Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = MERSI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 11737 KB  
Article
Comparative Evaluation of SNO and Double Difference Calibration Methods for FY-3D MERSI TIR Bands Using MODIS/Aqua as Reference
by Shufeng An, Fuzhong Weng, Xiuzhen Han and Chengzhi Ye
Remote Sens. 2025, 17(19), 3353; https://doi.org/10.3390/rs17193353 - 2 Oct 2025
Viewed by 208
Abstract
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous [...] Read more.
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous Nadir Overpass (SNO) and Double Difference (DD)—for the thermal infrared (TIR) bands of FY-3D MERSI. MODIS/Aqua serves as the reference sensor, while radiative transfer simulations driven by ERA5 inputs are generated with the Advanced Radiative Transfer Modeling System (ARMS) to support the analysis. The results show that SNO performs effectively when matchup samples are sufficiently large and globally representative but is less applicable under sparse temporal sampling or orbital drift. In contrast, the DD method consistently achieves higher calibration accuracy for MERSI Bands 24 and 25 under clear-sky conditions. It reduces mean biases from ~−0.5 K to within ±0.1 K and lowers RMSE from ~0.6 K to 0.3–0.4 K during 2021–2022. Under cloudy conditions, DD tends to overcorrect because coefficients derived from clear-sky simulations are not directly transferable to cloud-covered scenes, whereas SNO remains more stable though less precise. Overall, the results suggest that the two methods exhibit complementary strengths, with DD being preferable for high-accuracy calibration in clear-sky scenarios and SNO offering greater stability across variable atmospheric conditions. Future work will validate both methods under varied surface and atmospheric conditions and extend their use to additional sensors and spectral bands. Full article
Show Figures

Figure 1

18 pages, 4791 KB  
Article
A Machine-Learning-Based Cloud Detection and Cloud-Top Thermodynamic Phase Algorithm over the Arctic Using FY3D/MERSI-II
by Caixia Yu, Xiuqing Hu, Yanyu Lu, Wenyu Wu and Dong Liu
Remote Sens. 2025, 17(18), 3128; https://doi.org/10.3390/rs17183128 - 9 Sep 2025
Viewed by 461
Abstract
The Arctic, characterized by extensive ice and snow cover with persistent low solar elevation angles and prolonged polar nights, poses significant challenges for conventional spectral threshold methods in cloud detection and cloud-top thermodynamic phase classification. The study addressed these limitations by combining active [...] Read more.
The Arctic, characterized by extensive ice and snow cover with persistent low solar elevation angles and prolonged polar nights, poses significant challenges for conventional spectral threshold methods in cloud detection and cloud-top thermodynamic phase classification. The study addressed these limitations by combining active and passive remote sensing and developing a machine learning framework for cloud detection and cloud-top thermodynamic phase classification. Utilizing the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud product from 2021 as the truth reference, the model was trained with spatiotemporally collocated datasets from FY3D/MERSI-II (Medium Resolution Spectral Imager-II) and CALIOP. The AdaBoost (Adaptive Boosting) machine learning algorithm was employed to construct the model, with considerations for six distinct Arctic surface types to enhance its performance. The accuracy test results showed that the cloud detection model achieved an accuracy of 0.92, and the cloud recognition model achieved an accuracy of 0.93. The inversion performance of the final model was then rigorously evaluated using a completely independent dataset collected in July 2022. Our findings demonstrated that our model results align well with results from CALIOP, and the detection and identification outcomes across various surface scenarios show high consistency with the actual situations displayed in false-color images. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 5485 KB  
Article
A Machine Learning Algorithm Using Texture Features for Nighttime Cloud Detection from FY-3D MERSI L1 Imagery
by Yilin Li, Yuhao Wu, Jun Li, Anlai Sun, Naiqiang Zhang and Yonglou Liang
Remote Sens. 2025, 17(6), 1083; https://doi.org/10.3390/rs17061083 - 19 Mar 2025
Cited by 1 | Viewed by 787
Abstract
Accurate cloud detection is critical for quantitative applications of satellite-based advanced imager observations, yet nighttime cloud detection presents challenges due to the lack of visible and near-infrared spectral information. Nighttime cloud detection using infrared (IR)-only information needs to be improved. Based on a [...] Read more.
Accurate cloud detection is critical for quantitative applications of satellite-based advanced imager observations, yet nighttime cloud detection presents challenges due to the lack of visible and near-infrared spectral information. Nighttime cloud detection using infrared (IR)-only information needs to be improved. Based on a collocated dataset from Fengyun-3D Medium Resolution Spectral Imager (FY-3D MERSI) Level 1 data and CALIPSO CALIOP lidar Level 2 product, this study proposes a novel framework leveraging Light Gradient-Boosting Machine (LGBM), integrated with grey level co-occurrence matrix (GLCM) features extracted from IR bands, to enhance nighttime cloud detection capabilities. The LGBM model with GLCM features demonstrates significant improvements, achieving an overall accuracy (OA) exceeding 85% and an F1-Score (F1) of nearly 0.9 when validated with an independent CALIOP lidar Level 2 product. Compared to the threshold-based algorithm that has been used operationally, the proposed algorithm exhibits superior and more stable performance across varying solar zenith angles, surface types, and cloud altitudes. Notably, the method produced over 82% OA over the cryosphere surface. Furthermore, compared to LGBM models without GLCM inputs, the enhanced model effectively mitigates the thermal stripe effect of MERSI L1 data, yielding more accurate cloud masks. Further evaluation with collocated MODIS-Aqua cloud mask product indicates that the proposed algorithm delivers more precise cloud detection (OA: 90.30%, F1: 0.9397) compared to that of the MODIS product (OA: 84.66%, F1: 0.9006). This IR-alone algorithm advancement offers a reliable tool for nighttime cloud detection, significantly enhancing the quantitative applications of satellite imager observations. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

32 pages, 11960 KB  
Article
Estimation of 1 km Dawn–Dusk All-Sky Land Surface Temperature Using a Random Forest-Based Reanalysis and Thermal Infrared Remote Sensing Data Merging (RFRTM) Method
by Yaohai Dong, Xiaodong Zhang, Xiuqing Hu, Jian Shang and Feng Zhao
Sensors 2025, 25(2), 508; https://doi.org/10.3390/s25020508 - 16 Jan 2025
Viewed by 1017
Abstract
All-sky 1 km land surface temperature (LST) data are urgently needed. Two widely applied approaches to derive such LST data are merging thermal infrared remote sensing (TIR)–passive microwave remote sensing (PMW) observations and merging TIR reanalysis data. However, as only the Moderate Resolution [...] Read more.
All-sky 1 km land surface temperature (LST) data are urgently needed. Two widely applied approaches to derive such LST data are merging thermal infrared remote sensing (TIR)–passive microwave remote sensing (PMW) observations and merging TIR reanalysis data. However, as only the Moderate Resolution Imaging Spectroradiometer (MODIS) is adopted as the TIR source for merging, current 1 km all-sky LST products are limited to the MODIS observation time. Therefore, a gap still remains in terms of all-sky LST data with a higher temporal resolution or at other times (e.g., dawn–dusk time). Under this background, this study merged the observations of the Medium Resolution Spectrum Imager (MERSI-LL) on board the dusk–dawn-orbit Fengyun (FY)-3E satellite and Global Land Data Assimilation System (GLDAS) data to estimate dawn–dusk 1 km all-sky LST using a random forest-based method (RFRTM). The results showed that the model had good robustness, with an STD of 0.62–0.86 K of the RFRTM LST, compared with the original MERSI-LL LST. Validation against in situ LST showed that the estimated LST had an accuracy of 1.34–3.71 K under all-sky conditions. In addition, compared with the dawn–dusk LST merged from MERSI-LL and the Special Sensor Microwave Imager/Sounder (SSMI/S), the RFRTM LST showed better performance in accuracy and image quality. This study’s findings are beneficial for filling the gap in all-sky LST at high spatiotemporal resolutions for associated applications. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

19 pages, 9878 KB  
Article
Arctic Sea Ice Surface Temperature Retrieval from FengYun-3A MERSI-I Data
by Yachao Li, Tingting Liu, Zemin Wang, Mohammed Shokr, Menglin Yuan, Qiangqiang Yuan and Shiyu Wu
Remote Sens. 2024, 16(23), 4599; https://doi.org/10.3390/rs16234599 - 7 Dec 2024
Viewed by 1278
Abstract
Arctic sea-ice surface temperature (IST) is an important environmental and climatic parameter. Currently, wide-swath sea-ice surface temperature products have a spatial resolution of approximately 1000 m. The Medium Resolution Spectral Imager (MERSI-I) offers a thermal infrared channel with a wide-swath width of 2900 [...] Read more.
Arctic sea-ice surface temperature (IST) is an important environmental and climatic parameter. Currently, wide-swath sea-ice surface temperature products have a spatial resolution of approximately 1000 m. The Medium Resolution Spectral Imager (MERSI-I) offers a thermal infrared channel with a wide-swath width of 2900 km and a high spatial resolution of 250 m. In this study, we developed an applicable single-channel algorithm to retrieve ISTs from MERSI-I data. The algorithm accounts for the following challenges: (1) the wide range of incidence angle; (2) the unstable snow-covered ice surface; (3) the variation in atmospheric water vapor content; and (4) the unique spectral response function of MERSI-I. We reduced the impact of using a constant emissivity on the IST retrieval accuracy by simulating the directional emissivity. Different ice surface types were used in the simulation, and we recommend the sun crust type as the most suitable for IST retrieval. We estimated the real-time water vapor content using a band ratio method from the MERSI-I near-infrared data. The results show that the retrieved IST was lower than the buoy measurements, with a mean bias and root-mean-square error (RMSE) of −1.928 K and 2.616 K. The retrieved IST is higher than the IceBridge measurements, with a mean bias and RMSE of 1.056 K and 1.760 K. Compared with the original algorithm, the developed algorithm has higher accuracy and reliability. The sensitivity analysis shows that the atmospheric water vapor content with an error of 20% may lead to an IST retrieval error of less than 1.01 K. Full article
(This article belongs to the Special Issue Geodata Science and Spatial Analysis with Remote Sensing)
Show Figures

Figure 1

24 pages, 6494 KB  
Article
Reconstruction of Fine-Spatial-Resolution FY-3D-Based Vegetation Indices to Achieve Farmland-Scale Winter Wheat Yield Estimation via Fusion with Sentinel-2 Data
by Xijia Zhou, Tao Wang, Wei Zheng, Mingwei Zhang and Yuanyuan Wang
Remote Sens. 2024, 16(22), 4143; https://doi.org/10.3390/rs16224143 - 6 Nov 2024
Cited by 1 | Viewed by 1351
Abstract
The spatial resolution (250–1000 m) of the FY-3D MERSI is too coarse for agricultural monitoring at the farmland scale (20–30 m). To achieve the winter wheat yield (WWY) at the farmland scale, based on FY-3D, a method framework is developed in this work. [...] Read more.
The spatial resolution (250–1000 m) of the FY-3D MERSI is too coarse for agricultural monitoring at the farmland scale (20–30 m). To achieve the winter wheat yield (WWY) at the farmland scale, based on FY-3D, a method framework is developed in this work. The enhanced deep convolutional spatiotemporal fusion network (EDCSTFN) was used to perform a spatiotemporal fusion on the 10 day interval FY-3D and Sentinel-2 vegetation indices (VIs), which were compared with the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). In addition, a BP neural network was built to calculate the farmland-scale WWY based on the fused VIs, and the Aqua MODIS gross primary productivity product was used as ancillary data for WWY estimation. The results reveal that both the EDCSTFN and ESTARFM achieve satisfactory precision in the fusion of the Sentinel-2 and FY-3D VIs; however, when the period of spatiotemporal data fusion is relatively long, the EDCSTFN can achieve greater precision than ESTARFM. Finally, the WWY estimation results based on the fused VIs show remarkable correlations with the WWY data at the county scale and provide abundant spatial distribution details about the WWY, displaying great potential for accurate farmland-scale WWY estimations based on reconstructed fine-spatial-temporal-resolution FY-3D data. Full article
Show Figures

Figure 1

35 pages, 7235 KB  
Article
Change in Fractional Vegetation Cover and Its Prediction during the Growing Season Based on Machine Learning in Southwest China
by Xiehui Li, Yuting Liu and Lei Wang
Remote Sens. 2024, 16(19), 3623; https://doi.org/10.3390/rs16193623 - 28 Sep 2024
Cited by 5 | Viewed by 2005
Abstract
Fractional vegetation cover (FVC) is a crucial indicator for measuring the growth of surface vegetation. The changes and predictions of FVC significantly impact biodiversity conservation, ecosystem health and stability, and climate change response and prediction. Southwest China (SWC) is characterized by complex topography, [...] Read more.
Fractional vegetation cover (FVC) is a crucial indicator for measuring the growth of surface vegetation. The changes and predictions of FVC significantly impact biodiversity conservation, ecosystem health and stability, and climate change response and prediction. Southwest China (SWC) is characterized by complex topography, diverse climate types, and rich vegetation types. This study first analyzed the spatiotemporal variation of FVC at various timescales in SWC from 2000 to 2020 using FVC values derived from pixel dichotomy model. Next, we constructed four machine learning models—light gradient boosting machine (LightGBM), support vector regression (SVR), k-nearest neighbor (KNN), and ridge regression (RR)—along with a weighted average heterogeneous ensemble model (WAHEM) to predict growing-season FVC in SWC from 2000 to 2023. Finally, the performance of the different ML models was comprehensively evaluated using tenfold cross-validation and multiple performance metrics. The results indicated that the overall FVC in SWC predominantly increased from 2000 to 2020. Over the 21 years, the FVC spatial distribution in SWC generally showed a high east and low west pattern, with extremely low FVC in the western plateau of Tibet and higher FVC in parts of eastern Sichuan, Chongqing, Guizhou, and Yunnan. The determination coefficient R2 scores from tenfold cross-validation for the four ML models indicated that LightGBM had the strongest predictive ability whereas RR had the weakest. WAHEM and LightGBM models performed the best overall in the training, validation, and test sets, with RR performing the worst. The predicted spatial change trends were consistent with the MODIS-MOD13A3-FVC and FY3D-MERSI-FVC, although the predicted FVC values were slightly higher but closer to the MODIS-MOD13A3-FVC. The feature importance scores from the LightGBM model indicated that digital elevation model (DEM) had the most significant influence on FVC among the six input features. In contrast, soil surface water retention capacity (SSWRC) was the most influential climate factor. The results of this study provided valuable insights and references for monitoring and predicting the vegetation cover in regions with complex topography, diverse climate types, and rich vegetation. Additionally, they offered guidance for selecting remote sensing products for vegetation cover and optimizing different ML models. Full article
Show Figures

Figure 1

21 pages, 9876 KB  
Article
Estimation of Leaf Area Index across Biomes and Growth Stages Combining Multiple Vegetation Indices
by Fangyi Lv, Kaimin Sun, Wenzhuo Li, Shunxia Miao and Xiuqing Hu
Sensors 2024, 24(18), 6106; https://doi.org/10.3390/s24186106 - 21 Sep 2024
Cited by 2 | Viewed by 2473
Abstract
The leaf area index (LAI) is a key indicator of vegetation canopy structure and growth status, crucial for global ecological environment research. The Moderate Resolution Spectral Imager-II (MERSI-II) aboard Fengyun-3D (FY-3D) covers the globe twice daily, providing a reliable data source for large-scale [...] Read more.
The leaf area index (LAI) is a key indicator of vegetation canopy structure and growth status, crucial for global ecological environment research. The Moderate Resolution Spectral Imager-II (MERSI-II) aboard Fengyun-3D (FY-3D) covers the globe twice daily, providing a reliable data source for large-scale and high-frequency LAI estimation. VI-based LAI estimation is effective, but species and growth status impacts on the sensitivity of the VI–LAI relationship are rarely considered, especially for MERSI-II. This study analyzed the VI–LAI relationship for eight biomes in China with contrasting leaf structures and canopy architectures. The LAI was estimated by adaptively combining multiple VIs and validated using MODIS, GLASS, and ground measurements. Results show that (1) species and growth stages significantly affect VI–LAI sensitivity. For example, the EVI is optimal for broadleaf crops in winter, while the RDVI is best for evergreen needleleaf forests in summer. (2) Combining vegetation indices can significantly optimize sensitivity. The accuracy of multi-VI-based LAI retrieval is notably higher than using a single VI for the entire year. (3) MERSI-II shows good spatial–temporal consistency with MODIS and GLASS and is more sensitive to vegetation growth fluctuation. Direct validation with ground-truth data also demonstrates that the uncertainty of retrievals is acceptable (R2 = 0.808, RMSE = 0.642). Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 6697 KB  
Article
Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D
by Xinxin Zhang, Ying Zhang, Fan Meng, Jinhua Tao, Hongmei Wang, Yapeng Wang and Liangfu Chen
Remote Sens. 2024, 16(8), 1414; https://doi.org/10.3390/rs16081414 - 16 Apr 2024
Cited by 1 | Viewed by 1857
Abstract
This study utilized an infrared spotlight Hyperspectral infrared Atmospheric Sounder (HIRAS) and the Medium Resolution Spectral Imager (MERSI) mounted on FY3D cloud products from the National Satellite Meteorological Center of China to obtain methane profile information. Methane inversion channels near 7.7 μm were [...] Read more.
This study utilized an infrared spotlight Hyperspectral infrared Atmospheric Sounder (HIRAS) and the Medium Resolution Spectral Imager (MERSI) mounted on FY3D cloud products from the National Satellite Meteorological Center of China to obtain methane profile information. Methane inversion channels near 7.7 μm were selected based on the different distribution of methane weighting functions across different seasons and latitudes, and the selected retrieval channels had a great sensitivity to methane but not to other parameters. The optimization method was employed to retrieve methane profiles using these channels. The ozone profiles, temperature, and water vapor of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis data (ERA5) were applied to the retrieval process. After validating the methane profile concentrations retrieved by HIRAS, the following conclusions were drawn: (1) compared with Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flight data, the average correlation coefficient, relative difference, and root mean square error were 0.73, 0.0491, and 18.9 ppbv, respectively, with lower relative differences and root mean square errors in low-latitude regions than in mid-latitude regions. (2) The methane profiles retrieved from May 2019 to September 2021 showed an average error within 60 ppbv compared with the Fourier transform infrared spectrometer (FTIR) station observations of the Infrared Working Group (IRWG) of the Network for the Detection of Atmospheric Composition Change (NDACC). The errors between the a priori and retrieved values, as well as between the retrieved and smoothed values, were larger by around 400–500 hPa. Apart from Toronto and Alzomoni, which had larger peak values in autumn and spring respectively, the mean column averaging kernels typically has a larger peak in summer. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

19 pages, 13951 KB  
Article
Remote Sensing of Aerosols and Water-Leaving Radiance from Chinese FY-3/MERSI Based on a Simultaneous Method
by Xiaohan Zhang, Chong Shi, Yidan Si, Husi Letu, Ling Wang, Chenqian Tang, Na Xu, Xianqiang He, Shuai Yin, Zhihua Zhang and Lin Chen
Remote Sens. 2023, 15(24), 5650; https://doi.org/10.3390/rs15245650 - 6 Dec 2023
Cited by 5 | Viewed by 2410
Abstract
In this paper, a new simultaneous retrieval method of the SIRAW algorithm is introduced and carried out on FY3D/MERSI-II satellite images to obtain the aerosol optical thickness (AOT) and normalized water-leaving radiance (WLR) over the ocean. In order to improve the operation efficiency [...] Read more.
In this paper, a new simultaneous retrieval method of the SIRAW algorithm is introduced and carried out on FY3D/MERSI-II satellite images to obtain the aerosol optical thickness (AOT) and normalized water-leaving radiance (WLR) over the ocean. In order to improve the operation efficiency of SIRAW, a machine learning solver is developed to improve the speed of forward radiative transfer computation during retrieval. Ground-based measurement data from AERONET-OC and satellite products from VIIRS are used for comparative verification. The results show that the retrieved AOT and WLR from SIRAW are both in good agreement with those of AERONET-OC and VIIRS. Further, considering the degradation of the MERSI sensor, a new calibration scheme on 412 nm and 443 nm is adopted and an evaluation is carried out. Inter-comparison of derived WLR between MERSI and VIIRS indicates that the new calibration scheme could effectively improve the WLR retrieval accuracy of MERSI with better consistency to the official data of VIIRS. Therefore, this paper confirms that a simultaneous retrieval scheme combined with effective calibration coefficients can be used for high-precision retrieval of real aerosol and water-leaving radiation. Full article
Show Figures

Graphical abstract

13 pages, 15032 KB  
Technical Note
Retrieval of Land Surface Temperature over Mountainous Areas Using Fengyun-3D MERSI-II Data
by Yixuan Xue, Xiaolin Zhu, Zihao Wu and Si-Bo Duan
Remote Sens. 2023, 15(23), 5465; https://doi.org/10.3390/rs15235465 - 23 Nov 2023
Cited by 5 | Viewed by 2313
Abstract
Land surface temperature (LST) is an important physical quantity in the energy exchange of hydrothermal cycles between the land and near-surface atmosphere at regional and global scales. However, the traditional thermal infrared transfer equation (RTE) and LST retrieval algorithms are always based on [...] Read more.
Land surface temperature (LST) is an important physical quantity in the energy exchange of hydrothermal cycles between the land and near-surface atmosphere at regional and global scales. However, the traditional thermal infrared transfer equation (RTE) and LST retrieval algorithms are always based on the underlying assumptions of homogeneity and isotropy, which ignore the terrain effect influence of a heterogeneous topography. It can cause significant errors when traditional RTE and other algorithms are used to retrieve LST in such mountainous research. In this study, the mountainous thermal infrared transfer model considering terrain effect correction is used to retrieve the mountainous LST using FY-3D MERSI-II data, and the in situ site data are simultaneously utilized to evaluate the performance of the iterative single-channel algorithm. The elevation of this study region ranges from 500 m to 2200 m, whereas the minimum SVF can reach 0.75. Results show that the spatial distribution of the retrieved LST is similar to topographic features, and the LST has larger values in the lower valley and smaller values in the higher ridge. In addition, the overall bias and RMSE between the retrieved LSTs and five in situ stations are respectively −0.70 K and 2.64 K, which demonstrates this iterative single-channel algorithm performs well in taking into account the terrain effect influence. Accuracy of the LST estimation is meaningful for mountainous ecological environmental monitoring and global climate research. Such an adjacent terrain effect correction should be considered in future research on complex terrains, especially with high spatial resolution TIR data. Full article
Show Figures

Figure 1

19 pages, 10855 KB  
Article
Retrieval of an On-Orbit Bidirectional Reflectivity Reference in the Mid-Infrared Bands of FY-3D/MERSI-2 Channels 20
by Bo Peng, Wei Chen, Hengyang Wang, Xiuqing Hu, Hongzhao Tang, Guangchao Li and Fengjiao Zhang
Remote Sens. 2023, 15(21), 5117; https://doi.org/10.3390/rs15215117 - 26 Oct 2023
Cited by 4 | Viewed by 1488
Abstract
The acquisition of high-accuracy reflectance in mid-infrared channels is of great significance for the on-orbit cross-calibration of other bands using the mid-infrared band. However, due to the phenomenon that some sensors have a wide range of wavelengths covered by adjacent channels in the [...] Read more.
The acquisition of high-accuracy reflectance in mid-infrared channels is of great significance for the on-orbit cross-calibration of other bands using the mid-infrared band. However, due to the phenomenon that some sensors have a wide range of wavelengths covered by adjacent channels in the mid-infrared band, the traditional method of estimating the mid-infrared reflectivity assumes that the sea surface reflectivity in different mid-infrared bands is equal, which will lead to a large error during calculation. To solve this problem, this study proposes a nonlinear split-window algorithm involving ocean sun glint data to retrieve reflectivity of FY-3D/MERSI-2 channels 20. The results show that the variation range of sea surface reflectivity of channel 20 in the glint area is 10~25%, the mean value of the reflectivity difference obtained by the nonlinear split-window algorithm is 0.27%, and the RMSE is 0.0066. Among the main influencing factors, the atmospheric conditions have the greatest impact, and the effects of the uncertainties in the water vapor content and aerosol optical thickness on the calculation results are 1.16% and 0.34%, respectively. The initial value limits of the mid-infrared sea surface reflectivity also contribute approximately 0.84%, and their contribution to the uncertainty represents one of the main components. This work shows that the nonlinear split-window algorithm can calculate the infrared sea surface reflectivity with high accuracy and can be used as a reference for in-orbit cross-calibration between different bands. Full article
Show Figures

Figure 1

16 pages, 8854 KB  
Article
Analysis and Suppression Design of Stray Light Pollution in a Spectral Imager Loaded on a Polar-Orbiting Satellite
by Shuaishuai Chen and Xinhua Niu
Sensors 2023, 23(17), 7625; https://doi.org/10.3390/s23177625 - 2 Sep 2023
Cited by 5 | Viewed by 2502
Abstract
As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface [...] Read more.
As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface imaging width of more than 2300 km, which can complete two coverage observations of global targets per day with high detection efficiency. According to the characteristics of the operating orbit and large-angle scanning imaging of MERSI, a stray light radiation model of the polar-orbiting spectrometer is constructed, and the design requirements of stray light suppression are proposed. Using the point source transmittance (PST) as the merit function of the stray light analysis method, the instrument was simulated with all stray light suppression optical paths, and the effectiveness of stray light elimination measures was verified using the stray light test. In this paper, the full-link method of “orbital stray light radiation model-system, internal and external simulation design-system analysis and actual test comparison verification” is proposed, and there is a maximum decrease in the system’s PST by about 10 times after applying the stray light suppression’s optimization design, which can provide a general method for stray light suppression designs for polar-orbit spectral imagers. Full article
Show Figures

Figure 1

23 pages, 9805 KB  
Article
Study of the Application of FY-3D/MERSI-II Far-Infrared Data in Wildfire Monitoring
by Wei Zheng, Jie Chen, Cheng Liu, Tianchan Shan and Hua Yan
Remote Sens. 2023, 15(17), 4228; https://doi.org/10.3390/rs15174228 - 28 Aug 2023
Cited by 3 | Viewed by 1953
Abstract
In general, the far-infrared channel in the wavelength range of 10.5–12.0 µm plays an auxiliary role in wildfire detection as its sensitivity to high-temperature targets is far lower than the mid-infrared channel in the wavelength range of 3.5–4.0 µm at the same spatial [...] Read more.
In general, the far-infrared channel in the wavelength range of 10.5–12.0 µm plays an auxiliary role in wildfire detection as its sensitivity to high-temperature targets is far lower than the mid-infrared channel in the wavelength range of 3.5–4.0 µm at the same spatial resolution (1 km, which is the spatial resolution of infrared channels in most satellites used for wildfire monitoring in daily operational mode). The Medium-Resolution Spectral Imager II onboard the Fengyun-3D polar orbiting meteorological satellite (FY-3D/MERSI-II) contains far-infrared channels with a spatial resolution of 250 m at the wavelengths of 10.8 μm and 12.0 μm, which promotes the application of far-infrared channels in wildfire monitoring. In this study, the features of FY-3D/MERSI-II far-infrared channels in fire monitoring are discussed. The sensitivity of 10.8 μm (250 m) to fire spots and the influence of solar radiation reflection on the infrared channels are quantitatively analyzed. The method of using 10.8 μm (250 m) as a major data source to detect fire spots is proposed, and several typical wildfire cases are used to verify the proposed method. The results show that the 10.8 μm (250 m) far-infrared channel has the same advantages as the existing method in wildfire monitoring in terms of a more precise positioning of the detected fire pixel, avoiding interference by solar radiation reflections, and reflecting stronger fire regions in large fire fields. Full article
(This article belongs to the Topic Application of Remote Sensing in Forest Fire)
Show Figures

Figure 1

18 pages, 3109 KB  
Article
The Uncertainty of SNO Cross-Calibration for Satellite Infrared Channels
by Zhong Gu, Lin Chen, Huixing Dai, Lin Tian, Xiuqing Hu and Peng Zhang
Remote Sens. 2023, 15(13), 3313; https://doi.org/10.3390/rs15133313 - 28 Jun 2023
Cited by 2 | Viewed by 1877
Abstract
The on-orbit radiometric calibration is a fundamental task in quantitative remote sensing applications. A widely used calibration method is the cross-calibration based on Simultaneous Nadir Observation (SNO), which involves using high-precision reference instruments to calibrate lower-precision onboard instruments. However, despite efforts to match [...] Read more.
The on-orbit radiometric calibration is a fundamental task in quantitative remote sensing applications. A widely used calibration method is the cross-calibration based on Simultaneous Nadir Observation (SNO), which involves using high-precision reference instruments to calibrate lower-precision onboard instruments. However, despite efforts to match the observation time, spatial location, field geometry, and instrument spectra, errors can still be introduced during the matching processes and linear regression analysis. This paper focuses on the error generated by sample matching and the error fitting method generated by the sample fitting method. An error propagation analysis is performed to develop a generic model for assessing the uncertainty of the SNO cross-calibration method itself in meteorological satellite infrared channels. The model is validated using the payload parameters of the Hyperspectral Infrared Atmospheric Sounder (HIRAS) and the Medium Resolution Spectral Imager (MERSI) instruments aboard the FengYun-3D (FY-3D). Simulation experiments are performed considering typical bright temperatures, different background fields, and varying matching threshold conditions. The results demonstrate the effectiveness of the proposed model in capturing the error propagation chain in the SNO cross-calibration process. The model provides valuable insight into error analysis in the SNO cross-calibration method and can assist in determining the optimal sample matching threshold for achieving radiometric calibration accuracy. Full article
Show Figures

Figure 1

Back to TopTop