory Dynamics: An Evaluation Using Ultrasound Strain Elastography and Laser Speckle Flowgraphy
by Miki Yoshimura, Takanori Taniguchi, Takeshi Yoshitomi and Yuki Hashimoto
Tomography 2025, 11(7), 73; https://doi.org/10.3390/tomography11070073 - 25 Jun 2025
Viewed by 1520
Abstract
Background/Objectives: The relationship between upper trapezius muscle stiffness and choroidal circulatory dynamics remains unclear. This study aimed to examine changes in upper trapezius muscle stiffness and choroidal circulatory dynamics before and after trapezius muscle self-stretching. Methods: Eighteen healthy adults in their 20s (median [...] Read more.
Background/Objectives: The relationship between upper trapezius muscle stiffness and choroidal circulatory dynamics remains unclear. This study aimed to examine changes in upper trapezius muscle stiffness and choroidal circulatory dynamics before and after trapezius muscle self-stretching. Methods: Eighteen healthy adults in their 20s (median age ± standard error: 21.0 ± 4.9 years) and eight healthy adults in their 40s (age: 43.0 ± 15.2 years) were included. Intraocular pressure (IOP); systolic, diastolic, and mean blood pressure (BP); heart rate (HR); ocular perfusion pressure (OPP); and salivary alpha-amylase (sAA) activity—as an indicator of autonomic nervous system function—were measured at baseline and after trapezius muscle self-stretching. Upper trapezius muscle stiffness was assessed using ultrasound strain elastography, whereas choroidal circulation was evaluated using laser speckle flowgraphy to determine the mean blur rate (MBR), a relative measure of macular blood flow velocity. Results: Significant reductions in systolic and mean BP; OPP; sAA activity; and MBR were observed after trapezius muscle self-stretching in both groups; however, no significant changes were found in IOP and HR. A significant decrease in upper trapezius muscle stiffness was observed after self-stretching only in the 20-year-old group. Conclusions: In healthy adults in their 20s and 40s, trapezius muscle self-stretching may enhance parasympathetic nervous system activity, resulting in decreased systemic and choroidal circulatory parameters. However, the reduction in muscle stiffness observed only in younger participants suggests that short-term self-stretching may be less effective in reducing trapezius muscle stiffness with advancing age. Full article
Show Figures

Figure 1

14 pages, 1844 KB  
Article
Analysis of Domestic Sewage Treatment Technology for Converter Stations and Pumped Storage Power Stations Based on the Analytic Hierarchy Process
by Xiaoxuan Bai, Junqi Yang, Jiahao Ren, Peng Li and Hezhong Tian
Sustainability 2025, 17(13), 5775; https://doi.org/10.3390/su17135775 - 23 Jun 2025
Viewed by 429
Abstract
This study investigates sewage treatment technologies at manned and unmanned converter stations and pumped storage power stations across various regions of China, considering the regional differences in water availability, infrastructure, and ecological conditions. Using a multi-criteria evaluation approach, this study analyzes key factors, [...] Read more.
This study investigates sewage treatment technologies at manned and unmanned converter stations and pumped storage power stations across various regions of China, considering the regional differences in water availability, infrastructure, and ecological conditions. Using a multi-criteria evaluation approach, this study analyzes key factors, such as economic characteristics, technical characteristics, and efficiency, to assess the most suitable sewage treatment solutions. Powered Eco-type Sewage Treatment Units and Powered Underground Units perform best in southern and eastern China, where advanced infrastructure supports high treatment demands. Conversely, Septic Tanks show the lowest performance across all the regions, particularly in remote and water-scarce areas like northeast and northwest China. For pumped storage power stations, AAO+MBR and Multi-stage A/O processes are most effective in regions with high water reuse needs. This study highlights the necessity of region-specific water management strategies and technological upgrades to ensure efficient sewage treatment and sustainable water use across China’s power grid infrastructure. Full article
(This article belongs to the Special Issue Water Treatment, Waste Valorization and Environment Sustainability)
Show Figures

Graphical abstract

12 pages, 397 KB  
Article
Comparison Study of Urban Wastewater Treatment Using Conventional Biologic Treatment and Submerged Membrane Bioreactor Processes
by Halis Gazi Hiz and Hüdaverdi Arslan
Water 2025, 17(12), 1810; https://doi.org/10.3390/w17121810 - 17 Jun 2025
Cited by 1 | Viewed by 654
Abstract
Today, the demand for clean water resources causes the rapid consumption of water and the finding of alternative water resources. The recovery and reuse of wastewater after treatment is important for water sustainability, and in recent years, the use of wastewater by completely [...] Read more.
Today, the demand for clean water resources causes the rapid consumption of water and the finding of alternative water resources. The recovery and reuse of wastewater after treatment is important for water sustainability, and in recent years, the use of wastewater by completely or partially treating it has gained importance due to the water shortage that has emerged as a result of global climate change. It can be used in agricultural areas where water is frequently used, especially if the water content is suitable after treatment. In this study, the use of water from the treatment plant as irrigation water in agricultural areas was investigated. The effluent of the Mezitli and Kızkalesi Wastewater Treatment Plants in Mersin was used for this purpose. In the investigation of the usability of the treated water in agricultural irrigation, analyses were made for many pollutants. In order to examine the usability of wastewater after treatment in irrigation water, parameters such as total phosphorus (TP), total nitrogen (TN), biological oxygen demand (BOD) and heavy metals were examined in order to meet the nutrient needs of plants. The analysis results were evaluated according to the agricultural irrigation water criteria specified in the Wastewater Treatment Plant Technical Procedures Communiqué. As a result, the analysis results of the treated water were compared with the limit values in the regulations, and it was evaluated that the treated water in the Mezitli Wastewater Treatment Plant did not meet the limit values of irrigation water usage criteria. However, it has been evaluated that the effluent from the Kızkalesi Wastewater Treatment Plant, which was treated with the MBR process, meets the limit values and therefore can be used for agricultural irrigation purposes. As a result, when the analysis results performed on treated water were compared with the Wastewater Treatment Plant Technical Procedures Communiqué irrigation water limit values, it was evaluated that the treated water of the Mezitli Wastewater Treatment Plant did not meet irrigation water limit values, but the treated water of the Kızkalesi Wastewater Treatment Plant with the MBR process met the irrigation water limit values and therefore could be used for agricultural irrigation purposes. The study results showed that the treated water in the Mezitli Wastewater Treatment Plant could not be used for agricultural irrigation, but the treated water in the Kızkalesi Wastewater Treatment Plant could be used for agricultural irrigation. Full article
Show Figures

Figure 1

Back to TopTop