Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (385)

Search Parameters:
Keywords = MEX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6471 KB  
Article
Analysis of the Suitability of Additive Technologies for the Production of Stainless Steel Components
by Michal Sajgalik, Miroslav Matus, Peter Spuro, Richard Joch, Andrej Czan and Libor Beranek
J. Manuf. Mater. Process. 2025, 9(8), 283; https://doi.org/10.3390/jmmp9080283 - 18 Aug 2025
Viewed by 323
Abstract
This study presents a comparative analysis of three metal additive manufacturing processes: selective laser melting (SLM), also known as powder bed fusion (PBF); binder jetting (BJ); and atomic diffusion additive manufacturing (ADAM), a form of Material Extrusion (MEX). It focuses on the geometric [...] Read more.
This study presents a comparative analysis of three metal additive manufacturing processes: selective laser melting (SLM), also known as powder bed fusion (PBF); binder jetting (BJ); and atomic diffusion additive manufacturing (ADAM), a form of Material Extrusion (MEX). It focuses on the geometric and dimensional accuracy of ADAM-fabricated 17-4 PH stainless steel components, while AISI 316L stainless steel is the benchmark material for BJ and SLM technologies. In addition to dimension and geometry inspections, this study also measures the distribution of residual stresses and microstructural features of the printed components. Residual stresses were determined quantitatively to identify the internal state of stress developed because of each processing technology. The results reveal significant differences in dimensional accuracy, residual stress profiles, surface roughness, and microstructural characteristics among the three additive manufacturing technologies. The observed trends and correlations provide valuable guidance for selecting the most appropriate additive manufacturing technique based on required accuracy, mechanical properties, and product complexity. Full article
Show Figures

Figure 1

11 pages, 1294 KB  
Article
Cerebral Resistance Artery Histological Remodeling After Training—Sex Differences
by Tobias Hainzl, György L. Nádasy, Emese Róza Márka, Kamilla Nagy, Réka Kollarics, Anna-Mária Tőkés, Attila Oláh, Tamás Radovits, Béla Merkely, Nándor Ács, Szabolcs Várbíró, Attila Jósvai and Marianna Török
Life 2025, 15(8), 1304; https://doi.org/10.3390/life15081304 - 17 Aug 2025
Viewed by 311
Abstract
Background: Chronic exercise has been linked to positive effects on cognitive function and brain health. The aim of our study was to investigate how exercise affects cerebral resistance artery morphology, with an underlying focus on potential sex differences. Methods: Wistar rats [...] Read more.
Background: Chronic exercise has been linked to positive effects on cognitive function and brain health. The aim of our study was to investigate how exercise affects cerebral resistance artery morphology, with an underlying focus on potential sex differences. Methods: Wistar rats were divided into male exercising (M.Ex; n = 6), female exercising (F.Ex; n = 5), male sedentary (M.Sed; n = 5), and female sedentary (F.Sed; n = 5) groups. After a 12-week swimming program, histological examinations of the intracerebral and pial arterioles were performed. SMA-DAB (smooth muscle actin) and resorcin-fuchsin (elastica) stained brain coronal sections were used for quantitative colorimetric analysis. Results: Investigating the effect of exercise, we found that in both pial and intracerebral arterioles, the elastic fiber density increased in both female and male exercising animals compared to the sedentary groups (p < 0.05 (M.Sed vs. M.Ex); p < 0.0001 (F.Sed vs. F.Ex)). As sex differences, we found that in female animals’ pial arterioles, the density of elastic fiber was increased compared to the male exercising group (p < 0.001 (M.Ex vs. F.Ex)). In pial arterioles, the smooth muscle density was higher in the male sedentary animals (p < 0.01 (M.Sed vs. F.Sed)); in intracerebral arterioles, the smooth muscle density increased with exercise in the male animals as well (p < 0.0001 (M.Ex vs. F.Ex)). Conclusions: Our results demonstrate that the increase in vascular elasticity is more pronounced overall in female animals. Full article
Show Figures

Figure 1

14 pages, 24231 KB  
Article
Optimizing Interfacial Adhesion and Mechanical Performance of Multimaterial Joints Fabricated by Material Extrusion
by Jakub Zatloukal, Mathieu Viry, Aleš Mizera, Pavel Stoklásek, Lukáš Miškařík and Martin Bednařík
Materials 2025, 18(16), 3846; https://doi.org/10.3390/ma18163846 - 16 Aug 2025
Viewed by 364
Abstract
Multimaterial 3D printing is transforming the landscape of additive manufacturing, enabling the production of advanced, functional parts with tailored properties for sectors like automotive, aerospace, and engineering. However, achieving strong interlayer adhesion between different polymers remains a significant challenge, limiting the mechanical reliability. [...] Read more.
Multimaterial 3D printing is transforming the landscape of additive manufacturing, enabling the production of advanced, functional parts with tailored properties for sectors like automotive, aerospace, and engineering. However, achieving strong interlayer adhesion between different polymers remains a significant challenge, limiting the mechanical reliability. This study investigates adhesion properties of widely used materials—polycarbonate (PC), acrylonitrile styrene acrylate (ASA), polylactic acid (PLA), and polyethylene terephthalate glycol (PETG)—and enhances mechanical performance of structural joints through optimized interlayer bonding techniques. Using the Material Extrusion (MEX) method, tensile testing was employed to evaluate the mechanical strength of joints by co-depositing and bonding material layers during the printing process. The results demonstrate that specific material combinations and joint design strategies, particularly increasing the interfacial contact area and applying interlayer bonding pressure, significantly enhance tensile strength. For instance, the strength of PC/PTEG composite joints increased from 15.2 MPa (standard joint) to 29.9 MPa (interlayer bonding strategy), nearly doubling the bond strength. These findings provide valuable insights into the behavior of multimaterial joints and propose practical approaches for improving the durability and functionality of 3D-printed structures. This research lays the groundwork for advancing multimaterial additive manufacturing, with implications for high-performance applications in engineering, aerospace, and beyond. Full article
(This article belongs to the Special Issue Processing and Mechanical Properties of Polymer Composites)
Show Figures

Figure 1

19 pages, 4348 KB  
Article
Manufacturing of Polymer–Metal Composite by Fused Filament Fabrication: Adhesion of PLA and PETG on Aluminum
by Miguel Campos-Jurado, Óscar Rodríguez-Alabanda and Guillermo Guerrero-Vacas
Polymers 2025, 17(16), 2210; https://doi.org/10.3390/polym17162210 - 13 Aug 2025
Viewed by 475
Abstract
The formation of metal–polymer composites by 3D printing PLA and PETG onto EN AW-5182 H111 aluminum substrates without the use of adhesives was investigated. Four surface treatments were evaluated on the metal substrate (fine sanding, coarse sanding, abrasive blasting, and acid etching), over [...] Read more.
The formation of metal–polymer composites by 3D printing PLA and PETG onto EN AW-5182 H111 aluminum substrates without the use of adhesives was investigated. Four surface treatments were evaluated on the metal substrate (fine sanding, coarse sanding, abrasive blasting, and acid etching), over which a polymer primer—prepared from PLA and PETG solutions—was applied. Subsequently, test specimens were fabricated using the same polymer through material extrusion (MEX) with filaments. Adhesion strength between the printed polymer and the metal substrate was assessed through perpendicular tensile, lap shear, and three-point bending tests. The 16-condition experimental matrix combined surface treatment, primer thickness, and bed temperature and was replicated for each test. Peak tensile and shear strengths confirmed the effectiveness of the proposed strategy, with PETG consistently showing a higher interfacial performance than PLA. ANOVA analysis identifies primer layer thickness (p = 0.023) and loading type (p = 0.031) as statistically significant variables. The results suggest that either abrasive or acid pretreatment, combined with a primer thickness ≥ 80 µm and moderate bed temperatures (65 °C for PLA and 90 °C for PETG), enables the fabrication of robust metal–polymer joints, which are particularly resistant to shear stress and suitable for industrial applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

23 pages, 3081 KB  
Article
Physico-Mechanical Properties of 3D-Printed Filament Materials for Mouthguard Manufacturing
by Maciej Trzaskowski, Gen Tanabe, Hiroshi Churei, Toshiaki Ueno, Michał Ziętala, Bartłomiej Wysocki, Judyta Sienkiewicz, Agata Szczesio-Włodarczyk, Jerzy Sokołowski, Ewa Czochrowska, Małgorzata Zadurska, Elżbieta Mierzwińska-Nastalska, Jolanta Kostrzewa-Janicka and Katarzyna Mańka-Malara
Polymers 2025, 17(16), 2190; https://doi.org/10.3390/polym17162190 - 10 Aug 2025
Viewed by 431
Abstract
Mouthguards are recommended for all sports that may cause injuries to the head and oral cavity. Custom mouthguards, made conventionally in the thermoforming process from ethylene vinyl acetate (EVA), face challenges with thinning at the incisor area during the process. In contrast, additive [...] Read more.
Mouthguards are recommended for all sports that may cause injuries to the head and oral cavity. Custom mouthguards, made conventionally in the thermoforming process from ethylene vinyl acetate (EVA), face challenges with thinning at the incisor area during the process. In contrast, additive manufacturing (AM) processes enable the precise reproduction of the dimensions specified in a computer-aided design (CAD) model. The potential use of filament extrusion materials in the fabrication of custom mouthguards has not yet been explored in comparative studies. Our research aimed to compare five commercially available filaments for the material extrusion (MEX) also known as fused deposition modelling (FDM) of custom mouthguards using a desktop 3D printer. Samples made using Copper 3D PLActive, Spectrum Medical ABS, Braskem Bio EVA, DSM Arnitel ID 2045, and NinjaFlex were compared to EVA Erkoflex, which served as a control sample. The samples underwent tests for ultimate tensile strength (UTS), split Hopkinson pressure bar (SHPB) performance, drop-ball impact, abrasion resistance, absorption, and solubility. The results showed that Copper 3D PLActive and Spectrum Medical ABS had the highest tensile strength. DSM Arnitel ID 2045 had the highest dynamic property performance, measured with the SHPB and drop-ball tests. On the other hand, NinjaFlex exhibited the lowest abrasion resistance and the highest absorption and solubility. DSM Arnitel ID 2045’s absorption and solubility levels were comparable to those of EVA, but had significantly lower abrasion resistance. Ultimately, DSM Arnitel ID 2045 is recommended as the best filament for 3D-printing mouthguards. The properties of this biocompatible material ensure high-impact energy absorption while maintaining low fluid sorption and solubility, supporting its safe intra-oral application for mouthguard fabrication. However, its low abrasion resistance indicated that mouthguards made from this material may need to be replaced more frequently. Full article
(This article belongs to the Special Issue Polymers Composites for Dental Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 3145 KB  
Article
Determination of Dynamic Elastic Properties of 3D-Printed Nylon 12CF Using Impulse Excitation of Vibration
by Pedro F. Garcia, Armando Ramalho, Joel C. Vasco, Rui B. Ruben and Carlos Capela
Polymers 2025, 17(15), 2135; https://doi.org/10.3390/polym17152135 - 4 Aug 2025
Viewed by 447
Abstract
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic [...] Read more.
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic behavior often rely on expensive equipment and time-consuming procedures. The aim of this study is to evaluate the applicability of the impulse excitation of vibration (IEV) in characterizing the dynamic mechanical properties of a 3D-printed composite material. Tensile tests were also performed to compare quasi-static properties with the dynamic ones obtained through IEV. The tested material, Nylon 12CF, contains 35% short carbon fibers by weight and is commercially available from Stratasys. It is used in the fused deposition modeling (FDM) process, a Material Extrusion technology, and exhibits anisotropic mechanical properties. This is further reinforced by the filament deposition process, which affects the mechanical response of printed parts. Young’s modulus obtained in the direction perpendicular to the deposition plane (E33), obtained via IEV, was 14.77% higher than the value in the technical datasheet. Comparing methods, the Young’s modulus obtained in the deposition plane, in an inclined direction of 45 degrees in relation to the deposition direction (E45), showed a 22.95% difference between IEV and tensile tests, while Poisson’s ratio in the deposition plane (v12) differed by 6.78%. This data is critical for designing parts subject to demanding service conditions, and the results obtained (orthotropic elastic properties) can be used in finite element simulation software. Ultimately, this work reinforces the potential of the IEV method as an accessible and consistent alternative for characterizing the anisotropic properties of components produced through additive manufacturing (AM). Full article
(This article belongs to the Special Issue Mechanical Characterization of Polymer Composites)
Show Figures

Figure 1

15 pages, 827 KB  
Article
Evolution of Resistant Mutants in Pseudomonas aeruginosa Persister Cells Under Meropenem Treatment
by Jie Feng, Yifan Bian, Congjuan Xu, Zhihui Cheng, Yongxin Jin, Shouguang Jin and Weihui Wu
Microorganisms 2025, 13(7), 1672; https://doi.org/10.3390/microorganisms13071672 - 16 Jul 2025
Viewed by 369
Abstract
Bacterial persisters are dormant cells that survive antibiotic treatment, serving as a reservoir for the emergence of resistant mutations. The evolution of antibiotic resistance poses a significant challenge to public health. In this study, we investigated the development of resistance in Pseudomonas aeruginosa [...] Read more.
Bacterial persisters are dormant cells that survive antibiotic treatment, serving as a reservoir for the emergence of resistant mutations. The evolution of antibiotic resistance poses a significant challenge to public health. In this study, we investigated the development of resistance in Pseudomonas aeruginosa persister cells by exposing the reference strain PA14 to meropenem and tracked the emergence of resistance mutations over serial passages. Whole-genome sequencing of the populations or individual resistant strains revealed evolutionary trajectories. In the initial passages, low-level meropenem-resistant mutants harbored various mutations, accompanied by increasing population survival. Then, mutations in the oprD gene appeared, followed by mutation in the mexR gene in most of the cells, leading to high-level meropenem resistance and collateral resistance to ciprofloxacin. Our study provides insights into the evolutionary pathways of P. aeruginosa under lethal antibiotic pressure, highlighting the dynamic interplay between persister cells and the emergence of resistance mutations. Full article
(This article belongs to the Special Issue Bacterial Pathogenesis and Host Immune Responses)
Show Figures

Figure 1

26 pages, 1270 KB  
Article
Boosting Genomic Prediction Transferability with Sparse Testing
by Osval A. Montesinos-López, Jose Crossa, Paolo Vitale, Guillermo Gerard, Leonardo Crespo-Herrera, Susanne Dreisigacker, Carolina Saint Pierre, Iván Delgado-Enciso, Abelardo Montesinos-López and Reka Howard
Genes 2025, 16(7), 827; https://doi.org/10.3390/genes16070827 - 16 Jul 2025
Viewed by 368
Abstract
Background/Objectives: Improving sparse testing is essential for enhancing the efficiency of genomic prediction (GP). Accordingly, new strategies are being explored to refine genomic selection (GS) methods under sparse testing conditions. Methods: In this study, a sparse testing approach was evaluated, specifically in the [...] Read more.
Background/Objectives: Improving sparse testing is essential for enhancing the efficiency of genomic prediction (GP). Accordingly, new strategies are being explored to refine genomic selection (GS) methods under sparse testing conditions. Methods: In this study, a sparse testing approach was evaluated, specifically in the context of predicting performance for tested lines in untested environments. Sparse testing is particularly practical in large-scale breeding programs because it reduces the cost and logistical burden of evaluating every genotype in every environment, while still enabling accurate prediction through strategic data use. To achieve this, we used training data from CIMMYT (Obregon, Mexico), along with partial data from India, to predict line performance in India using observations from Mexico. Results: Our results show that incorporating data from Obregon into the training set improved prediction accuracy, with greater effectiveness when the data were temporally closer. Across environments, Pearson’s correlation improved by at least 219% (in a testing proportion of 50%), while gains in the percentage of matching in top 10% and 20% of top lines were 18.42% and 20.79%, respectively (also in a testing proportion of 50%). Conclusions: These findings emphasize that enriching training data with relevant, temporally proximate information is key to enhancing genomic prediction performance; conversely, incorporating unrelated data can reduce prediction accuracy. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

33 pages, 6114 KB  
Article
Effect of Drying Conditions on Kinetics, Modeling, and Thermodynamic Behavior of Marjoram Leaves in an IoT-Controlled Vacuum Dryer
by Nabil Eldesokey Mansour, Edwin Villagran, Jader Rodriguez, Mohammad Akrami, Jorge Flores-Velazquez, Khaled A. Metwally, M. Alhumedi, Atef Fathy Ahmed and Abdallah Elshawadfy Elwakeel
Sustainability 2025, 17(13), 5980; https://doi.org/10.3390/su17135980 - 29 Jun 2025
Viewed by 1118
Abstract
The current study aimed to investigate mathematical modeling, drying kinetics, and thermodynamic properties for cost-effectively drying marjoram leaves under different operating pressures (OPs) and drying temperatures (DTs). Three DTs of 40, 50, and 60 °C and three OPs of (atm) atmospheric, −5 kPa, [...] Read more.
The current study aimed to investigate mathematical modeling, drying kinetics, and thermodynamic properties for cost-effectively drying marjoram leaves under different operating pressures (OPs) and drying temperatures (DTs). Three DTs of 40, 50, and 60 °C and three OPs of (atm) atmospheric, −5 kPa, and −10 kPa were used in this study. All drying processes were conducted using the developed vacuum dryer (DVD) and a constant layer thickness of 1 cm and initial moisture content of 817.43 on a dry basis (d.b.). The results obtained showed that increasing the DT from 40 to 60 °C at OPs of atm, −5 kPa, and −10 kPa led to a decrease in the drying time by about 55.6%, 36.4%, and 42.9%, respectively. On the other hand, decreasing the OP from atm to −10 kPa resulted in a decrease in drying time of about 58.8%, 45.5%, and 50% at DTs of 40, 50, and 60 °C, respectively. The moisture diffusivity (Deff) ranged between 1.13 and 5.51 × 10−9 m2/s, with the highest value of Deff observed at an OP of −10 kPa and a DT of 60 °C. Under these conditions, the activation energy (AE) was minimal, at approximately 2.68 kJ/mol. Mathematical modeling revealed that the Modified Midilli (I) model was the most suitable for describing the drying kinetics of marjoram leaves under experimental conditions. Among the thermodynamic parameters of marjoram leaves, it was observed that enthalpy values decrease with increasing DT and decreasing OP. Additionally, all tests showed negative entropy, suggesting that the chemical adsorption and/or structural modifications of the adsorbent are responsible for these results. The economic analysis revealed that drying marjoram leaves at an OP of 10 kPa and a DT of 60 °C resulted in yearly cost savings of up to USD 2054.19 and reduced the investment payback period to approximately 0.139 years (about 2 months). Full article
Show Figures

Figure 1

21 pages, 1452 KB  
Review
Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies
by Anna Duda-Madej, Szymon Viscardi, Hanna Bazan and Jakub Sobieraj
Pharmaceuticals 2025, 18(7), 947; https://doi.org/10.3390/ph18070947 - 24 Jun 2025
Viewed by 1402
Abstract
In recent years, one of the most important issues in public health is the rapid growth of antibiotic resistance among pathogens. Multidrug-resistant (MDR) strains (mainly Enterobacteriaceae and non-fermenting bacilli) cause severe infections, against which commonly used pharmaceuticals are ineffective. Therefore, there is an [...] Read more.
In recent years, one of the most important issues in public health is the rapid growth of antibiotic resistance among pathogens. Multidrug-resistant (MDR) strains (mainly Enterobacteriaceae and non-fermenting bacilli) cause severe infections, against which commonly used pharmaceuticals are ineffective. Therefore, there is an urgent need for new treatment options and drugs with innovative mechanisms of action. Natural compounds, especially alkaloids, are showing promising potential in this area. This review focuses on the ability of the isoquinoline alkaloid berberine (BRB) to overcome various resistance mechanisms against conventional antimicrobial agents. BRB has demonstrated significant activity in inhibiting efflux pumps of the RND (Resistance-Nodulation-Cell Division) family, such as MexAB-OprM (P. aeruginosa) and AdeABC (A. baumannii). Moreover, BRB was able to decrease quorum sensing activity in both Gram-positive and Gram-negative pathogens, resulting in reduced biofilm formation and lower bacterial virulence. Additionally, BRB has been identified as a potential inhibitor of FtsZ, a key protein responsible for bacterial cell division. Particularly noteworthy, though requiring further investigation, are reports suggesting that BRB might inhibit β-lactamase enzymes, including NDM, AmpC, and ESβL types. The pleiotropic antibacterial actions of BRB, distinct from the mechanisms of traditional antibiotics, offer hope for breaking bacterial resistance. However, more extensive studies, especially in vivo, are necessary to fully evaluate the clinical potential of BRB and determine its practical applicability in combating antibiotic-resistant infections. Full article
Show Figures

Figure 1

12 pages, 1493 KB  
Article
Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program
by Marynor E. Ortega-Ramírez, Anuar Magaña-Álvarez, Daisy Pérez-Brito, Alberto Cortés-Velázquez, Ángel Nexticapan-Garcéz, Raúl Tapia-Tussell and Rodolfo Martín-Mex
Plants 2025, 14(12), 1888; https://doi.org/10.3390/plants14121888 - 19 Jun 2025
Viewed by 475
Abstract
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea [...] Read more.
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea was introduced to Mexico in 1971, and it is currently the fifth most utilized forest species in commercial forest plantations (CFPs). However, its genetic diversity has not been evaluated in Mexico. The objective of this research was to investigate the genetic variability of Melina in Mexico using molecular markers. This investigation was undertaken to acquire valuable insights for the implementation of effective improvement strategies. A total of 85 Melina samples were collected from various locations in southeastern Mexico between 2017 and 2022. Genetic fingerprints were obtained using ten simple primer amplification reactions (SPARs): five Directed Amplification of Minisatellite DNA regions (DAMD), and five Inter-Simple Sequence Repeats (ISSRs). The polymorphic information content (PIC) was 0.940 and 0.950 for the DAMD and ISSR, respectively, and the similarity coefficients ranged from 0.12 to 0.88, indicating a high degree of polymorphism in the species under investigation. This is the first attempt to ascertain the genetic variability of Gmelina arborea in Mexico. Full article
(This article belongs to the Special Issue Molecular Marker-Assisted Technologies for Crop Breeding)
Show Figures

Figure 1

12 pages, 2105 KB  
Article
Occurrence and Drivers of Antibiotic Resistance Genes Carried by Bacteriophages in Soils Following Different Fertilization Treatments
by Mingdi Zhang, Yajie Guo, Yue Zhang, Xueying Hu, Shoutao Cheng and Xuming Wang
Toxics 2025, 13(6), 495; https://doi.org/10.3390/toxics13060495 - 13 Jun 2025
Viewed by 541
Abstract
Fertilization has an important effect on soil antibiotic resistance. Most recent studies have focused on antibiotic resistance genes (ARGs) harbored by bacteria (bARGs); however, little is known about ARGs carried by soil bacteriophages (pARGs) under different fertilization treatments. Here, 24 pARG subtypes were [...] Read more.
Fertilization has an important effect on soil antibiotic resistance. Most recent studies have focused on antibiotic resistance genes (ARGs) harbored by bacteria (bARGs); however, little is known about ARGs carried by soil bacteriophages (pARGs) under different fertilization treatments. Here, 24 pARG subtypes were quantified in soils with long-term application of different fertilizers using droplet digital PCR (ddPCR). The results showed that the detection rates of the target ARGs in bacteriophages were 66.67%, 70.83%, and 75.00% in unfertilized, chemically fertilized, and organically fertilized soils, respectively. The total abundance of pARGs in soils amended with organic fertilizer was significantly higher than that in unfertilized and chemically fertilized soils. The multidrug resistance gene (mexF) exhibited the highest abundance in soils amended with organic fertilizer. A significant positive correlation was observed between bARGs and pARGs, and the detected pARG subtype abundances were one to two orders of magnitude lower than those of the corresponding bARGs. The results of variation partitioning analysis revealed that the interaction between the bacterial community and soil properties drove the variation in soil pARGs. Our findings indicate that bacteriophages are important vectors of ARGs, in addition to bacteria, in agricultural soils, and their contribution to antibiotic resistance should not be overlooked. Full article
Show Figures

Figure 1

34 pages, 5686 KB  
Review
Influence of Temperature on Interlayer Adhesion and Structural Integrity in Material Extrusion: A Comprehensive Review
by Rayson Pang, Mun Kou Lai, Hiu Hong Teo and Tze Chuen Yap
J. Manuf. Mater. Process. 2025, 9(6), 196; https://doi.org/10.3390/jmmp9060196 - 11 Jun 2025
Cited by 2 | Viewed by 1190
Abstract
Additive manufacturing technologies are being increasingly adopted in the manufacturing industries due to their capabilities in producing complex geometries without the need for special tools. Material extrusion (MEX-TRB/P) is a popular additive manufacturing technology due to its simple operation. However, optimization of various [...] Read more.
Additive manufacturing technologies are being increasingly adopted in the manufacturing industries due to their capabilities in producing complex geometries without the need for special tools. Material extrusion (MEX-TRB/P) is a popular additive manufacturing technology due to its simple operation. However, optimization of various process parameters remains a challenge, as incorrect combinations can lead to reduced dimensional accuracy and incapacitated mechanical properties of the fabricated parts. Given that the MEX-TRB/P process relies on the heating and cooling of thermoplastic materials, understanding the role of temperature is critical to optimizing the MEX-TRB/P printed parts. This article reviews existing research on the effects of process parameters, specifically those that are temperature sensitive, on the mechanical properties of the printed parts. The review first classified the process parameters into temperature sensitive and non-temperature sensitive process parameters. Then, the influence of temperature on the bonding quality and material properties is investigated, and a relationship between the thermal conditions and mechanical properties of 3D printed parts is established. This review also summarizes experimental and numerical methods for investigating temperature evolution during printing. This study aims to provide a deep understanding of the optimization of temperature-sensitive process parameters and their role in enhancing the mechanical properties of MEX-TRB/P-printed parts. Full article
Show Figures

Figure 1

32 pages, 5566 KB  
Review
Additive Manufacturing of Metals Using the MEX Method: Process Characteristics and Performance Properties—A Review
by Katarzyna Jasik, Lucjan Śnieżek and Janusz Kluczyński
Materials 2025, 18(12), 2744; https://doi.org/10.3390/ma18122744 - 11 Jun 2025
Viewed by 769
Abstract
Compared to traditional manufacturing methods, additive manufacturing (AM) enables the production of parts with arbitrary structures, effectively addressing the challenges faced when fabricating complex geometries using conventional techniques. The dynamic development of this technology has led to the emergence of increasingly advanced materials. [...] Read more.
Compared to traditional manufacturing methods, additive manufacturing (AM) enables the production of parts with arbitrary structures, effectively addressing the challenges faced when fabricating complex geometries using conventional techniques. The dynamic development of this technology has led to the emergence of increasingly advanced materials. One of the best examples is metal–polymer composites, which allow the manufacturing of fully dense components consisting of stainless steel and titanium alloys, employing the widely available AM technology based on material extrusion (MEX). Metallic materials intended for this type of 3D printing may serve as an alternative to currently prevalent techniques including techniques like selective laser melting (SLM), owing to significantly lower equipment and material costs. Particularly applicable in low-volume production, where total costs and manufacturing time are critical factors, MEX technology of polymer–metallic composites offer relatively fast and economical AM of metal components, proving beneficial during the design of geometrically complex, and low-cost equipment. Due to the significant advancements in AM technology, this review focuses on the latest developments in the additive manufacturing of metallic components using the MEX approach. The discussion encompasses the printing process characteristics, materials tailored to this technology, and post-processing steps (debinding and sintering) necessary for obtaining fully metallic MEX components. Additionally, the article characterizes the printing process parameters and their influence on the functional characteristics of the resulting components. Finally, it presents the drawbacks of the process, identifies gaps in existing research, and outlines challenges in refining the technology. Full article
(This article belongs to the Special Issue Progress and Challenges of Advanced Metallic Materials and Composites)
Show Figures

Figure 1

12 pages, 4178 KB  
Article
Evaluation of Conditions for Self-Healing of Additively Manufactured Polymer Composites with Continuous Carbon Fiber Reinforcement
by Marius Rimašauskas, Tomas Kuncius, Rūta Rimašauskienė and Tomas Simokaitis
J. Manuf. Mater. Process. 2025, 9(6), 179; https://doi.org/10.3390/jmmp9060179 - 28 May 2025
Cited by 2 | Viewed by 620
Abstract
Additive manufacturing (AM) is one of the most frequently used technologies to produce complex configuration products. Moreover, AM is very well known as a technology which is characterized by a low amount of generated waste and the potential to be called zero-waste technology. [...] Read more.
Additive manufacturing (AM) is one of the most frequently used technologies to produce complex configuration products. Moreover, AM is very well known as a technology which is characterized by a low amount of generated waste and the potential to be called zero-waste technology. As is known, there are seven main groups of technologies described in the ISO/ASTM 52900 standard that allow the use of very different materials from polymers to metals, ceramics, and composites. However, the increased utilization of additively manufactured composites for different applications requires a deeper analysis of production processes and materials’ characteristics. Various AM technologies can be used to produce complex composite structures reinforced with short fibers; however, only material extrusion (MEX)-based technology is used for the production of composites reinforced with continuous fibers (CFs). At this time, five different methods exist to produce CF-reinforced composite structures. This study focuses on co-extrusion with the towpreg method. Because of the complexity and layer-by-layer nature of the process, defects can occur during production, such as poor interlayer adhesion, increased porosity, insufficient impregnation, and others. To eliminate or minimize defects’ influence on mechanical properties and structural integrity of additively manufactured structures, a hypothesis was proposed involving heat treatment. Carbon fiber’s conductive properties can be used to heal the composite structures, by heating them up through the application of electric current. In this research article, an experimental evaluation of conditions for additively manufactured composites with continuous carbon fiber reinforcement for self-healing processes is presented. Mechanical testing was conducted to check the influence of heat treatment on the flexural properties of the composite samples. Full article
Show Figures

Graphical abstract

Back to TopTop