Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = MM-CSC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 21698 KiB  
Review
ATLAS Muon Spectrometer Upgrade for the HL-LHC Era’s Challenges
by Evangelos N. Gazis
Symmetry 2024, 16(8), 1035; https://doi.org/10.3390/sym16081035 - 13 Aug 2024
Viewed by 1430
Abstract
The High-Luminosity Large Hadron Collider (HL-LHC) project aims to improve the performance of the LHC by increasing the proton–proton collision luminosity. New physics discoveries will be possible starting in 2027. The HL-LHC aims to improve the integrated luminosity by a factor of 10 [...] Read more.
The High-Luminosity Large Hadron Collider (HL-LHC) project aims to improve the performance of the LHC by increasing the proton–proton collision luminosity. New physics discoveries will be possible starting in 2027. The HL-LHC aims to improve the integrated luminosity by a factor of 10 concerning the current running LHC’s design value. The HL-LHC project foresees delivering proton–proton collisions at 14 TeV CM (Center of Mass) energy providing the integrated luminosity to a value of 3 ab−1 for the ATLAS and CMS experiments, 50 fb−1 for LHCb, and 5 fb−1 for ALICE. The increased integrated luminosity for the above LHC experiments will provide the potential to discover rare processes while improving these measurements’ signal-to-noise (S/N) ratio statistics. The ATLAS muon spectrometer has been upgraded to face the challenges of the luminosity at the HL-LHC run. The new sub-detectors are as follows: The New Small Wheel (NSW) has replaced the Cathode Strip Chambers (CSC) discs at the internal part of the ATLAS end cups. The new integrated small Monitored Drift Chambers (sMDT) with the Resistive Plate Chambers (RPC) are installed at the outer end of the ATLAS BI (Barrel Inner) layer, in the barrel–endcap transition region, at 1.0 < |η| < 1.3, where η is the pseudo-rapidity (pseudo-rapidity η is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis, defined as η=ln[tan(θ2)], where θ is the angle between the vector momentum p and the positive direction of the beam axis). The NSW is an innovative technological achievement, including the MicroMegas (MM) gas detectors in large areas and small-strip Thin Gap Chambers (sTGC), enabling high pT (high pT is the high value of the particles’ transverse momentum versus the beam collision axis) trigger and muon detection. The muon reconstruction, the background rate, other spectrometer parameters, and the NSW performance are also presented. Full article
Show Figures

Figure 1

14 pages, 1475 KiB  
Article
Effect of Melatonin on Chemoresistance Exhibited by Spheres Derived from Canine Mammary Carcinoma Cells
by Dania Cataldo, Guillermo Aravena, Alejandro Escobar, Julio C. Tapia, Oscar A. Peralta and Cristian G. Torres
Animals 2024, 14(8), 1229; https://doi.org/10.3390/ani14081229 - 19 Apr 2024
Cited by 2 | Viewed by 1809
Abstract
Mammary cancer is a frequent disease in female dogs, where a high proportion of cases correspond to malignant tumors that may exhibit drug resistance. Within the mammary tumor microenvironment, there is a cell subpopulation called cancer stem cells (CSCs), which are capable of [...] Read more.
Mammary cancer is a frequent disease in female dogs, where a high proportion of cases correspond to malignant tumors that may exhibit drug resistance. Within the mammary tumor microenvironment, there is a cell subpopulation called cancer stem cells (CSCs), which are capable of forming spheres in vitro and resisting anti-tumor treatments, partly explaining the recurrence of some tumors. Previously, it has been described that spheres derived from canine mammary carcinoma cells CF41.Mg and REM 134 exhibit stemness characteristics. Melatonin has shown anti-tumor effects on mammary tumor cells; however, its effects have been poorly evaluated in canine mammary CSCs. This study aimed to analyze the effect of melatonin on the chemoresistance exhibited by stem-like neoplastic cells derived from canine mammary carcinoma to cytotoxic drugs such as doxorubicin and mitoxantrone. CF41.Mg and REM 134 cells were cultured in high-glucose DMEM supplemented with fetal bovine serum and L-glutamine. The spheres were cultured in ultra-low attachment plates in DMEM/F12 medium without fetal bovine serum and with different growth factors. The CD44+/CD24−/low phenotype was analyzed by flow cytometry. The viability of sphere-derived cells (MTS reduction) was studied in the presence of melatonin (0.1 or 1 mM), doxorubicin, mitoxantrone, and luzindole. In addition, the gene (RT-qPCR) of the multidrug resistance bombs MDR1 and ABCG2 were analyzed in the presence of melatonin. Both cell types expressed the MT1 gene, which encodes the melatonin receptor MT1. Melatonin 1 mM does not modify the CD44+/CD24−/low phenotype; however, the hormone reduced viability (p < 0.0001) only in CF41.Mg spheres, without inducing an additive effect when co-incubated with cytotoxic drugs. These effects were independent of the binding of the hormone to its receptor MT1, since, by pharmacologically inhibiting them, the effect of melatonin was not blocked. In CF41.Mg spheres, the relative gene expression of ABCG2 and MDR1 was decreased in response to the hormone (p < 0.001). These results indicate that melatonin negatively modulates the cell survival of spheres derived from CF41.Mg cells, in a way that is independent of its MT1 receptor. These effects did not counteract the resistance to doxorubicin and mitoxantrone, even though the hormone negatively regulates the gene expression of MDR1 and ABCG2. Full article
(This article belongs to the Special Issue Recent Advances in Canine Mammary Tumors)
Show Figures

Figure 1

21 pages, 5425 KiB  
Article
Interferon-Alpha Decreases Cancer Stem Cell Properties and Modulates Exosomes in Malignant Melanoma
by María Belén García-Ortega, Ernesto Aparicio, Carmen Griñán-Lisón, Gema Jiménez, Elena López-Ruiz, José Luis Palacios, Gloria Ruiz-Alcalá, Cristina Alba, Antonio Martínez, Houria Boulaiz, Macarena Perán, Michael Hackenberg, José Bragança, Sofia M. Calado, Juan A. Marchal and María Ángel García
Cancers 2023, 15(14), 3666; https://doi.org/10.3390/cancers15143666 - 18 Jul 2023
Cited by 3 | Viewed by 2602
Abstract
Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable [...] Read more.
Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable side effects. In this study, we evaluated the effect of low and high doses of IFN-α on CSCs by analyzing ALDH activity, side population and specific surface markers in established and patient-derived primary cell lines. We also assessed the clonogenicity, migration and tumor initiation capacities of IFN-α treated CSCs. Additionally, we investigated genomic modulations related to stemness properties using microRNA sequencing and microarrays. The effect of IFN-α on CSCs-derived exosomes was also analyzed using NanoSight and liquid chromatography (LC-HRMS)-based metabolomic analysis, among others. Our results showed that even low doses of IFN-α reduced CSC formation and stemness properties, and led to a significant decrease in the ability to form tumors in mice xenotransplants. IFN-α also modulated the expression of genes and microRNAs involved in several cancer processes and metabolomics of released exosomes. Our work suggests the utility of low doses of interferon, combined with the analysis of metabolic biomarkers, as a potential clinical approach against the aggressiveness of CSCs in melanoma. Full article
Show Figures

Figure 1

12 pages, 3691 KiB  
Article
Characterization of Compacted Ca- and Na-Bentonite with Copper Corrosion Products in the KAERI Underground Research Tunnel
by Mihye Kong, Minsoo Lee, Gha-Young Kim, Junhyuk Jang and Jin-Seop Kim
Minerals 2023, 13(7), 898; https://doi.org/10.3390/min13070898 - 30 Jun 2023
Cited by 4 | Viewed by 1692
Abstract
In a deep geological disposal system, bentonite buffer material is an important barrier used to protect the disposal canister from the inflow of groundwater and prevent the outflow of radionuclides. This study aimed to characterize the mineralogical and chemical reactions of bentonite caused [...] Read more.
In a deep geological disposal system, bentonite buffer material is an important barrier used to protect the disposal canister from the inflow of groundwater and prevent the outflow of radionuclides. This study aimed to characterize the mineralogical and chemical reactions of bentonite caused by copper corrosion of the canister in a radioactive waste repository. We investigated the d-spacings of montmorillonite in Gyeongju bentonite (Ca-type, KJ-I) under groundwater-saturated conditions over 10 years and compared their characteristics with those of Wyoming bentonite (Na-type, MX-80) in the Korea Atomic Energy Research Institute Underground Research Tunnel. Mineralogical investigations using X-ray diffraction and focused ion beam energy-dispersive spectroscopy indicated that no transformation of smectite or neo-formed clay phases occurred. In the Ca-type bentonite (KJ-I), the swelling was observed when it was in contact with rolled plate (RP) and cold-spray-coated (CSC) copper, with d-spacing expansions of 2.9% and 3.8%, respectively. In contrast, the Na-type bentonite (MX-80) showed d-spacing expansions of 17.6% and 19.6% when it was in contact with the RP and CSC Cu, respectively. The Cu concentration and distribution indicated that the corrosion products dissolved and then diffused into the surrounding bentonite, with maximum penetration depths of 2.0 and 0.5 mm over 10 years, respectively. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

14 pages, 2848 KiB  
Article
Central Serous Chorioretinopathy by Autofluorescence, Enface and SLO–Retromode Imaging
by Maria Cristina Savastano, Claudia Fossataro, Riccardo Sadun, Andrea Scupola, Maria Grazia Sammarco, Clara Rizzo, Pia Clara Pafundi and Stanislao Rizzo
Life 2023, 13(6), 1407; https://doi.org/10.3390/life13061407 - 17 Jun 2023
Cited by 3 | Viewed by 1777
Abstract
The aim of our study was to investigate the clinical features of central serous chorioretinopathy (CSC) with autofluorescence (AF), retromode (RM), and enface imaging. This retrospective study was conducted at Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome (Italy), between September and December 2022. [...] Read more.
The aim of our study was to investigate the clinical features of central serous chorioretinopathy (CSC) with autofluorescence (AF), retromode (RM), and enface imaging. This retrospective study was conducted at Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome (Italy), between September and December 2022. Each patient underwent a complete ophthalmological examination, which included optical coherence tomography (OCT), enface image analysis, AF, and RM imaging. We further evaluated the presence and area of extension of serous retinal detachment and retinal pigment epithelium (RPE) atrophy through AF, RM, and enface imaging. We included 32 eyes from 27 patients (mean age: 52.7 ± 13.3 years). The median AF area was 19.5 mm2 (IQR 6.1–29.3), while the median RM area was 12.3 mm2 (IQR 8.1–30.8), and the median enface area was 9.3 mm2 (IQR 4.8–18.6). RPE atrophy was diagnosed in 26 cases (81.3%) with RM imaging and in 75% of cases with AF. No difference emerged between AF and RM analysis in the detection of central serous detachment in CSC. However, RM imaging showed a high specificity (91.7%) and negative predictive value (84.6%) to detect RPE changes when compared to the AF standard-of-care technique. Thus, RM imaging could be considered an adjunctive imaging method in CSC. Full article
(This article belongs to the Collection New Diagnostic and Therapeutic Developments in Eye Diseases)
Show Figures

Figure 1

24 pages, 4228 KiB  
Article
Inter-Seasonal Estimation of Grass Water Content Indicators Using Multisource Remotely Sensed Data Metrics and the Cloud-Computing Google Earth Engine Platform
by Anita Masenyama, Onisimo Mutanga, Timothy Dube, Mbulisi Sibanda, Omosalewa Odebiri and Tafadzwanashe Mabhaudhi
Appl. Sci. 2023, 13(5), 3117; https://doi.org/10.3390/app13053117 - 28 Feb 2023
Cited by 5 | Viewed by 3699
Abstract
Indicators of grass water content (GWC) have a significant impact on eco-hydrological processes such as evapotranspiration and rainfall interception. Several site-specific factors such as seasonal precipitation, temperature, and topographic variations cause soil and ground moisture content variations, which have significant impacts on GWC. [...] Read more.
Indicators of grass water content (GWC) have a significant impact on eco-hydrological processes such as evapotranspiration and rainfall interception. Several site-specific factors such as seasonal precipitation, temperature, and topographic variations cause soil and ground moisture content variations, which have significant impacts on GWC. Estimating GWC using multisource data may provide robust and accurate predictions, making it a useful tool for plant water quantification and management at various landscape scales. In this study, Sentinel-2 MSI bands, spectral derivatives combined with topographic and climatic variables, were used to estimate leaf area index (LAI), canopy storage capacity (CSC), canopy water content (CWC) and equivalent water thickness (EWT) as indicators of GWC within the communal grasslands in Vulindlela across wet and dry seasons based on single-year data. The results illustrate that the use of combined spectral and topo-climatic variables, coupled with random forest (RF) in the Google Earth Engine (GEE), improved the prediction accuracies of GWC variables across wet and dry seasons. LAI was optimally estimated in the wet season with an RMSE of 0.03 m−2 and R2 of 0.83, comparable to the dry season results, which exhibited an RMSE of 0.04 m−2 and R2 of 0.90. Similarly, CSC was estimated with high accuracy in the wet season (RMSE = 0.01 mm and R2 = 0.86) when compared to the RMSE of 0.03 mm and R2 of 0.93 obtained in the dry season. Meanwhile, for CWC, the wet season results show an RMSE of 19.42 g/m−2 and R2 of 0.76, which were lower than the accuracy of RMSE = 1.35 g/m−2 and R2 = 0.87 obtained in the dry season. Finally, EWT was best estimated in the dry season, yielding a model accuracy of RMSE = 2.01 g/m−2 and R2 = 0.91 as compared to the wet season (RMSE = 10.75 g/m−2 and R2 = 0.65). CSC was best optimally predicted amongst all GWC variables in both seasons. The optimal variables for estimating these GWC variables included the red-edge, near-infrared region (NIR) and short-wave infrared region (SWIR) bands and spectral derivatives, as well as environmental variables such as rainfall and temperature across both seasons. The use of multisource data improved the prediction accuracies for GWC indicators across both seasons. Such information is crucial for rangeland managers in understanding GWC variations across different seasons as well as different ecological gradients. Full article
Show Figures

Figure 1

16 pages, 4089 KiB  
Article
Green Synthesis of Silver Nanoparticles Using Randia aculeata L. Cell Culture Extracts, Characterization, and Evaluation of Antibacterial and Antiproliferative Activity
by Antonio Bernabé-Antonio, Alejandro Martínez-Ceja, Antonio Romero-Estrada, Jessica Nayelli Sánchez-Carranza, María Crystal Columba-Palomares, Verónica Rodríguez-López, Juan Carlos Meza-Contreras, José Antonio Silva-Guzmán and José Manuel Gutiérrez-Hernández
Nanomaterials 2022, 12(23), 4184; https://doi.org/10.3390/nano12234184 - 25 Nov 2022
Cited by 11 | Viewed by 3839
Abstract
The demand for metallic nanoparticles synthesized using green methods has increased due to their various therapeutic and clinical applications, and plant biotechnology may be a potential resource facilitating sustainable methods of AgNPs synthesis. In this study, we evaluate the capacity of extracts from [...] Read more.
The demand for metallic nanoparticles synthesized using green methods has increased due to their various therapeutic and clinical applications, and plant biotechnology may be a potential resource facilitating sustainable methods of AgNPs synthesis. In this study, we evaluate the capacity of extracts from Randia aculeata cell suspension culture (CSC) in the synthesis of AgNPs at different pH values, and their activity against pathogenic bacteria and cancer cells was evaluated. Using aqueous CSC extracts, AgNPs were synthesized with 10% (w/v) of fresh biomass and AgNO3 (1 mM) at a ratio of 1:1 for 24 h of incubation and constant agitation. UV-vis analysis showed a high concentration of AgNPs as the pH increased, and TEM analysis showed polydisperse nanoparticles with sizes from 10 to 90 nm. Moreover, CSC extracts produce reducing agents such as phenolic compounds (162.2 ± 27.9 mg gallic acid equivalent/100 g biomass) and flavonoids (122.07 ± 8.2 mg quercetin equivalent/100 g biomass). Notably, AgNPs had strong activity against E. coli, S. pyogenes, P. aeruginosa, S. aureus, and S. typhimurium, mainly with AgNPs at pH 6 (MIC: 1.6 to 3.9 µg/mL). AgNPs at pH 6 and 10 had a high antiproliferative effect on cancer cells (IC50 < 5.7 µg/mL). Therefore, the use of cell suspension cultures may be a sustainable option for the green synthesis of AgNPs. Full article
Show Figures

Figure 1

23 pages, 14016 KiB  
Article
Parametric Study on Contact Explosion Resistance of Steel Wire Mesh Reinforced Geopolymer Based Ultra-High Performance Concrete Slabs Using Calibrated Continuous Surface Cap Model
by Cheng Liu, Jian Liu, Jie Wei, Shenchun Xu and Yu Su
Buildings 2022, 12(11), 2010; https://doi.org/10.3390/buildings12112010 - 17 Nov 2022
Cited by 10 | Viewed by 3213
Abstract
This paper conducts a parametric analysis on the response of geopolymer-based ultra-high-performance concrete (G-UHPC) slabs reinforced with steel wire mesh (SWM) subjected to contact explosions using the validated Continuous Surface Cap (CSC) model. Firstly, based on the available experimental data, the CSC model [...] Read more.
This paper conducts a parametric analysis on the response of geopolymer-based ultra-high-performance concrete (G-UHPC) slabs reinforced with steel wire mesh (SWM) subjected to contact explosions using the validated Continuous Surface Cap (CSC) model. Firstly, based on the available experimental data, the CSC model parameters, which account for the yield surface, damage formulation, kinematic hardening, and strain rate effect, were comprehensively developed for G-UHPC. The modified CSC model was initially assessed by comparing the quasi-static test results of G-UHPC. Then, the numerical modeling was performed on 200 mm thick SWM-reinforced G-UHPC slabs against 0.4 kg and 1.0 kg TNT contact explosions. The fair agreement between the numerical and experimental data concerning the local damage of the slabs was reported to demonstrate the applicability of the material and structural models. With the validated numerical models, a parametric study was further acted upon to explore the contribution of the variables of SWM, slab thickness, and TNT equivalence on the local damage and energy evolution of G-UHPC slabs subjected to contact blasts. Moreover, based on simulation results from the parametric study, an updated empirical model was derived to evaluate the local damage pattern and internal energy absorption rate of SWM-reinforced G-UHPC slabs. Full article
Show Figures

Graphical abstract

12 pages, 7219 KiB  
Article
Characteristic Mode Analysis of a Ka-Band CPW-Slot-Couple Fed Patch Antenna with Enhanced Bandwidth and Gain
by Kun Deng, Fuxing Yang, Jiali Zhou, Chengqi Lai, Yucheng Wang and Ke Han
Electronics 2022, 11(15), 2395; https://doi.org/10.3390/electronics11152395 - 31 Jul 2022
Cited by 3 | Viewed by 2542
Abstract
A Ka-band CPW-Slot-Couple (CSC) fed microstrip antenna with enhanced bandwidth and gain is presented in this paper. To simplify the feed network, the matching slots are designed at the end of the CPW. Consequently, the patch antenna is designed with a low profile, [...] Read more.
A Ka-band CPW-Slot-Couple (CSC) fed microstrip antenna with enhanced bandwidth and gain is presented in this paper. To simplify the feed network, the matching slots are designed at the end of the CPW. Consequently, the patch antenna is designed with a low profile, which has a size of 7.2 × 32.6 × 0.508 mm3. Characteristic mode analysis (CMA) is applied to illustrate the principle of the enhancement of the band with the form characteristic mode point of view. A slot based on inductive loading is employed on the parasitic patch to move the resonant frequency of CM3 to the resonant frequency of CM2 for enhanced bandwidth, which avoids introducing additional impedance matching networks. The measured results show that the bandwidth of the proposed monolayer antenna is 14.18% from 24.84 to 28.6 GHz and the peak gain is 7.9 dBi. Due to its attractive properties of low profile, compact configuration, wide band, and high gain, the proposed antenna could be applied to miniaturized millimeter-wave applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 731 KiB  
Review
The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”
by Antonio Giovanni Solimando, Matteo Claudio Da Vià, Niccolò Bolli and Torsten Steinbrunn
Cancers 2022, 14(13), 3271; https://doi.org/10.3390/cancers14133271 - 4 Jul 2022
Cited by 6 | Viewed by 3720
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic [...] Read more.
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM. Full article
(This article belongs to the Special Issue Engineering the Tumor Immune Microenvironment)
Show Figures

Figure 1

9 pages, 4478 KiB  
Article
Microstructure, Thermal and Mechanical Properties of Refractory Linings Modified with Polymer Fibers
by Marcin Prochwicz, Paweł Czaja, Jerzy Morgiel, Tomasz Czeppe and Anna Góral
Ceramics 2022, 5(2), 173-181; https://doi.org/10.3390/ceramics5020015 - 8 Apr 2022
Cited by 1 | Viewed by 3362
Abstract
The reduction in the inherent brittleness of coatings applied on parts of ceramic shielding used for continuous steel casting (CSC) processes is highly desired, since it can significantly diminish losses occurring during post-application handling and mounting. One of such coatings, prepared mostly from [...] Read more.
The reduction in the inherent brittleness of coatings applied on parts of ceramic shielding used for continuous steel casting (CSC) processes is highly desired, since it can significantly diminish losses occurring during post-application handling and mounting. One of such coatings, prepared mostly from fused silica, ludox, tabular alumina, chamotte, cenospheres, dextrine and aluminum powder, is known commercially as Thermacoat™. The present experiment is focused on the effect of the modification of its composition by rising the content of the cenospheres (max. 2.5 wt.%) or by introducing up to 1.5 wt.% of polymer Belmix™ fibers (~34 μm diameter/12 mm length) on the microstructure and mechanical properties. The maximum amount of introduced additions was limited by the accompanying loss of mass viscosity, which must allow for deposition through immersion. Next, the differential scanning calorimetry and differential thermogravimetric analysis techniques were employed to evaluate the extent of the weight change and heat response of the mass during the drying and annealing stages. The dried materials’ microstructure was investigated with light and scanning electron microscopy, while the chemical composition was studied by energy dispersive spectroscopy. Finally, a three-point flexural bending method was used to determine changes in the material mechanical properties. The performed experiments proved that the small addition (~1 wt.%) of polymer fibers is sufficient for the significant improvement of the Thermacoat™ green mechanical strength at ambient temperature, presenting a reproducible ultimate flexural strength of ~0.2 MPa. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

15 pages, 3134 KiB  
Article
Molecular Radiotherapy with 177Lu-Immunoliposomes Induces Cytotoxicity in Mesothelioma Cancer Stem Cells In Vitro
by Tao Huang, Jae Sam Lee, Alexander L. Klibanov and Jiang He
Int. J. Mol. Sci. 2022, 23(7), 3914; https://doi.org/10.3390/ijms23073914 - 1 Apr 2022
Cited by 3 | Viewed by 2399
Abstract
Malignant mesothelioma (MM) is a lethal tumor originating in the mesothelium with high chemotherapeutic resistance. Cancer stem cells (CSCs) persist in tumors and are critical targets responsible for tumor resistance and recurrence. The identification and characterization of CSCs may help develop effective treatment [...] Read more.
Malignant mesothelioma (MM) is a lethal tumor originating in the mesothelium with high chemotherapeutic resistance. Cancer stem cells (CSCs) persist in tumors and are critical targets responsible for tumor resistance and recurrence. The identification and characterization of CSCs may help develop effective treatment for MM. The objective of this study was to evaluate the therapeutic effect of molecular targeted radiotherapy by 177Lu-labeled immunoliposomes (177Lu-ILs) on CSCs of mesothelioma. MM CSCs were sorted based on CD26/CD24 expression level and their functional significances were established by small interference RNA. CSC potential of MM was evaluated for drug resistance, cell invasion, and cell growth rate in vitro. CSC metabolism was evaluated with the uptake of 18F-FDG. Therapeutic effects of 177Lu-labeled immunoliposomes targeting CD26 and CD24 were evaluated in vitro through proliferation and apoptotic assays. CSCs sorted from H28 cells exhibited significant drug resistance and enhanced proliferative activity as well as increased metabolism indicated by higher 18F-FDG uptake. Treatment with 177Lu-ILs, compared with 177Lu-CL and ILs, showed enhanced therapeutic effects on inhibition of proliferation, up-regulation of apoptosis, and suppression of CD26 and CD24 expression. Thus, our results suggest that molecular radiotherapy targeting both CD26 and CD24 could be a promising approach for CSC-targeting therapy for MM. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Malignant Mesothelioma)
Show Figures

Figure 1

14 pages, 4936 KiB  
Article
Choroidal Volume Evaluation after Photodynamic Therapy Using New Optical Coherence Tomography Imaging Algorithm
by Miki Sato-Akushichi, Shinji Ono, Gerd Klose and Youngseok Song
Pharmaceuticals 2021, 14(11), 1140; https://doi.org/10.3390/ph14111140 - 10 Nov 2021
Cited by 3 | Viewed by 2530 | Correction
Abstract
To evaluate choroidal volume and thickness changes after photodynamic therapy (PDT) for chronic central serous chorioretinopathy (CSC). Chronic CSC eyes with a history of PDT were selected. Average choroidal volume, average choroidal thickness, the maximum and minimum choroidal thickness of the macula irradiated [...] Read more.
To evaluate choroidal volume and thickness changes after photodynamic therapy (PDT) for chronic central serous chorioretinopathy (CSC). Chronic CSC eyes with a history of PDT were selected. Average choroidal volume, average choroidal thickness, the maximum and minimum choroidal thickness of the macula irradiated area and peripheral non-irradiated areas before and after one and three months of treatment were examined. A total of 14 patients with chronic CSC and 9 controls without any eye pathology were enrolled. The mean choroidal volume in CSC before and, and after one and three months of treatment were 2.36 (standard deviation: 0.70), 1.90 (0.69), 1.86 (0.66) mm3 for the central area, 1.25 (0.38), 1.14 (0.35), 1.13 (0.34) mm3 for superior nasal area, 1.47 (0.41), 1.28 (0.43), 1.26 (0.43) mm3 for superior temporal area, 1.07 (0.49), 0.95 (0.38), 0.93 (0.35) mm3 for inferior nasal area, 1.17 (0.38), 1.04 (0.32), 1.03 (0.33) mm3 for inferior temporal area. This study revealed the choroidal volume changes in a short period after PDT and a decrease in unirradiated choroidal volume was also shown after the treatment. The algorithm provided on the ARI Network enables to evaluate the choroidal changes quantitatively and qualitatively. Full article
(This article belongs to the Special Issue Pharmacotherapy for Macular Diseases)
Show Figures

Figure 1

43 pages, 2605 KiB  
Review
Multiple Myeloma Inhibitory Activity of Plant Natural Products
by Karin Jöhrer and Serhat Sezai Ҫiҫek
Cancers 2021, 13(11), 2678; https://doi.org/10.3390/cancers13112678 - 29 May 2021
Cited by 16 | Viewed by 8454
Abstract
A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure–activity-relationships as well as [...] Read more.
A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure–activity-relationships as well as eventual correlations with the pathways described for Multiple Myeloma were discussed. Each of the major compound classes in this review (alkaloids, phenolics, terpenes) revealed interesting candidates, such as dioncophyllines, a group of naphtylisoquinoline alkaloids, which showed pronounced and selective induction of apoptosis when substituted in position 7 of the isoquinoline moiety. Interestingly, out of the phenolic compound class, two of the most noteworthy constituents belong to the relatively small subclass of xanthones, rendering this group a good starting point for possible further drug development. The class of terpenoids also provides noteworthy constituents, such as the highly oxygenated diterpenoid oridonin, which exhibited antiproliferative effects equal to those of bortezomib on RPMI8226 cells. Moreover, triterpenoids containing a lactone ring and/or quinone-like substructures, e.g., bruceantin, whitaferin A, withanolide F, celastrol, and pristimerin, displayed remarkable activity, with the latter two compounds acting as inhibitors of both NF-κB and proteasome chymotrypsin-like activity. Full article
(This article belongs to the Special Issue Medicinal Plants and Their Active Ingredients in Cancer)
Show Figures

Figure 1

18 pages, 1037 KiB  
Article
Clinical Relevance of Corticosteroid Withdrawal on Graft Histological Lesions in Low-Immunological-Risk Kidney Transplant Patients
by Domingo Hernández, Juana Alonso-Titos, Teresa Vázquez, Myriam León, Abelardo Caballero, María Angeles Cobo, Eugenia Sola, Verónica López, Pedro Ruiz-Esteban, Josep María Cruzado, Joana Sellarés, Francesc Moreso, Anna Manonelles, Alberto Torío, Mercedes Cabello, Juan Delgado-Burgos, Cristina Casas, Elena Gutiérrez, Cristina Jironda, Julia Kanter, Daniel Serón and Armando Torresadd Show full author list remove Hide full author list
J. Clin. Med. 2021, 10(9), 2005; https://doi.org/10.3390/jcm10092005 - 7 May 2021
Cited by 6 | Viewed by 2762
Abstract
The impact of corticosteroid withdrawal on medium-term graft histological changes in kidney transplant (KT) recipients under standard immunosuppression is uncertain. As part of an open-label, multicenter, prospective, phase IV, 24-month clinical trial (ClinicalTrials.gov, NCT02284464) in low-immunological-risk KT recipients, 105 patients were randomized, after [...] Read more.
The impact of corticosteroid withdrawal on medium-term graft histological changes in kidney transplant (KT) recipients under standard immunosuppression is uncertain. As part of an open-label, multicenter, prospective, phase IV, 24-month clinical trial (ClinicalTrials.gov, NCT02284464) in low-immunological-risk KT recipients, 105 patients were randomized, after a protocol-biopsy at 3 months, to corticosteroid continuation (CSC, n = 52) or corticosteroid withdrawal (CSW, n = 53). Both groups received tacrolimus and MMF and had another protocol-biopsy at 24 months. The acute rejection rate, including subclinical inflammation (SCI), was comparable between groups (21.2 vs. 24.5%). No patients developed dnDSA. Inflammatory and chronicity scores increased from 3 to 24 months in patients with, at baseline, no inflammation (NI) or SCI, regardless of treatment. CSW patients with SCI at 3 months had a significantly increased chronicity score at 24 months. HbA1c levels were lower in CSW patients (6.4 ± 1.2 vs. 5.7 ± 0.6%; p = 0.013) at 24 months, as was systolic blood pressure (134.2 ± 14.9 vs. 125.7 ± 15.3 mmHg; p = 0.016). Allograft function was comparable between groups and no patients died or lost their graft. An increase in chronicity scores at 2-years post-transplantation was observed in low-immunological-risk KT recipients with initial NI or SCI, but CSW may accelerate chronicity changes, especially in patients with early SCI. This strategy did, however, improve the cardiovascular profiles of patients. Full article
(This article belongs to the Special Issue The Immunology and Clinical Outcome of Renal Transplantation)
Show Figures

Figure 1

Back to TopTop