Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = MBW

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9118 KB  
Article
Molecular Elucidation of Anthocyanin Accumulation Mechanisms in Hippeastrum hybridum Cultivars
by Pengyu Guo, Chuanji Xing, Jiacheng Ye, Jing Xue, Luis A. J. Mur, Bao Di, Zongli Hu, Guoping Chen, Xiuhai Zhang and Xuqing Chen
Agronomy 2025, 15(7), 1722; https://doi.org/10.3390/agronomy15071722 - 17 Jul 2025
Viewed by 716
Abstract
Hippeastrum, a perennial herbaceous plant belonging to the Amaryllidaceae family, is widely cultivated for its large, vibrant flowers with diverse petal colors, which have significant ornamental and economic value. However, the mechanisms underlying anthocyanin accumulation in Hippeastrum petals remain poorly understood. To [...] Read more.
Hippeastrum, a perennial herbaceous plant belonging to the Amaryllidaceae family, is widely cultivated for its large, vibrant flowers with diverse petal colors, which have significant ornamental and economic value. However, the mechanisms underlying anthocyanin accumulation in Hippeastrum petals remain poorly understood. To fully explore the involved regulation mechanism was significant for the breeding of Hippeastrum and other Amaryllidaceae family plants. In this study, we selected six Hippeastrum cultivars with distinctly different petal colors. We used metabolomic profiling and high-throughput transcriptomic sequencing to assess varied anthocyanin profiles and associated expression of genes in their biosynthetic pathways. Four key anthocyanins were identified: cyanidin, cyanidin-3-O-rutinoside, delphinidin-3-glucoside, and delphinidin-3-rutinoside. Weighted gene co-expression network analysis (WGCNA) correlated the abundance of these four anthocyanins with transcriptomic data, to suggest three regulatory modules. Nine transcription factors families in these modules were identified and some of them were validated using qRT-PCR. Y2H assay isolated some transcription factors interacted with TTG1 (WD40 protein), including MYB3/39/44/306 and bHLH13/34/110, illustrating the possibility of forming MBW complexes. Our study provides a comprehensive characterization of anthocyanin composition. These findings laid a theoretical foundation for future research on the regulatory mechanisms of pigment accumulation and the breeding of Hippeastrum cultivars with novel petal colors. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

17 pages, 1073 KB  
Article
Assessing Sternal Dimensions for Sex Classification: Insights from a Greek Computed Tomography-Based Study
by Konstantina Vatzia, Michail Fanariotis, Maciej Bugajski, Ioannis V. Fezoulidis, Maria Piagkou, Marianna Vlychou, George Triantafyllou, Ioannis Vezakis, George Botis, Stavroula Papadodima, George Matsopoulos and Katerina Vassiou
Diagnostics 2025, 15(13), 1649; https://doi.org/10.3390/diagnostics15131649 - 27 Jun 2025
Viewed by 812
Abstract
Background/Objectives: This study aimed to assess the potential of sternal morphometric parameters derived from multidetector computed tomography (MDCT) for sex estimation in a contemporary Greek population. A secondary objective was to develop and evaluate statistical and machine learning models based on these measurements [...] Read more.
Background/Objectives: This study aimed to assess the potential of sternal morphometric parameters derived from multidetector computed tomography (MDCT) for sex estimation in a contemporary Greek population. A secondary objective was to develop and evaluate statistical and machine learning models based on these measurements for forensic identification. Methods: Sternal measurements were obtained from chest MDCT scans of 100 Greek adults (50 males, 50 females). Morphometric variables included total sternum length, surface area, angle, and index (SL, SSA, SA, and SI); manubrium length, width, thickness, and index (MBL, MBW, MBT, and MBI); sternal body length, width, thickness, and index (SBL, SBW, SBT, and SBI); and xiphoid process length and thickness (XPL and XPT). Logistic regression and a Random Forest classifier were applied to assess the predictive accuracy of these parameters. Results: Both models showed high classification performance. Logistic regression identified MBL and SBL as the most predictive variables, yielding 91% overall accuracy, with 92% sensitivity and 90% specificity. The Random Forest model achieved comparable results (91% accuracy, 88% sensitivity, 93% specificity), ranking SSA as the most influential feature. Conclusions: MDCT-derived sternal morphometry provides a reliable, non-invasive method for sex estimation. Parameters such as MBL, SBL, and SSA demonstrate strong discriminatory power and support the development of population-specific standards for forensic applications. Full article
(This article belongs to the Special Issue New Perspectives in Forensic Diagnosis)
Show Figures

Figure 1

27 pages, 3732 KB  
Review
Occurrence, Biosynthesis, and Health Benefits of Anthocyanins in Rice and Barley
by Essam A. ElShamey, Xiaomeng Yang, Jiazhen Yang, Xiaoying Pu, Li’E Yang, Changjiao Ke and Yawen Zeng
Int. J. Mol. Sci. 2025, 26(13), 6225; https://doi.org/10.3390/ijms26136225 - 27 Jun 2025
Cited by 1 | Viewed by 1453
Abstract
The occurrence of anthocyanins in rice (Oryza sativa) and barley (Hordeum vulgare) varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated [...] Read more.
The occurrence of anthocyanins in rice (Oryza sativa) and barley (Hordeum vulgare) varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated by a complex network of structural and regulatory genes. Key enzymes in the pathway include chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT). These genes are tightly controlled by transcription factors (TFs) from the MYB, bHLH (basic helix–loop–helix), and WD40 repeat families, which form the MBW (MYB-bHLH-WD40) regulatory complex. In rice, OsMYB transcription factors such as OsMYB3, OsC1, and OsPL (Purple Leaf) interact with OsbHLH partners (e.g., OsB1, OsB2) to activate anthocyanin biosynthesis. Similarly, in barley, HvMYB genes (e.g., HvMYB10) coordinate with HvbHLH TFs to regulate pigment accumulation. Environmental cues, such as light, temperature, and nutrient availability, further modulate these TFs, influencing the production of anthocyanin. Understanding the genetic and molecular mechanisms behind the biosynthesis of anthocyanins in rice and barley provides opportunities for the development of biofortification strategies that enhance their nutritional value. Full article
Show Figures

Figure 1

16 pages, 7019 KB  
Article
Functional Characterization of 5-O-Glycosyltranferase Transforming 3-O Anthocyanins into 3,5-O Anthocyanins in Freesia hybrida
by Adnan, Tingting Bao, Xiang Zheng, Yicong Pang, Ruifang Gao, Xiaotong Shan, Shirui Zhu, Shadrack Kanyonji Kimani, Xiang Gao and Yueqing Li
Int. J. Mol. Sci. 2025, 26(10), 4542; https://doi.org/10.3390/ijms26104542 - 9 May 2025
Cited by 1 | Viewed by 736
Abstract
Floral coloration in Freesia hybrida is predominantly attributed to anthocyanins, with glycosylation playing a critical role in their stability and diversity. This study investigates the molecular mechanisms underlying color variation between F. hybrida cultivars, focusing on anthocyanin 5-O-glucosyltransferases (An5GTs). HPLC analysis [...] Read more.
Floral coloration in Freesia hybrida is predominantly attributed to anthocyanins, with glycosylation playing a critical role in their stability and diversity. This study investigates the molecular mechanisms underlying color variation between F. hybrida cultivars, focusing on anthocyanin 5-O-glucosyltransferases (An5GTs). HPLC analysis revealed that ‘Pink Passion’ petals accumulate 3,5-O-diglucosidic anthocyanins, absent in ‘Red River®’ and ‘Ambiance’. RNA-seq identified seven candidate Fh5GT genes, with phylogenetic and subcellular localization analyses confirming their classification as cytosolic glycosyltransferases. Expression profiling highlighted elevated transcript levels of Fh5GT1, Fh5GT3, and Fh5GT7 in ‘Pink Passion’, correlating with its di-glucosidic anthocyanin accumulation. In vitro enzymatic assays demonstrated that Fh5GT3 and Fh5GT7 preferentially glucosylate 3-O-monoglucosidic anthocyanins to form stable 3,5-O-diglucosides, with minimal activity on anthocyanidins to generate 5-O-glucosidic anthocyanins. Heterologous expression of Fh5GT3 and Fh5GT7 in Arabidopsis complemented anthocyanin deficiency in 5gt mutants, restoring pigmentation. These findings elucidate the potential role of 5GTs in modulating floral color diversity through anthocyanin modification, providing insights for targeted breeding strategies to enhance ornamental traits in horticultural species. Full article
Show Figures

Figure 1

16 pages, 24261 KB  
Article
The Mutations in RcMYB114 Affect Anthocyanin Glycoside Accumulation in Rose
by Maofu Li, Yuan Yang, Hua Wang, Pei Sun, Shuting Zhou, Yanhui Kang, Xiangyi Sun, Min Jin and Wanmei Jin
Biology 2025, 14(3), 258; https://doi.org/10.3390/biology14030258 - 4 Mar 2025
Cited by 2 | Viewed by 1231
Abstract
In plants, the R2R3-MYB transcription factors are one of the largest MYB gene families. These MYB transcription factors are very important for regulating plant growth and development. RcMYB114, RcbHLH, and RcWD40 promote anthocyanin accumulation by forming the MBW (MYB-bHLH-WD40) complex and determine the [...] Read more.
In plants, the R2R3-MYB transcription factors are one of the largest MYB gene families. These MYB transcription factors are very important for regulating plant growth and development. RcMYB114, RcbHLH, and RcWD40 promote anthocyanin accumulation by forming the MBW (MYB-bHLH-WD40) complex and determine the rose flower’s color. RcMYB114 genomic sequences differ between the red petal and white varieties. Two non-synonymous substitutions were found in the open reading frame. It leads to a change in amino acids. Here, the anthocyanin content showed that there was no anthocyanin in white petals, while the anthocyanin content in red petals increased firstly at stage 2, decreased slightly at stage 4, and then increased again at stage 5. The spatiotemporal expression pattern analysis showed that RcMYB114 was not expressed in all petals and tissues of white petals at different flower development stages. In red petal varieties, RcMYB114 was highly expressed in petals, followed by styles, and not expressed in stems, young leaves, and stage 1 of flower development. However, RcMYB114 has the highest expression level at the blooming stage. The RcMYB114 sequence contains 9 SNPs in the coding region, 7 of which were synonymous substitutions that had no effect on the translation product and 2 of which were non-synonymous substitutions that resulted in amino acid alteration at positions 116 and 195, respectively. The RcMYB114 gene in red rose was named RcMYB114a, and in white rose was RcMYB114b. RcMYB114c was mutated into leucine via artificial mutation; it was valine at position 116 of RcMYB114a, and Glycine mutated into Arginine at position 195 of RcMYB114a was RcMYB114d. RcMYB114b was the double mutation at positions 116 and 195 of RcMYB114a. The results of yeast two-hybrid experiments showed that RcMYB114a and its missense mutations RcMYB114b, RcMYB114c, and RcMYB114d could both interact with RcbHLH and RcWD40 to form the MYB-bHLH-WD40 complex. A transient transformation experiment in tobacco confirmed that RcMYB114a and its missense mutations RcMYB114b, RcMYB114c, and RcMYB114d could significantly promote the high expression of related structural genes in tobacco, together with the RcbHLH gene, which led to the accumulation of anthocyanins and produced the red color of the leaves. The RcMYB114a gene and its missense mutations RcMYB114b, RcMYB114c, and RcMYB114d interacted with the RcbHLH gene and significantly regulated the accumulation of anthocyanins. The two non-synonymous mutations of RcMYB114 do not affect the function of the gene itself, but the content of the anthocyanins accumulated was different. This study should provide clues and references for further research on the molecular mechanism underlying the determination of rose petal color. Full article
(This article belongs to the Special Issue Recent Advances in Biosynthesis and Degradation of Plant Anthocyanin)
Show Figures

Figure 1

25 pages, 2730 KB  
Review
Red-Leafed Lettuces: Genetic Variation or Epigenetic Photomorphogenesis?
by Natalya V. Smirnova, Ivan A. Timofeenko and Konstantin V. Krutovsky
Plants 2025, 14(3), 363; https://doi.org/10.3390/plants14030363 - 25 Jan 2025
Cited by 1 | Viewed by 2024
Abstract
Red-leaf lettuces, rich in bioactive compounds like anthocyanins and flavonoids, offer health benefits by reducing oxidative stress and boosting immunity. This article provides an extensive review of the genetic, epigenetic, environmental, and technological factors influencing anthocyanin biosynthesis and leaf coloration in red-leaf lettuce, [...] Read more.
Red-leaf lettuces, rich in bioactive compounds like anthocyanins and flavonoids, offer health benefits by reducing oxidative stress and boosting immunity. This article provides an extensive review of the genetic, epigenetic, environmental, and technological factors influencing anthocyanin biosynthesis and leaf coloration in red-leaf lettuce, emphasizing its significance in agriculture and nutrition. The genetics of anthocyanin biosynthesis, environmental influences, practical applications, agronomic insights, and future directions are the main areas covered. Anthocyanin accumulation is regulated by structural, regulatory, and transporter genes, as well as the MYB-bHLH-WD40 (MBW) complex. Mutations in these genes impact coloration and stress responses. Advances in genomic studies, such as GWAS and QTL mapping, have identified key genes and pathways involved in anthocyanin biosynthesis, aiding breeding programs for desirable traits. In addition, light intensity, stress conditions (e.g., drought, temperature), and phytohormones affect anthocyanin levels and photomorphogenesis in general. Controlled environments, like vertical farms, optimize these conditions to enhance pigmentation and phytochemical content. LED lighting and tailored cultivation techniques improve color intensity, antioxidant capacity, and yield in controlled settings. Sustainable production technologies for red-leaf lettuce in vertical farms are being developed to meet consumer demand and promote functional foods, integrating genetic, epigenetic, and environmental research into agronomy. This review highlights red-leaf lettuce’s aesthetic, nutritional, and functional value, advocating for innovative cultivation methods to enhance its market and health potential. Full article
Show Figures

Figure 1

19 pages, 4867 KB  
Article
Transcriptomic and Metabolomic Analyses Reveal Differences in Flavonoid Synthesis During Fruit Development of Capsicum frutescens pericarp
by Yinxin Yang, Qihang Cai, Xuan Wang, Yanbo Yang, Liping Li, Zhenghai Sun and Weiwei Li
Agriculture 2025, 15(2), 222; https://doi.org/10.3390/agriculture15020222 - 20 Jan 2025
Cited by 1 | Viewed by 1310
Abstract
Capsicum frutescens is a valuable economic crop that is widely cultivated for its unique flavor and rich nutritional content. While some studies have shown differences in flavonoid content among different chili species, the mechanism by which changes in flavonoid composition lead to fruit [...] Read more.
Capsicum frutescens is a valuable economic crop that is widely cultivated for its unique flavor and rich nutritional content. While some studies have shown differences in flavonoid content among different chili species, the mechanism by which changes in flavonoid composition lead to fruit color variations in C. frutescens remains underreported. We performed transcriptomics and widely targeted metabolome sequencing on three different growth stages of the C. frutescens fruit and analyzed the data to better understand the mechanism of color change. Based on previous research on the genes that regulate flavonoid compounds and the MBW complex, we have identified a total of 28 core genes related to flavonoid biosynthesis and 8 genes that may be related to flavonoid synthesis. Through extensive targeted metabolomic analysis, 581 differential metabolites were identified, including 43 flavonoids. Most anthocyanins, flavonols, and flavonoids were found to be more abundant during the immature fruit stage, which we presume is associated with the differential expression of genes involved in flavonoid biosynthesis and regulation. These findings provide a useful reference for understanding flavonoid synthesis and the accumulation of fruits in C. frutescens. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

22 pages, 7640 KB  
Article
Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation
by Jianzhong Li, Guoliang Li, Caishuo Zhu, Shaoxing Wang, Shifan Zhang, Fei Li, Hui Zhang, Rifei Sun, Lingyun Yuan, Guohu Chen, Xiaoyan Tang, Chenggang Wang and Shujiang Zhang
Plants 2025, 14(2), 268; https://doi.org/10.3390/plants14020268 - 18 Jan 2025
Cited by 1 | Viewed by 979
Abstract
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a [...] Read more.
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants. bHLH constitutes one of the largest families of transcription factors in eukaryotes, of which MYC is a subfamily member. However, studies on bHLH-MYC transcription factors in mustard have yet to be reported. In this study, a total of 45 bHLH-MYC transcription factors were identified within the Brassica juncea genome, and a comprehensive series of bioinformatic analyses were conducted on their structures and properties: an examination of protein physicochemical properties, an exploration of conserved structural domains, an assessment of chromosomal positional distributions, an analysis of the conserved motifs, an evaluation of the gene structures, microsynteny analyses, three-dimensional structure prediction, and an analysis of sequence signatures. Finally, transcriptome analyses and a subcellular localization examination were performed. The results revealed that these transcription factors were unevenly distributed across 18 chromosomes, showing relatively consistent conserved motifs and gene structures and high homology. The final results of the transcriptome analysis and gene annotation showed a high degree of variability in the expression of bHLH-MYC transcription factors. Five genes that may be associated with trichome development (BjuVA09G22490, BjuVA09G13750, BjuVB04G14560, BjuVA05G24810, and BjuVA06G44820) were identified. The subcellular localization results indicated that the transcription and translation products of these five genes were expressed in the same organelle: the nucleus. This finding provides a basis for elucidating the roles of bHLH-MYC family members in plant growth and development, and the molecular mechanisms underlying trichome development in mustard leaves. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

50 pages, 5112 KB  
Review
Regulation of Flavonoid Biosynthesis by the MYB-bHLH-WDR (MBW) Complex in Plants and Its Specific Features in Cereals
by Andrey N. Bulanov, Elena A. Andreeva, Natalia V. Tsvetkova and Pavel A. Zykin
Int. J. Mol. Sci. 2025, 26(2), 734; https://doi.org/10.3390/ijms26020734 - 16 Jan 2025
Cited by 13 | Viewed by 3841
Abstract
Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by [...] Read more.
Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators—MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals. Published data revealed the following perspectives for further research: (1) In cereals, a large number of paralogs of MYC and MYB transcription factors are present, and their diversification has led to spatial and biochemical specialization, providing an opportunity to fine-tune the distribution and composition of flavonoid compounds; (2) Regulatory systems formed by MBW proteins in cereals possess distinctive features that are not yet fully understood and require further investigation; (3) Non-classical MB-EMSY-like complexes, WDR-independent MB complexes, and solely acting R2R3-MYB transcription factors are of particular interest for studying unique regulatory mechanisms in plants. More comprehensive understanding of flavonoid biosynthesis regulation will allow us to develop cereal varieties with the required flavonoid content and spatial distribution. Full article
(This article belongs to the Special Issue Molecular and Metabolic Regulation of Plant Secondary Metabolism)
Show Figures

Figure 1

24 pages, 10194 KB  
Article
Multi-Omics Research Reveals the Effects of the ABA-Regulated Phenylpropanoid Biosynthesis Pathway on the UV-B Response in Rhododendron chrysanthum Pall.
by Wang Yu, Xiangru Zhou, Jinhao Meng, Xiaofu Zhou and Hongwei Xu
Plants 2025, 14(1), 101; https://doi.org/10.3390/plants14010101 - 1 Jan 2025
Cited by 3 | Viewed by 1372
Abstract
The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Rhododendron chrysanthum Pall. (R. chrysanthum) to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences R. [...] Read more.
The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Rhododendron chrysanthum Pall. (R. chrysanthum) to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences R. chrysanthum’s metabolic responses under UV-B stress. R. chrysanthum was treated with UV-B radiation and exogenous ABA for widely targeted metabolomics, transcriptomics, and proteomics assays, and relevant chlorophyll fluorescence parameters were also determined. It was observed that UV-B stress negatively impacts the plant’s photosynthetic machinery, disrupting multiple metabolic processes. Multi-omics analysis revealed that ABA application mitigates the detrimental effects of UV-B on photosynthesis and bolsters the plant’s antioxidant defenses. Additionally, both UV-B exposure and ABA treatment significantly influenced the phenylpropanoid biosynthesis pathway, activating key enzyme genes, such as 4CL, CCR, and HCT. The study also highlighted the MYB–bHLH–WD40 (MBW) complex’s role in regulating this pathway and its interaction with ABA signaling components. These findings underscore ABA’s crucial function in improving plant resistance to UV-B stress and offer novel insights into plant stress biology. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

13 pages, 255 KB  
Article
Effects of Mung Bean Water Supplementation on Modulating Lipid and Glucose Metabolism in a Diabetic Rat Model
by Chung-Hsiung Huang, Jia-Yin Chen and Meng-Tsan Chiang
Nutrients 2024, 16(16), 2684; https://doi.org/10.3390/nu16162684 - 13 Aug 2024
Cited by 3 | Viewed by 2774
Abstract
Type 2 diabetes mellitus (T2DM) is often associated with chronic inflammation exacerbated by hyperglycemia and dyslipidemia. Mung beans have a longstanding reputation in traditional medicine for their purported ability to lower blood glucose levels, prompting interest in their pharmacological properties. This study aimed [...] Read more.
Type 2 diabetes mellitus (T2DM) is often associated with chronic inflammation exacerbated by hyperglycemia and dyslipidemia. Mung beans have a longstanding reputation in traditional medicine for their purported ability to lower blood glucose levels, prompting interest in their pharmacological properties. This study aimed to explore the impact of mung bean water (MBW) on carbohydrate and lipid metabolism in a T2DM rat model induced by nicotinamide/streptozotocin. Normal and DM rats were supplemented with a stock solution of MBW as drinking water ad libitum daily for 8 weeks. MBW supplementation led to significant reductions in plasma total cholesterol, HDL-C, and VLDL-C + LDL-C levels, and decreased malondialdehyde levels in plasma and liver samples, indicating reduced oxidative stress. MBW supplementation lowered plasma glucose levels and upregulated hepatic hexokinase activity, suggesting enhanced glucose utilization. Additionally, MBW decreased hepatic glucose-6-phosphate dehydrogenase and glutathione peroxidase activities, while hepatic levels of glutathione and glutathione disulfide remained unchanged. These findings underscore the potential of MBW to improve plasma glucose and lipid metabolism in DM rats, likely mediated by antioxidant effects and the modulation of hepatic enzyme activities. Further exploration of bioactive components of MBW and its mechanisms could unveil new therapeutic avenues for managing diabetes and its metabolic complications. Full article
(This article belongs to the Special Issue Current and New Approaches to Managing Diabetes through Diet)
15 pages, 1938 KB  
Article
Enhancing Lettuce Yield through Innovative Foliar Spray of Biopolymers Derived from Municipal Biowastes
by Ferdinando Fragalà, Erika Salvagno, Emanuele La Bella, Rossella Saccone, Elio Padoan, Enzo Montoneri, Jennifer Miccichè, Daniela Ferrarello, Andrea Baglieri and Ivana Puglisi
Plants 2024, 13(12), 1664; https://doi.org/10.3390/plants13121664 - 16 Jun 2024
Cited by 1 | Viewed by 2114
Abstract
Municipal waste biomass could be valorized as an alternative feedstock to produce compounds beneficial for agricultural applications. The foliar spray application of biostimulants emerges as a promising and innovative technique due to its environmental safety and ability to enhance crop yields. In recent [...] Read more.
Municipal waste biomass could be valorized as an alternative feedstock to produce compounds beneficial for agricultural applications. The foliar spray application of biostimulants emerges as a promising and innovative technique due to its environmental safety and ability to enhance crop yields. In recent years, the exploitation of biopolymers obtained through alkaline hydrolysis of the solid anaerobic digestate from municipal biowastes has attracted researchers’ interest. The aim of this study is to investigate the effects on lettuce growth of a product obtained through alkaline hydrolysis from municipal biowaste, Biopolymers (BPs), and of a derivate subjected to a further oxidation process, Biopolymers Oxidate (BPs OX). The effects of the treatments at various concentrations were evaluated by monitoring plant growth and observing the trends in the activities of the main enzymes involved in the nitrogen metabolic pathway of lettuce. Results suggest that the best treatments in terms of fresh weight were achieved by using BPs at 10 mg/L and BPs OX at 100 mg/L, increasing yield by around 28% and 34%, respectively. The innovative aspect of this work was to make easier for farmers the biopolymers application by testing a foliar spray methodology for BPs and BPs OX, which has never been tested before in any crop. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

11 pages, 948 KB  
Article
Nitrogen Fertiliser Effects on Grain Anthocyanin and γ-Oryzanol Biosynthesis in Black Rice
by Manisha Thapa, Lei Liu, Bronwyn J. Barkla, Tobias Kretzschmar, Suzy Y. Rogiers and Terry J. Rose
Agriculture 2024, 14(6), 817; https://doi.org/10.3390/agriculture14060817 - 24 May 2024
Cited by 1 | Viewed by 1567
Abstract
Accumulation of phytochemicals in vegetative tissue under nitrogen (N) stress as an adaptive strategy has been investigated in various crops, but the effect of applied N on grain phytochemicals is poorly understood. This study investigated the effect of applied N on the biosynthesis [...] Read more.
Accumulation of phytochemicals in vegetative tissue under nitrogen (N) stress as an adaptive strategy has been investigated in various crops, but the effect of applied N on grain phytochemicals is poorly understood. This study investigated the effect of applied N on the biosynthesis and accumulation of rice (Oryza sativa L.) grain anthocyanin and γ-oryzanol under different ultraviolet-B (UV-B) conditions in a controlled pot trial using two distinct black rice genotypes. The response of grain anthocyanin and γ-oryzanol content to applied N was genotype-dependent but was not altered by UV-B conditions. Applied N increased grain anthocyanin and decreased γ-oryzanol content in genotype SCU212 but had no significant effect in genotype SCU254. The expression of the OsKala3 regulatory gene was significantly upregulated in response to applied N in SCU212, while the expressions of OsKala4 and OsTTG1 were unchanged. The expression of all three regulatory genes was not significantly affected in SCU254 with applied N. Key anthocyanin biosynthesis genes were upregulated in grain by N application, which indicates that the common increase in anthocyanin in vegetative tissues under N deprivation does not hold true for reproductive tissues. Hence, any future approach to target higher content of these key phytochemicals in grains should be genotype-focused. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

28 pages, 14909 KB  
Article
A Regulatory Mechanism on Pathways: Modulating Roles of MYC2 and BBX21 in the Flavonoid Network
by Nan Li, Yunzhang Xu and Yingqing Lu
Plants 2024, 13(8), 1156; https://doi.org/10.3390/plants13081156 - 22 Apr 2024
Cited by 7 | Viewed by 3869
Abstract
Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here [...] Read more.
Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here for its direct links to the regulators. We show that MYC2 can activate the structural genes of the anthocyanin pathway but also suppress them (except F3′H) in both Arabidopsis and Oryza when a local MBW complex is present. BBX21 or SPL9 can activate all or part of the structural genes, respectively, but the effects can be largely overwritten by the local MBW complex. HY5 primarily influences expressions of the early genes (CHS, CHI, and F3H). TF-TF relationships can be complex here: PIF3, BBX21, or SPL9 can mildly activate MYC2; MYC2 physically interacts with the bHLH (GL3) of the MBW complex and/or competes with strong actions of BBX21 to lessen a stimulus to the anthocyanin pathway. The dual role of MYC2 in regulating the anthocyanin pathway and a similar role of BBX21 in regulating BAN reveal a network-level mechanism, in which pathways are modulated locally and competing interactions between modulators may tone down strong environmental signals before they reach the network. Full article
Show Figures

Figure 1

14 pages, 1043 KB  
Article
The Effect of Birth Weight on Fattening Performance, Meat Quality, and Muscle Fibre Characteristics in Lambs of the Karayaka Native Breed
by Emre Şirin, Uğur Şen, Yüksel Aksoy, Ümran Çiçek, Zafer Ulutaş and Mehmet Kuran
Animals 2024, 14(5), 704; https://doi.org/10.3390/ani14050704 - 23 Feb 2024
Cited by 1 | Viewed by 1532
Abstract
This investigation aimed to assess the influence of birth weight on post-weaning fattening performance, meat quality, muscle fibre characteristics, and carcass traits in Karayaka lambs. The study categorized the lambs into three distinct groups based on birth weight: low birth weight (LBW), medium [...] Read more.
This investigation aimed to assess the influence of birth weight on post-weaning fattening performance, meat quality, muscle fibre characteristics, and carcass traits in Karayaka lambs. The study categorized the lambs into three distinct groups based on birth weight: low birth weight (LBW), medium birth weight (MBW), and high birth weight (HBW). Throughout the fattening phase, the lambs were given ad libitum access to food and water, culminating in the slaughter at the end of the study. Following slaughter, warm and cold carcasses were weighted, and specific muscles (longissimus thoracis et lumborum [LTL], semitendinosus [ST], and semimembranosus [SM]) were isolated for the evaluation of muscle weights, muscle fibre types (Type I, Type IIA, and Type IIB), and muscle fibre numbers. Carcass characteristics were also determined, including eye muscle (LTL) fat, loin thickness, and meat quality characteristics, such as pH, colour, texture, cooking loss, and water-holding capacity. The statistical analysis revealed highly significant differences among the experimental groups concerning muscle weights and warm and cold carcass weights (p < 0.01), with the lambs in the HBW group exhibiting a notably higher carcass yield (in females: 45.65 ± 1.34% and in males: 46.18 ± 0.77%) and LTL, ST, and SM (except for female lambs) muscle weights than the lambs in LBW group (p < 0.01). However, apart from the texture of LTL and ST muscles, no significant differences in meat quality parameters were observed among the treatment groups (p > 0.05). Notably, the birth weight of lambs did not impart a discernible effect on the total number and metabolic activity of muscle fibres in LTL, ST, and SM muscles. Nonetheless, a noteworthy distinction in the fibre area of Type I fibres in the LTL muscle of male lambs (LBW: 30.4 ± 8.9, MBW: 29.1 ± 7.3 and HBW; 77.3 ± 15.4) and in the ST muscle of female lambs (LBW: 44.1 ± 8.1, MBW: 38.8 ± 7.7 and HBW: 36.9 ± 7.1) were evident among the birth weight groups (p < 0.05). The study also found that the mean fat thickness values of eye muscles in Karayaka lambs, as obtained by ultrasonic tests, were below the typical range for sheep. In synthesis, the outcomes of this study underscore the considerable impact of birth weight on slaughtered and carcass weights, emphasizing the positive association between higher birth weights and enhanced carcass yield. Remarkably, despite these pronounced effects on carcass traits, the birth weight did not demonstrate a statistically significant influence on meat quality or overall muscle fibre characteristics, except for the area of Type I fibres in the LTL muscle. This nuanced understanding contributes valuable insights into the intricate relationship between birth weight and various physiological and carcass parameters in Karayaka lambs undergoing post-weaning fattening. Full article
(This article belongs to the Collection Carcass Composition and Meat Quality of Small Ruminants)
Show Figures

Figure 1

Back to TopTop