Exposure and Toxicity of Emerging Organic Pollutants in Environment and Human

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Emerging Contaminants".

Deadline for manuscript submissions: 24 January 2025 | Viewed by 1162

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
Interests: environmental behaviors of EOPs; environmental monitoring and analysis of pollutants; toxic effects of EOPs; bioaccumulation and biotransformation of EOPs; environmental risk assessment of EOPs
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
Interests: environmental behaviors of organic pollutants; risk assessment of POPs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Emerging organic pollutants (EOPs) include antibiotics, personal care products, biocides, and industrial chemicals. The environment pollution generated by EOPs produces serious toxic residues that are detrimental to the environment and human health; this has become one of the greatest environmental challenges throughout the world. It is vital that the exposure and toxicity of EOPs in the environment are investigated. Future research should provide further data regarding the exposure and toxicological effects of EOPs on organisms at various levels (molecular, cellular, individual, species, population, and ecosystem).

This Special Issue welcomes papers on all relevant topics, including, but not limited to, the following:

  1. Detection techniques and assessment methods employed for EOPs in the environment and humans.
  2. Environmental monitoring and analysis of EOPs in the environment and humans.
  3. Toxicity characterization, bioaccumulation, transformation, and degradation of EOPs in plants and animals.
  4. Microbial degradation of EOPs.
  5. Human exposure and health risk assessment of EOPs.
  6. Remediation technologies and materials to reduce environment EOP pollutants or their bioavailability.

Dr. Shuyan Zhao
Dr. Shuhong Fang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • emerging organic pollutants (EOPs)
  • exposure and toxicity
  • environmental behaviors
  • human exposure and health risk assessment
  • bioaccumulation and biotransformation
  • environmental monitoring and analysis
  • EOPs removal technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 722 KiB  
Article
Presence of N, N′-Substituted p-Phenylenediamine-Derived Quinones in Human Urine
by Juxiu Huang, Hangbiao Jin, Yingying Zhu, Ruyue Guo, Lisha Zhou and Xiaoyu Wu
Toxics 2024, 12(10), 733; https://doi.org/10.3390/toxics12100733 - 11 Oct 2024
Viewed by 363
Abstract
Human exposure to various N,N′-substituted p-phenylenediamine-derived quinones (PPDQs) has been of increasing concern. Recent studies have examined N-phenyl-N′-(1,3-dimethylbutyl)-p-phenylenediamine-derived quinone (6PPDQ) in human urine to evaluate human exposure. However, other PPDQs in human urine have not been thoroughly investigated. This study analyzed six PPDQs [...] Read more.
Human exposure to various N,N′-substituted p-phenylenediamine-derived quinones (PPDQs) has been of increasing concern. Recent studies have examined N-phenyl-N′-(1,3-dimethylbutyl)-p-phenylenediamine-derived quinone (6PPDQ) in human urine to evaluate human exposure. However, other PPDQs in human urine have not been thoroughly investigated. This study analyzed six PPDQs in urine collected from 149 healthy individuals in Taizhou, China. All target PPDQs were detected, with 6PPDQ (mean 2.4 ng/mL, <limit of detection (LOD)–19 ng/mL) and 2-(cyclohexylamino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione (CPPDQ; 2.1 ng/mL, <LOD–24 ng/mL) being the most prevalent. Human urinary concentrations of 2,5-bis((5-methylhexan-2-yl)amino)cyclohexa-2,5-diene-1,4-dione (77PDQ; mean 1.5 vs. 0.87 ng/mL; p = 0.013) and 2,5-bis(o-tolylamino)cyclohexa-2,5-diene-1,4-dione (mean 1.1 vs. 0.62 ng/mL; p = 0.027) were significantly higher in females compared to males. For CPPDQ (p < 0.01) and 6PPDQ (p < 0.01), a decrease was observed in urinary concentrations as participants aged. The daily excretion (DE) of PPDQs through urine was estimated for Chinese adults. The highest average DE was recorded for 6PPDQ at 81 ng/kg-bw/day, with a range from <0.5 to 475 ng/kg-bw/day. Following this, CPPDQ had a mean DE of 68 ng/kg-bw/day (range <0.5–516 ng/kg-bw/day), and 77PDQ had a mean DE of 30 ng/kg-bw/day (<0.5–481 ng/kg-bw/day). This study is the first to explore the presence of various PPDQs in human urinary samples, which is essential for assessing the potential health risks associated with these substances. Full article
Show Figures

Figure 1

11 pages, 478 KiB  
Article
Association between Serum 6:2 Chlorinated Polyfluorinated Ether Sulfonate Concentrations and Lung Cancer
by Weili Mao, Jianli Qu, Ruyue Guo, Yuanchen Chen, Hangbiao Jin and Jingyan Xu
Toxics 2024, 12(8), 603; https://doi.org/10.3390/toxics12080603 - 19 Aug 2024
Viewed by 583
Abstract
6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibits pronounced estrogenic effects, potentially influencing the etiology of lung cancer. This study assessed the potential associations between serum concentrations of 6:2 Cl-PFESA and lung cancer risk at the population level. Odds ratios (ORs) for lung [...] Read more.
6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibits pronounced estrogenic effects, potentially influencing the etiology of lung cancer. This study assessed the potential associations between serum concentrations of 6:2 Cl-PFESA and lung cancer risk at the population level. Odds ratios (ORs) for lung cancer across serum 6:2 Cl-PFESA quartiles were assessed using conditional logistic regression. Additionally, we investigated potential effect modification by various confounding factors. Elevated serum levels of 6:2 Cl-PFESA were consistently associated with an increased risk of lung cancer in both the crude model (OR = 1.62, 95% CI: 1.08–2.42, p = 0.018) and the adjusted model (OR = 1.59, 95% CI: 1.06–2.39, p = 0.026). Stratified analyses revealed that elevated serum levels of 6:2 Cl-PFESA were associated with increased risk estimates of lung cancer among males (adjusted OR = 2.04, 95% CI: 1.19–3.51, p = 0.006), smokers (adjusted OR = 2.48, 95% CI: 1.25–4.89, p = 0.003), and drinkers (adjusted OR = 2.20, 95% CI: 0.94–5.16, p = 0.049). The results of this study imply that exposure to 6:2 Cl-PFESA at levels considered environmentally relevant may be linked to an elevated risk of developing lung cancer. Full article
Show Figures

Figure 1

Back to TopTop