Membrane Distillation and Other Membrane-Related Applications for Water Cleaning and Desalination

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Applications for Water Treatment".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 8320

Special Issue Editor


E-Mail Website
Guest Editor
Catalysis and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
Interests: heterogeneous catalysis; CO2 hydrogenation; reaction kinetics; modelling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Membrane distillation (MD) is a modern technology that is changing the way we obtain fresh water, overcoming the limitations of more commonly used and diffused separation processes. Membrane distillation was designed to convert seawater into drinking water, but it also has interesting applications in treating industrial wastewaters, which is an issue in terms of volumes and costs. Mainly, membrane distillation can allow for the substitution of or can be coupled to more conventional reverse osmosis technologies to perform water cleaning and desalination in the presence of a highly concentrated solution. Membrane distillation initially progressed slowly due to a lack of suitable membranes for MD applications; membrane wetting issues; high energy consumption compared to reverse osmosis; low flux rates; and limited research on the module’s design. However, recent and extensive research into various aspects of MD (the development of better membranes; the potential use of alternative energy sources; the resolution of fouling and other issues; the experimentation on different membrane configurations) has contributed to making MD a more attractive process. Additionally, new and stringent separation requirements driven by evolving regulations and emerging needs have emphasized the importance of this field. Consequently, there has been a notable “research boom” in different facets of MD over the past decade.

However, more work needs to be carried out to fulfill expectations. To address the existing challenges, the development of new and improved membranes; the exploration of novel materials; the enhanced design of modules; and overall advancements in engineering are essential for the broader industrial employment of this technology. Additionally, establishing clear protocols and comparison criteria for selecting the best materials and operational conditions, as well as accurate modeling for scalable implementation, is crucial. Significant multidisciplinary research efforts are also required to further advance this technology and facilitate its growth.

Topics of interest for this Special Issue include, but are not limited to, the following:

  • Applications of any type of membrane distillation and multi-effect membrane distillation;
  • Novel membrane materials and fabrication techniques;
  • Modeling of membrane distillation processes;
  • Membrane fouling and mitigation strategies;
  • Applications of membrane technology in desalination and wastewater cleaning;
  • Case studies and practical implementations;
  • Environmental and economic aspects of membrane water purification.

We welcome the submission of original research articles; comprehensive reviews; and insightful perspectives that show a deep understanding of the current trends and future directions in this topical area of study.

Dr. Simona Renda
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • membrane distillation
  • desalination
  • wastewater cleaning
  • pollutants removal
  • modeling
  • novel materials
  • innovative fabrication techniques

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3387 KB  
Article
Comprehensive Investigation of Iron Salt Effects on Membrane Bioreactor from Perspective of Controlling Iron Leakage
by Qiaoying Wang, Bingbing Zhang, Jicheng Sun, Wenjia Zheng, Jie Zhang and Zhichao Wu
Membranes 2025, 15(10), 297; https://doi.org/10.3390/membranes15100297 - 30 Sep 2025
Abstract
Although adding iron salts can improve phosphorus removal in membrane bioreactor (MBR) processes, overdosing iron salts may result in excessive iron concentrations in the effluent and pose risks of surface water contamination. In this study, an optimized iron salt dosing method was proposed [...] Read more.
Although adding iron salts can improve phosphorus removal in membrane bioreactor (MBR) processes, overdosing iron salts may result in excessive iron concentrations in the effluent and pose risks of surface water contamination. In this study, an optimized iron salt dosing method was proposed to comprehensively investigate its effects on the performance of MBRs and the control of iron leakage. The results showed that batch dosing of solid iron salts (Fe2(SO4)3) into the influent or activated sludge maintained an effluent Fe3+ concentration below 1.0 mg/L and a total phosphorus (TP) concentration below 0.30 mg/L. Long-term operation of the MBR (under conditions of HRT = 4.3 h, SRT = 20 d, and MLSS = 12 g/L) showed that batch dosing of solid iron salts led to an increase in the effluent ammonia–nitrogen (NH3-N) concentration, and the nitrification effect was restored after supplementing the alkalinity. Iron salts increased the TP removal rate by approximately 40% while inhibiting the biological phosphorus removal capacity. The average Fe3+ concentration in the membrane effluent (0.23 ± 0.11 mg/L) met China’s Environmental Quality Standard for Surface Water (GB3838-2002). This study demonstrates that batch dosing of solid iron salts effectively controls iron concentration in the MBR effluent while preventing secondary pollution. The mechanisms of the impact of iron salts on MBR performance provide crucial theoretical and technical support for MBR process optimization. Full article
Show Figures

Figure 1

18 pages, 3240 KB  
Article
Zn2+-Mediated Co-Deposition of Dopamine/Tannic Acid/ZIF-8 on PVDF Hollow Fiber Membranes for Enhanced Antifouling Performance and Protein Separation
by Lei Ni, Qiancheng Cui, Zhe Wang, Xueting Zhang, Jun Ma, Wenjuan Zhang and Caihong Liu
Membranes 2025, 15(9), 277; https://doi.org/10.3390/membranes15090277 - 15 Sep 2025
Viewed by 475
Abstract
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow [...] Read more.
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow fiber ultrafiltration membranes. Through Zn2+ coordination-driven self-assembly, a uniform and stable composite coating of dopamine (DA), tannic acid (TA), and ZIF-8 nanoparticles was successfully constructed on the membrane surface under mild conditions. The modified membrane exhibited significantly enhanced hydrophilicity, with a water contact angle of 21° and zeta potential of −29.68 mV, facilitating the formation of a dense hydration layer that effectively prevented protein adhesion. The membrane demonstrated exceptional separation performance, achieving a pure water permeability of 771 L/(m2∙h∙bar) and bovine serum albumin (BSA) rejection of 97.7%. Furthermore, it showed outstanding antifouling capability with flux recovery rates exceeding 83.6%, 74.7%, and 71.5% after fouling by BSA, lysozyme, and ovalbumin, respectively. xDLVO analysis revealed substantially increased interfacial free energy and stronger repulsive interactions between the modified surface and protein foulants. The antifouling mechanism was attributed to the synergistic effects of hydration layer formation, optimized pore structure, additional water transport pathways from ZIF-8 incorporation, and electrostatic repulsion from negatively charged surface groups. This work provides valuable insights into the rational design of high-performance antifouling membranes for sustainable water treatment and protein separation applications. Full article
Show Figures

Figure 1

21 pages, 7619 KB  
Article
Investigations on the Particle Fouling and Backwash Efficiency During Microplastic Microfiltration–Particle Size Aspects
by Saeedeh Saremi, Leonie Marie Scheer, Gerhard Braun, Marcus Koch, Markus Gallei and Matthias Faust
Membranes 2025, 15(9), 272; https://doi.org/10.3390/membranes15090272 - 9 Sep 2025
Viewed by 535
Abstract
The characteristics of polystyrene (PS) microplastic (MP) microfiltration by a cellulose acetate (CA) membrane were investigated within this study. Particle sizes and pore sizes were selected in a comparable range in order to challenge the dead-end microfiltration. Backwashing experiments round up the investigations. [...] Read more.
The characteristics of polystyrene (PS) microplastic (MP) microfiltration by a cellulose acetate (CA) membrane were investigated within this study. Particle sizes and pore sizes were selected in a comparable range in order to challenge the dead-end microfiltration. Backwashing experiments round up the investigations. Microfiltration characteristics and particle size measurements, as well as a particle fouling analysis by different methods, were applied in the study in order to provide a comprehensive picture of particle deposition and particle fouling structuring. The particle removal efficiency was particle-size-dependent, and especially small particles were further reduced during the proceeding filtration, while the larger particles were already removed within the first minutes of filtration. This observation was attributed to the pore blocking (internal and/or complete) and build-up of the filter cake. The difference in the particle-fouling structure at low and elevated filtration pressure significantly influences the backwashing efficiency. The particle fouling resulting from low-pressure filtration was completely removed due to the backwashing procedure applied, while an increased filtration pressure resulted in a different particle-fouling structure, which negatively influenced the backwashing efficiency. This knowledge of the formation and structure of the MP particle fouling and its removal by backwashing is a prerequisite for further process development. Full article
Show Figures

Figure 1

19 pages, 2878 KB  
Article
Exploration of Methods for In Situ Scale Removal During Magnesium Hydroxide Membrane Crystallization
by Ester Komačková, Lukáš Sedlák, Ivan Červeňanský and Jozef Markoš
Membranes 2025, 15(9), 267; https://doi.org/10.3390/membranes15090267 - 3 Sep 2025
Viewed by 509
Abstract
In coastal countries facing a shortage of drinking water, seawater desalination is essential for the production of potable water. During desalination, a large volume of waste stream, known as brine, is generated. This stream contains high concentrations of salts, particularly those of economic [...] Read more.
In coastal countries facing a shortage of drinking water, seawater desalination is essential for the production of potable water. During desalination, a large volume of waste stream, known as brine, is generated. This stream contains high concentrations of salts, particularly those of economic importance to the European Union, such as magnesium and calcium. By further processing this stream, these materials can be recovered. One method studied for separating magnesium from wastewater is membrane crystallization (MCr). The MCr process developed in this work utilizes ion-exchange membranes that separate the model brine solution from a precipitating agent, which is a solution of sodium hydroxide. During the process, the membrane allows the transport of anions between the two solutions, enabling the reaction between OH anions and Mg2+ cations, which leads to the formation of a magnesium hydroxide precipitate. The formed precipitate can then be filtered out of the brine solution, which now has decreased salinity due to crystallization facilitated by the ion-exchange membrane. However, precipitation occurs near the membrane surface, resulting in the deposition of magnesium hydroxide onto the outer surface of the membrane. The aim of this study is to investigate methods for effectively removing magnesium hydroxide from the membrane surface, with a primary focus on maximizing the yield of magnesium hydroxide crystals in suspension. Crystal removal was induced by circulation of hydrochloric acid, followed by circulation of demineralized water through the membrane module after crystallization. In this study, a membrane module made of hollow-fiber anion-exchange membranes was employed. The production cost of these membranes is approximately 50% lower per square meter compared to flat-sheet membranes commonly used in electrodialysis, demonstrating strong potential for commercial application. More than 85% magnesium conversion was achieved during the process, yet the majority of the crystals remained attached to the membrane. Circulation of hydrochloric acid and demineralized water after the crystallization process caused detachment of the crystals into suspension, nearly doubling their yield. Full article
Show Figures

Figure 1

25 pages, 6336 KB  
Article
Treatment of Industrial Brine Using a Poly (Vinylidene Fluoride) Membrane Modified with Carbon Nanotubes
by Tshifhiwa T. Tshauambea, Soraya P. Malinga and Patrick G. Ndungu
Membranes 2025, 15(8), 220; https://doi.org/10.3390/membranes15080220 - 23 Jul 2025
Viewed by 740
Abstract
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, [...] Read more.
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM). The desired membranes were obtained by casting from a solution of N-Methyl-2-pyrrolidone, PVDF, various weight percentages of MWCNTs, and a small amount of polyvinylpyrrolidone. The acid treatment of the MWCNTs introduced oxygen moieties on the surface, and increased pore volume and surface area while maintaining crystallinity and structural integrity remain preserved. The maximum rejection rate achieved was 41.82% with 1 wt.% of acid-treated MWCNTs in the PVDF membrane. Acid-treated MWCNTs loaded membranes had an improved rejection rate, which was 5× higher than membranes without MWCNTs. Full article
Show Figures

Figure 1

14 pages, 3055 KB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 711
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

23 pages, 1533 KB  
Article
Oil and Water Recovery from Palm Oil Mill Effluent: A Comparative Study of PVDF and α-Al2O3 Ultrafiltration Membranes
by Saqr A. A. Al-Muraisy, Jiamin Wu, Mingliang Chen, Begüm Tanis, Sebastiaan G. J. Heijman, Shahrul bin Ismail, Jules B. van Lier and Ralph E. F. Lindeboom
Membranes 2025, 15(6), 176; https://doi.org/10.3390/membranes15060176 - 10 Jun 2025
Viewed by 1849
Abstract
Recovering oil and water from palm oil mill effluent reduces environmental pollution and promotes sustainable practices. An effective method to achieve this is ultrafiltration (UF), which uses semi-permeable membranes to separate oil, solids, and other contaminants from wastewater under pressure. To assess the [...] Read more.
Recovering oil and water from palm oil mill effluent reduces environmental pollution and promotes sustainable practices. An effective method to achieve this is ultrafiltration (UF), which uses semi-permeable membranes to separate oil, solids, and other contaminants from wastewater under pressure. To assess the most effective recovery method, an experimental comparison was conducted between PVDF and α-Al2O3 UF membranes at constant permeate of 20–50 LMH for PVDF and 20–70 LMH for α-Al2O3 membranes. Both membranes achieved 99.8% chemical oxygen demand (COD) rejection, with oil concentration factor (Fo) of 186.8% and 253.0%, and water recovery (Rw) of 46.6% and 60.5%, respectively. The permeate water quality was superior to the Malaysian discharge standards, and the fat, oil, and grease (FOG) content was suitable for phase separation processes. The optimal permeate fluxes, with stable transmembrane pressures (TMP), were observed at 40 LMH (PVDF) and 60 LMH (α-Al2O3). Total resistance (Rt) values were 1.30 × 1012 m−1 (PVDF) and 1.59 × 1012 m−1 (α-Al2O3). The ratio of irreversible to total resistances (Rir/Rt) was 0.02 (PVDF) and 0.06 (α-Al2O3), indicating minimal irreversible fouling. Overall, the α-Al2O3 membrane demonstrated superior performance in oil and water recovery with more stable operation compared to the PVDF membrane. UF membrane technology emerges as an efficient technique for recovering oil and water compared to conventional methods. Full article
Show Figures

Graphical abstract

15 pages, 4044 KB  
Article
Development and Application of a Novel Ultrafiltration Membrane for Efficient Removal of Dibutyl Phthalate from Wastewater
by Qiang Zhou, Meiling Chen, Yushan Jiang, Linnan Zhang and Yanhong Wang
Membranes 2025, 15(5), 142; https://doi.org/10.3390/membranes15050142 - 7 May 2025
Cited by 1 | Viewed by 1250
Abstract
This study successfully developed a novel molecularly imprinted ultrafiltration membrane (MIUM) for energy-efficient and selective removal of dibutyl phthalate (DBP) from wastewater. Guided by Gaussian simulations, methacrylic acid (MAA) was identified as the optimal functional monomer, achieving the strongest binding energy (ΔE = [...] Read more.
This study successfully developed a novel molecularly imprinted ultrafiltration membrane (MIUM) for energy-efficient and selective removal of dibutyl phthalate (DBP) from wastewater. Guided by Gaussian simulations, methacrylic acid (MAA) was identified as the optimal functional monomer, achieving the strongest binding energy (ΔE = −0.0698 a.u.) with DBP at a 1:6 molar ratio, providing a foundation for precise cavity construction. DBP-imprinted polymers (MIPs) synthesized via bulk polymerization were integrated into polysulfone membranes through phase inversion. The optimized MIUM (81.27% polymer content) exhibited exceptional performance under low-pressure operation (0.2 MPa), with a water flux of 111.49 L·m2·h−1 and 92.87% DBP rejection, representing a 43% energy saving compared to conventional nanofiber membranes requiring 0.4 MPa. Structural characterization confirmed synergistic effects between imprinted cavities and membrane transport properties as the key mechanism for efficient separation. Notably, MIUM demonstrated remarkable selectivity, achieving 91.57% retention for DBP while showing limited affinity for structurally analogous phthalates (e.g., diethyl/diisononyl phthalates). The membrane maintained > 70% retention after 10 elution cycles, highlighting robust reusability. These findings establish a paradigm for molecular simulation-guided design of selective membranes, offering an innovative solution for low-energy removal of endocrine disruptors. The work advances wastewater treatment technologies by balancing high permeability, targeted pollutant removal, and operational sustainability, with direct implications for mitigating environmental risks and improving water quality management. Full article
Show Figures

Figure 1

24 pages, 9051 KB  
Article
Influence of Silane Treatment on CNM/PAC/PVDF Properties and Performance for Water Desalination by VMD
by Samraa R. Khaleel, Salah S. Ibrahim, Alessandra Criscuoli, Alberto Figoli, Dahiru U. Lawal and Qusay F. Alsalhy
Membranes 2025, 15(4), 104; https://doi.org/10.3390/membranes15040104 - 1 Apr 2025
Viewed by 915
Abstract
Vacuum membrane distillation (VMD) is a promising process for water desalination. However, it suffers some obstacles, such as fouling and wetting, due to the inadequate hydrophobicity of the membrane and high vacuum pressure on the permeate side. Therefore, improving surface hydrophobicity and roughness [...] Read more.
Vacuum membrane distillation (VMD) is a promising process for water desalination. However, it suffers some obstacles, such as fouling and wetting, due to the inadequate hydrophobicity of the membrane and high vacuum pressure on the permeate side. Therefore, improving surface hydrophobicity and roughness is important. In this study, the effect of 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PFTES) on the morphology and performance of CNM/PAC/PVDF membranes at various concentrations was investigated for the first time. Membrane characteristics such as FTIR, XRD, FE-SEM, EDX, contact angle, and hydrophobicity before and after modification were analyzed and tested using VMD for water desalination. The results showed that the membrane coated with 1 wt.% PFTES had a higher permeate flux and lower rejection than the membranes coated with the 2 wt.% PFTES. The 2 wt.% PFTES enhanced the contact angle to 117° and increased the salt rejection above 99.9%, with the permeate flux set to 23.2 L/m2·h and at a 35 g/L NaCl feed solution, 65 °C feed temperature, a 0.6 L/min feed flow rate, and 21 kPa (abs) vacuum pressure. This means that 2 wt.% PFTES-coated PVDF membranes exhibited slightly lower permeate flux with higher hydrophobicity, salt rejection, and stability over long-term operation. These outstanding results indicate the potential of the novel CNM/PAC/PVDF/PFTES membranes for saline water desalination. Moreover, this study presents useful guidance for the enhancement of membrane structures and physical properties in the field of saline water desalination using porous CNM/PAC/PVDF/PFTES membranes. Full article
Show Figures

Figure 1

Back to TopTop