Multiple Myeloma Inhibitory Activity of Plant Natural Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Alkaloids and Other Heteroaliphatic Compounds
3.1.1. Alkaloids
3.1.2. Other Heteroaliphatic Compounds
3.2. Phenolics
3.2.1. Quinones
3.2.2. Phenylethanoids and Phenylpropanoids
3.2.3. Diarylheptanoids and Pyrones
3.2.4. Stilbenoids
3.2.5. Chalcones
3.2.6. Flavonoids
3.2.7. Isoflavones and Xanthones
3.2.8. Gallic Acid Derivatives
3.3. Terpenes
3.3.1. Sesquiterpenes
3.3.2. Diterpenes
3.3.3. Triterpenes
3.3.4. Other Terpenes
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Gay, F.; Engelhardt, M.; Terpos, E.; Wäsch, R.; Giaccone, L.; Auner, H.W.; Caers, J.; Gramatzki, M.; van de Donk, N.; Oliva, S.; et al. From Transplant to Novel Cellular Therapies in Multiple Myeloma: European Myeloma Network Guidelines and Future Perspectives. Haematologica 2018, 103, 197–211. [Google Scholar] [CrossRef]
- Yong, K.; Delforge, M.; Driessen, C.; Fink, L.; Flinois, A.; Gonzalez-McQuire, S.; Safaei, R.; Karlin, L.; Mateos, M.-V.; Raab, M.S.; et al. Multiple Myeloma: Patient Outcomes in Real-World Practice. Br. J. Haematol. 2016, 175, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, H.; Hegenbart, U.; Wallmeier, M.; Moos, M.; Haas, R. High-Dose Chemotherapy in Multiple Myeloma. Leukemia 1997, 11 (Suppl. 5), S27–S31. [Google Scholar]
- Leleu, X.; Martin, T.G.; Einsele, H.; Lyons, R.M.; Durie, B.G.M.; Iskander, K.S.; Ailawadhi, S. Role of Proteasome Inhibitors in Relapsed and/or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-F.; Lin, L.; Xing, L.; Li, Y.; Yu, T.; Anderson, K.C.; Tai, Y.-T. BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers 2020, 12, 1473. [Google Scholar] [CrossRef]
- Nadeem, O.; Tai, Y.-T.; Anderson, K.C. Immunotherapeutic and Targeted Approaches in Multiple Myeloma. Immunotargets Ther. 2020, 9, 201–215. [Google Scholar] [CrossRef]
- Lohr, J.G.; Stojanov, P.; Carter, S.L.; Cruz-Gordillo, P.; Lawrence, M.S.; Auclair, D.; Sougnez, C.; Knoechel, B.; Gould, J.; Saksena, G.; et al. Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell 2014, 25, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Rasche, L.; Chavan, S.S.; Stephens, O.W.; Patel, P.H.; Tytarenko, R.; Ashby, C.; Bauer, M.; Stein, C.; Deshpande, S.; Wardell, C.; et al. Spatial Genomic Heterogeneity in Multiple Myeloma Revealed by Multi-Region Sequencing. Nat. Commun. 2017, 8, 268. [Google Scholar] [CrossRef]
- García-Ortiz, A.; Rodríguez-García, Y.; Encinas, J.; Maroto-Martín, E.; Castellano, E.; Teixidó, J.; Martínez-López, J. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers 2021, 13, 217. [Google Scholar] [CrossRef]
- Hideshima, T.; Anderson, K.C. Signaling Pathway Mediating Myeloma Cell Growth and Survival. Cancers 2021, 13, 216. [Google Scholar] [CrossRef]
- John, L.; Krauth, M.T.; Podar, K.; Raab, M.-S. Pathway-Directed Therapy in Multiple Myeloma. Cancers 2021, 13, 1668. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of Survival, Proliferation, Invasion, Angiogenesis, and Metastasis of Tumor Cells through Modulation of Inflammatory Pathways by Nutraceuticals. Cancer Metastasis Rev. 2010, 29, 405–434. [Google Scholar] [CrossRef] [Green Version]
- Home—The Plant List. Available online: http://www.theplantlist.org/ (accessed on 27 April 2021).
- Moudi, M.; Go, R.; Yien, C.Y.S.; Nazre, M. Vinca Alkaloids. Int. J. Prev. Med. 2013, 4, 1231–1235. [Google Scholar] [PubMed]
- Luo, X.; Gu, J.; Zhu, R.; Feng, M.; Zhu, X.; Li, Y.; Fei, J. Integrative Analysis of Differential MiRNA and Functional Study of MiR-21 by Seed-Targeting Inhibition in Multiple Myeloma Cells in Response to Berberine. BMC Syst. Biol. 2014, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Luo, X.; Gu, C.; Li, Y.; Zhu, X.; Fei, J. Systematic Analysis of Berberine-Induced Signaling Pathway between MiRNA Clusters and MRNAs and Identification of Mir-99a Similar to 125b Cluster Function by Seed-Targeting Inhibitors in Multiple Myeloma Cells. RNA Biol. 2015, 12, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Li, T.; Yin, Z.; Chen, S.; Fei, J.; Shen, J.; Zhang, Y. Integrative Analysis of Signaling Pathways and Diseases Associated with the MiR-106b/25 Cluster and Their Function Study in Berberine-Induced Multiple Myeloma Cells. Funct. Integr. Genom. 2017, 17, 253–262. [Google Scholar] [CrossRef]
- Ayati, S.H.; Fazeli, B.; Momtazi-Borojeni, A.A.; Cicero, A.F.G.; Pirro, M.; Sahebkar, A. Regulatory Effects of Berberine on MicroRNome in Cancer and Other Conditions. Crit. Rev. Oncol. Hematol. 2017, 116, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Samadi, P.; Sarvarian, P.; Gholipour, E.; Asenjan, K.S.; Aghebati-Maleki, L.; Motavalli, R.; Hojjat-Farsangi, M.; Yousefi, M. Berberine: A Novel Therapeutic Strategy for Cancer. IUBMB Life 2020, 72, 2065–2079. [Google Scholar] [CrossRef]
- Och, A.; Podgorski, R.; Nowak, R. Biological Activity of Berberine-A Summary Update. Toxins 2020, 12, 713. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, M.S. A Review of the Chemopreventative and Chemotherapeutic Properties of the Phytochemicals Berberine, Resveratrol and Curcumin, and Their Influence on Cell Death via the Pathways of Apoptosis and Autophagy. Cell Biol. Int. 2020, 44, 1781–1791. [Google Scholar] [CrossRef]
- Li, J.; Seupel, R.; Feineis, D.; Mudogo, V.; Kaiser, M.; Brun, R.; Bruennert, D.; Chatterjee, M.; Seo, E.-J.; Efferth, T.; et al. Dioncophyllines C-2, D-2, and F and Related Naphthylisoquinoline Alkaloids from the Congolese Liana Ancistrocladus ileboensis with Potent Activities against Plasmodium falciparum and against Multiple Myeloma and Leukemia Cell Lines. J. Nat. Prod. 2017, 80, 443–458. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kim, H.-S.; Min, K.R.; Kim, Y.; Lim, H.K.; Chang, Y.K.; Chung, M.W. Anti-Inflammatory Effects of Fangchinoline and Tetrandrine. J. Ethnopharmacol. 2000, 69, 173–179. [Google Scholar] [CrossRef]
- Fayez, S.; Li, J.; Feineis, D.; Assi, L.A.; Kaiser, M.; Brun, R.; Anany, M.A.; Wajant, H.; Bringmann, G. A Near-Complete Series of Four Atropisomeric Jozimine A(2)-Type Naphthylisoquinoline Dimers with Antiplasmodial and Cytotoxic Activities and Related Alkaloids from Ancistrocladus Abbreviatus. J. Nat. Prod. 2019, 82, 3033–3046. [Google Scholar] [CrossRef]
- Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A Prospective Natural Lead for Anticancer Drug Discovery. Biomed. Pharmacother. 2018, 107, 615–624. [Google Scholar] [CrossRef]
- Wang, H.; Gong, Y.; Liang, L.; Xiao, L.; Yi, H.; Ye, M.; Roy, M.; Xia, J.; Zhou, W.; Yang, C.; et al. Lycorine Targets Multiple Myeloma Stem Cell-like Cells by Inhibition of Wnt/Beta-Catenin Pathway. Br. J. Haematol. 2020, 189, 1151–1164. [Google Scholar] [CrossRef]
- You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; et al. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11, 01067. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product With Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. [Google Scholar] [CrossRef]
- Li, X.; Tang, Z.; Wen, L.; Jiang, C.; Feng, Q. Matrine: A Review of Its Pharmacology, Pharmacokinetics, Toxicity, Clinical Application and Preparation Researches. J. Ethnopharmacol. 2021, 269, 113682. [Google Scholar] [CrossRef]
- Rashid, H.U.; Xu, Y.; Muhammad, Y.; Wang, L.; Jiang, J. Research Advances on Anticancer Activities of Matrine and Its Derivatives: An Updated Overview. Eur. J. Med. Chem. 2019, 161, 205–238. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, B.; Zhang, X.; Qian, W.; Ye, B.; Zhou, Y. Arsenic Trioxide-Enhanced, Matrine-Induced Apoptosis in Multiple Myeloma Cell Lines. Planta Med. 2013, 79, 775–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appendino, G. Capsaicin and Capsaicinoids. In Modern Alkaloids; Fattorusso, E., Taglialatela-Scafati, O., Eds.; John Wiley & Sons: Weinheim, Germany, 2007; pp. 73–109. [Google Scholar]
- Lu, M.; Chen, C.; Lan, Y.; Xiao, J.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.-T. Capsaicin-the Major Bioactive Ingredient of Chili Peppers: Bio-Efficacy and Delivery Systems. Food Funct. 2020, 11, 2848–2860. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of Capsaicin as a Potential New Therapeutic Drug in Human Cancers. J. Clin. Pharm. Ther. 2020, 45, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Scheau, C.; Badarau, I.A.; Caruntu, C.; Mihai, G.L.; Didilescu, A.C.; Constantin, C.; Neagu, M. Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma. Molecules 2019, 24, 2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, G.D.A.; Scheau, C.; Badarau, I.A.; Dumitrache, M.-D.; Caruntu, A.; Scheau, A.-E.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M.; et al. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2021, 26, 94. [Google Scholar] [CrossRef]
- Bhutani, M.; Pathak, A.K.; Nair, A.S.; Kunnumakkara, A.B.; Guha, S.; Sethi, G.; Aggarwal, B.B. Capsaicin Is a Novel Blocker of Constitutive and Interleukin-6–Inducible STAT3 Activation. Clin. Cancer Res. 2007, 13, 3024–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunelli, D.; Tavecchio, M.; Falcioni, C.; Frapolli, R.; Erba, E.; Iori, R.; Rollin, P.; Barillari, J.; Manzotti, C.; Morazzoni, P.; et al. The Isothiocyanate Produced from Glucomoringin Inhibits NF-KB and Reduces Myeloma Growth in Nude Mice in Vivo. Biochem. Pharmacol. 2010, 79, 1141–1148. [Google Scholar] [CrossRef] [Green Version]
- Puccinelli, M.T.; Stan, S.D. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment. Int. J. Mol. Sci. 2017, 18, 1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, J.; Liu, T.; Zheng, Y.; Liu, B.; Fang, M.; Long, S.; Chen, Y. Diallyl Trisulfide Inhibits Proliferation and Promotes Apoptosis of Side Population Cells in Multiple Myeloma Cells. Int. J. Clin. Exp. Med. 2017, 10, 5749–5756. [Google Scholar]
- Miekus, N.; Marszalek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Swiergiel, A.H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef]
- Lafarga, T.; Bobo, G.; Vinas, I.; Collazo, C.; Aguilo-Aguayo, I. Effects of Thermal and Non-Thermal Processing of Cruciferous Vegetables on Glucosinolates and Its Derived Forms. J. Food Sci. Technol. Mysore 2018, 55, 1973–1981. [Google Scholar] [CrossRef]
- Soundararajan, P.; Kim, J.S. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018, 23, 2983. [Google Scholar] [CrossRef] [Green Version]
- Ya, C.; Liu-Jing, C.; Tu, H.; Jian-Qiong, Y.; Juan, L. The Pharmacology, Toxicology and Therapeutic Potential of Anthraquinone Derivative Emodin. Chin. J. Nat. Med. 2020, 18, 425–435. [Google Scholar] [CrossRef]
- Muto, A.; Hori, M.; Sasaki, Y.; Saitoh, A.; Yasuda, I.; Maekawa, T.; Uchida, T.; Asakura, K.; Nakazato, T.; Kaneda, T.; et al. Emodin Has a Cytotoxic Activity against Human Multiple Myeloma as a Janus-Activated Kinase 2 Inhibitor. Mol. Cancer Ther. 2007, 6, 987–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Kuhnle, G.G.; et al. Safety of Hydroxyanthracene Derivatives for Use in Food. EFSA J. 2018, 16, e05090. [Google Scholar] [CrossRef] [Green Version]
- Answer for Question E-006984/20. Available online: https://www.europarl.europa.eu/doceo/document/E-9-2020-006984-ASW_EN.html (accessed on 23 May 2021).
- Bringmann, G.; Ruedenauer, S.; Irmer, A.; Bruhn, T.; Brun, R.; Heimberger, T.; Stuehmer, T.; Bargou, R.; Chatterjee, M. Antitumoral and Antileishmanial Dioncoquinones and Ancistroquinones from Cell Cultures of Triphyophyllum peltatum (Dioncophyllaceae) and Ancistrocladus abbreviatus (Ancistrocladaceae). Phytochemistry 2008, 69, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, G.; Zhang, G.; Hager, A.; Moos, M.; Irmer, A.; Bargou, R.; Chatterjee, M. Anti-Tumoral Activities of Dioncoquinones B and C and Related Naphthoquinones Gained from Total Synthesis or Isolation from Plants. Eur. J. Med. Chem. 2011, 46, 5778–5789. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; He, C.; Chen, M.; Li, H. Anticancer Properties and Pharmaceutical Applications of Plumbagin: A Review. Am. J. Chin. Med. 2017, 45, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhang, J.; Chen, L.; Guo, Q.; Yang, B.; Zhang, W.; Kang, W. Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances. Biomed. Res. Int. 2020, 2020, 6940953. [Google Scholar] [CrossRef]
- Juli, G.; Oliverio, M.; Bellizzi, D.; Cantafio, M.E.G.; Grillone, K.; Passarino, G.; Colica, C.; Nardi, M.; Rossi, M.; Procopio, A.; et al. Anti-Tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers 2019, 11, 990. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.Y.; Park, J.; Oh, B.; Min, H.J.; Jeong, T.-S.; Lee, J.H.; Suh, C.; Cheong, J.-W.; Kim, H.J.; Yoon, S.-S.; et al. Natural Polyphenols Antagonize the Antimyeloma Activity of Proteasome Inhibitor Bortezomib by Direct Chemical Interaction. Br. J. Haematol. 2009, 146, 270–281. [Google Scholar] [CrossRef]
- Ito, K.; Nakazato, T.; Xian, M.J.; Yamada, T.; Hozumi, N.; Murakami, A.; Ohigashi, H.; Ikeda, Y.; Kizaki, M. 1′-Acetoxychavicol Acetate Is a Novel Nuclear Factor ΚB Inhibitor with Significant Activity against Multiple Myeloma In Vitro and In Vivo. Cancer Res. 2005, 65, 4417–4424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, K.; Nakazato, T.; Murakami, A.; Ohigashi, H.; Ikeda, Y.; Kizaki, M. 1′-Acetoxychavicol Acetate Induces Apoptosis of Myeloma Cells via Induction of TRAIL. Biochem. Biophys. Res. Commun. 2005, 338, 1702–1710. [Google Scholar] [CrossRef]
- Sagawa, M.; Tabayashi, T.; Kimura, Y.; Tomikawa, T.; Nemoto-Anan, T.; Watanabe, R.; Tokuhira, M.; Ri, M.; Hashimoto, Y.; Iida, S.; et al. TM-233, a Novel Analog of 1′-Acetoxychavicol Acetate, Induces Cell Death in Myeloma Cells by Inhibiting Both JAK/STAT and Proteasome Activities. Cancer Sci. 2015, 106, 438–446. [Google Scholar] [CrossRef]
- Rauf, A.; Patel, S.; Imran, M.; Maalik, A.; Arshad, M.U.; Saeed, F.; Mabkhot, Y.N.; Al-Showiman, S.S.; Ahmad, N.; Elsharkawy, E. Honokiol: An Anticancer Lignan. Biomed. Pharmacother. 2018, 107, 555–562. [Google Scholar] [CrossRef]
- Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; et al. Honokiol for Cancer Therapeutics: A Traditional Medicine That Can Modulate Multiple Oncogenic Targets. Pharmacol. Res. 2019, 144, 192–209. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers 2020, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.S.; Sethi, G.; Shishodia, S.; Sung, B.; Arbiser, J.L.; Aggarwal, B.B. Honokiol Potentiates Apoptosis, Suppresses Osteoclastogenesis, and Inhibits Invasion through Modulation of Nuclear Factor-Kappa B Activation Pathway. Mol. Cancer Res. 2006, 4, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Umezawa, T. Diversity in Lignan Biosynthesis. Phytochem. Rev. 2003, 2, 371–390. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, M.; Zuo, Z. Overview of the Anti-Inflammatory Effects, Pharmacokinetic Properties and Clinical Efficacies of Arctigenin and Arctiin from Arctium lappa L. Acta Pharmacol. Sin. 2018, 39, 787–801. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, C.; Lee, J.; Um, J.-Y.; Sethi, G.; Ahn, K.S. Arctiin Is a Pharmacological Inhibitor of STAT3 Phosphorylation at Tyrosine 705 Residue and Potentiates Bortezomib-Induced Apoptotic and Anti-Angiogenic Effects in Human Multiple Myeloma Cells. Phytomedicine 2019, 55, 282–292. [Google Scholar] [CrossRef]
- Dikshit, P.; Goswami, A.; Mishra, A.; Chatterjee, M.; Jana, N.R. Curcumin Induces Stress Response, Neurite Outgrowth and Prevent NF-Kappa B Activation by Inhibiting the Proteasome Function. Neurotox. Res. 2006, 9, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Jahanbakhshi, F.; Dana, P.M.; Badehnoosh, B.; Yousefi, B.; Mansournia, M.A.; Jahanshahi, M.; Asemi, Z.; Halajzadeh, J. Curcumin Anti-Tumor Effects on Endometrial Cancer with Focus on Its Molecular Targets. Cancer Cell Int. 2021, 21, 120. [Google Scholar] [CrossRef]
- Bhatia, M.; Bhalerao, M.; Cruz-Martins, N.; Kumar, D. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytother. Res. 2021. [Google Scholar] [CrossRef]
- Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients 2021, 13, 950. [Google Scholar] [CrossRef]
- Bharti, A.; Donato, N.; Aggarwal, B. Curcumin (Diferuloylmethane) Inhibits Constitutive and IL-6-Inducible STAT3 Phosphorylation in Human Multiple Myeloma Cells. J. Immunol. 2003, 171, 3863–3871. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Prasad, S.; Yuan, W.; Li, S.; Aggarwal, B.B. Identification of a Novel Compound (Beta-Sesquiphellandrene) from Turmeric (Curcuma longa) with Anticancer Potential: Comparison with Curcumin. Investig. New Drugs 2015, 33, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Lee, J.H.; Sethi, G.; Kim, C.; Baek, S.H.; Nam, D.; Chung, W.-S.; Kim, S.-H.; Shim, B.S.; Ahn, K.S. Bergamottin, a Natural Furanocoumarin Obtained from Grapefruit Juice Induces Chemosensitization and Apoptosis through the Inhibition of STAT3 Signaling Pathway in Tumor Cells. Cancer Lett. 2014, 354, 153–163. [Google Scholar] [CrossRef]
- Ko, J.-H.; Arfuso, F.; Sethi, G.; Ahn, K.S. Pharmacological Utilization of Bergamottin, Derived from Grapefruits, in Cancer Prevention and Therapy. Int. J. Mol. Sci. 2018, 19, 4048. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Chiang, S.Y.; Nam, D.; Chung, W.-S.; Lee, J.; Na, Y.-S.; Sethi, G.; Ahn, K.S. Capillarisin Inhibits Constitutive and Inducible STAT3 Activation through Induction of SHP-1 and SHP-2 Tyrosine Phosphatases. Cancer Lett. 2014, 345, 140–148. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Anti-Tumor Activity of Resveratrol against Gastric Cancer: A Review of Recent Advances with an Emphasis on Molecular Pathways. Cancer Cell Int. 2021, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, G.; Singh, C.K.; Amiri, D.; Akula, N.; Ahmad, N. Recent Advancements on Immunomodulatory Mechanisms of Resveratrol in Tumor Microenvironment. Molecules 2021, 26, 1343. [Google Scholar] [CrossRef] [PubMed]
- Cocetta, V.; Quagliariello, V.; Fiorica, F.; Berretta, M.; Montopoli, M. Resveratrol as Chemosensitizer Agent: State of Art and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 2049. [Google Scholar] [CrossRef]
- Boissy, P.; Andersen, T.L.; Abdallah, B.M.; Kassem, M.; Plesner, T.; Delaisse, J.M. Resveratrol Inhibits Myeloma Cell Growth, Prevents Osteoclast Formation, and Promotes Osteoclast Differentiation. Cancer Res. 2005, 65, 9943–9952. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Hu, Y.; Guo, T.; Wang, H.; Zhang, X.; He, W.; Tan, H. Resveratrol as a Novel Agent for Treatment of Multiple Myeloma with Matrix Metalloproteinase Inhibitory Activity. Acta Pharmacol. Sin. 2006, 27, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Sethi, G.; Vadhan-Raj, S.; Bueso-Ramos, C.; Takada, Y.; Gaur, U.; Nair, A.S.; Shishodia, S.; Aggarwal, B.B. Resveratrol Inhibits Proliferation, Induces Apoptosis, and Overcomes Chemoresistance through down-Regulation of STAT3 and Nuclear Factor-ΚB–Regulated Antiapoptotic and Cell Survival Gene Products in Human Multiple Myeloma Cells. Blood 2007, 109, 2293–2302. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yue, Y.; Chen, L.; Xu, C.; Wang, Y.; Du, L.; Xue, X.; Liu, Q.; Wang, Y.; Fan, F. Resveratrol Sensitizes Carfilzomib-Induced Apoptosis via Promoting Oxidative Stress in Multiple Myeloma Cells. Front. Pharmacol. 2018, 9, 334. [Google Scholar] [CrossRef]
- Geng, W.; Guo, X.; Zhang, L.; Ma, Y.; Wang, L.; Liu, Z.; Ji, H.; Xiong, Y. Resveratrol Inhibits Proliferation, Migration and Invasion of Multiple Myeloma Cells via NEAT1-Mediated Wnt/β-Catenin Signaling Pathway. Biomed. Pharmacother. 2018, 107, 484–494. [Google Scholar] [CrossRef]
- Barjot, C.; Tournaire, M.; Castagnino, C.; Vigor, C.; Vercauteren, J.; Rossi, J.-F. Evaluation of Antitumor Effects of Two Vine Stalk Oligomers of Resveratrol on a Panel of Lymphoid and Myeloid Cell Lines: Comparison with Resveratrol. Life Sci. 2007, 81, 1565–1574. [Google Scholar] [CrossRef]
- Vitalini, S.; Cicek, S.S.; Granica, S.; Zidorn, C. Dihydroresveratrol Type Dihydrostilbenoids: Chemical Diversity, Chemosystematics, and Bioactivity. Curr. Med. Chem. 2018, 10, 1194–1240. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z.; Chang, G.; Hou, J.; Hu, L.; Zhang, Y.; Yu, D.; Li, B.; Chang, S.; Xie, Y.; et al. The Blueberry Component Pterostilbene Has Potent Anti-Myeloma Activity in Bortezomib-Resistant Cells. Oncol. Rep. 2017, 38, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Xu, Z.; Hu, L.; Chen, G.; Wei, R.; Yang, G.; Li, B.; Chang, G.; Sun, X.; Wu, H.; et al. Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo. Int. J. Mol. Sci. 2016, 17, 1927. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, B.; Feng, Q.; Xu, Z.; Huang, C.; Wu, H.; Chen, Z.; Hu, L.; Gao, L.; Liu, P.; et al. DCZ0801, a Novel Compound, Induces Cell Apoptosis and Cell Cycle Arrest via MAPK Pathway in Multiple Myeloma. Acta Biochim. Biophys. Sin. 2019, 51, 517–523. [Google Scholar] [CrossRef]
- Feng, Q.; Yao, Q.; Li, B.; Xie, Y.; Zhang, H.; Xu, Z.; Lu, K.; Hu, K.; Cheng, Y.; Shi, B.; et al. Glycolysis Is Suppressed by DCZ0801-Induced Inactivation of the Akt/MTOR Pathway in Multiple Myeloma. J. Cancer 2020, 11, 4907–4916. [Google Scholar] [CrossRef]
- Stokes, J.; Vinayak, S.; Williams, J.; Malik, S.; Singh, R.; Manne, U.; Owonikoko, T.K.; Mishra, M.K. Optimum Health and Inhibition of Cancer Progression by Microbiome and Resveratrol. Front. Biosci. 2021, 26, 496–517. [Google Scholar] [CrossRef]
- Medrano-Padial, C.; Isabel Prieto, A.; Puerto, M.; Pichardo, S. Toxicological Evaluation of Piceatannol, Pterostilbene, and Epsilon-Viniferin for Their Potential Use in the Food Industry: A Review. Foods 2021, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Peter Guengerich, F.; Avadhani, N.G. Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. In Alcohol and Cancer; Vasiliou, V., Zakhari, S., Mishra, L., Seitz, H.K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 15–35. [Google Scholar]
- Obrador, E.; Salvador-Palmer, R.; Jihad-Jebbar, A.; Lopez-Blanch, R.; Dellinger, T.H.; Dellinger, R.W.; Estrela, J.M. Pterostilbene in Cancer Therapy. Antioxidants 2021, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-S.; Leland, J.V.; Ho, C.-T.; Pan, M.-H. Occurrence, Bioavailability, Anti-Inflammatory, and Anticancer Effects of Pterostilbene. J. Agric. Food Chem. 2020, 68, 12788–12799. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-J.; Kuo, H.-C.; Cheng, L.-H.; Lee, Y.-H.; Chang, W.-T.; Wang, B.-J.; Wang, Y.-J.; Cheng, H.-C. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer. Int. J. Mol. Sci. 2018, 19, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.K.; Sung, B.; Ahn, K.S.; Aggarwal, B.B. Butein Suppresses Constitutive and Inducible Signal Transducer and Activator of Transcription (STAT) 3 Activation and STAT3-Regulated Gene Products through the Induction of a Protein Tyrosine Phosphatase SHP-1. Mol. Pharmacol. 2009, 75, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Padmavathi, G.; Roy, N.K.; Bordoloi, D.; Arfuso, F.; Mishra, S.; Sethi, G.; Bishayee, A.; Kunnumakkara, A.B. Butein in Health and Disease: A Comprehensive Review. Phytomedicine 2017, 25, 118–127. [Google Scholar] [CrossRef]
- Jayasooriya, R.G.P.T.; Molagoda, I.M.N.; Park, C.; Jeong, J.-W.; Choi, Y.H.; Moon, D.-O.; Kim, M.-O.; Kim, G.-Y. Molecular Chemotherapeutic Potential of Butein: A Concise Review. Food Chem. Toxicol. 2018, 112, 1–10. [Google Scholar] [CrossRef]
- Qin, Y.; Sun, C.-Y.; Lu, F.-R.; Shu, X.-R.; Yang, D.; Chen, L.; She, X.-M.; Gregg, N.M.; Guo, T.; Hu, Y. Cardamonin Exerts Potent Activity against Multiple Myeloma through Blockade of NF-Kappa B Pathway in Vitro. Leuk. Res. 2012, 36, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, J.; Rasul, A.; Shah, M.A.; Hussain, G.; Riaz, A.; Sarfraz, I.; Zafar, S.; Adnan, M.; Khan, A.H.; Selamoglu, Z. Cardamonin: A New Player to Fight Cancer via Multiple Cancer Signaling Pathways. Life Sci. 2020, 250, 117591. [Google Scholar] [CrossRef]
- Zhao, S.; Mai, C.-M.; Liu, C.-X.; Wei, W.; Sun, Y.; Yan, H.; Wu, Y.-L. Autophagy Inhibition Enhances Isobavachalcone-Induced Cell Death in Multiple Myeloma Cells. Int. J. Mol. Med. 2012, 30, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Jiang, D.; Zhang, M.; Zhao, B. 2,4-Dihydroxy-3′-Methoxy-4′-Ethoxychalcone Suppresses Cell Proliferation and Induces Apoptosis of Multiple Myeloma via the PI3K/Akt/MTOR Signaling Pathway. Pharm. Biol. 2019, 57, 641–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an Anticancer Agent. Phytother. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef] [PubMed]
- Ashrafizadeh, M.; Bakhoda, M.R.; Bahmanpour, Z.; Ilkhani, K.; Zarrabi, A.; Makvandi, P.; Khan, H.; Mazaheri, S.; Darvish, M.; Mirzaei, H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms with Emphasis on Pancreatic Cancer. Front. Chem. 2020, 8, 829. [Google Scholar] [CrossRef]
- Javed, Z.; Sadia, H.; Iqbal, M.J.; Shamas, S.; Malik, K.; Ahmed, R.; Raza, S.; Butnariu, M.; Cruz-Martins, N.; Sharifi-Rad, J. Apigenin Role as Cell-Signaling Pathways Modulator: Implications in Cancer Prevention and Treatment. Cancer Cell Int. 2021, 21, 189. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, J.; Zhu, H.-Y.; Zhang, X.-H.; Du, Z.-Y.; Xu, Y.-J.; Yu, X.-D. Apigenin Inhibits Proliferation and Induces Apoptosis in Human Multiple Myeloma Cells through Targeting the Trinity of CK2, Cdc37 and Hsp90. Mol. Cancer 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-X.; Fang, X. Apigenin, Chrysin, and Luteolin Selectively Inhibit Chymotrypsin-Like and Trypsin-Like Proteasome Catalytic Activities in Tumor Cells. Planta Med. 2010, 76, 128–132. [Google Scholar] [CrossRef]
- Krause, M.; Galensa, R. Analysis of Enantiomeric Flavanones in Plant Extracts by High-Performance Liquid Chromatography on a Cellulose Triacetate Based Chiral Stationary Phase. Chromatographia 1991, 32, 69–72. [Google Scholar] [CrossRef]
- Naraki, K.; Rezaee, R.; Karimi, G. A Review on the Protective Effects of Naringenin against Natural and Chemical Toxic Agents. Phytother. Res. 2021. [Google Scholar] [CrossRef]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Willer, J.; Joehrer, K.; Greil, R.; Zidorn, C.; Cicek, S.S. Cytotoxic Properties of Damiana (Tunera diffusa) Extracts and Constituents and A Validated Quantitative UHPLC-DAD Assay. Molecules 2019, 24, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganai, S.A.; Sheikh, F.A.; Baba, Z.A.; Mir, M.A.; Mantoo, M.A.; Yatoo, M.A. Anticancer Activity of the Plant Flavonoid Luteolin against Preclinical Models of Various Cancers and Insights on Different Signalling Mechanisms Modulated. Phytother. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhanh, I.E.; Rizwan, M.; Atif, M.; et al. Luteolin, a Flavonoid, as an Anticancer Agent: A Review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Cook, M.T. Mechanism of Metastasis Suppression by Luteolin in Breast Cancer. Breast Cancer Targets Ther. 2018, 10, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Li, X.-F.; Wang, J.-F.; Zhou, S.; Fang, F. Effects of Luteolin on Proliferation and Programmed Cell Death of Human Multiple Myeloma Cell RPMI-8226. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2018, 26, 1425–1429. [Google Scholar] [CrossRef]
- Cicek, S.S.; Willer, J.; Preziuso, F.; Soennichsen, F.; Greil, R.; Girreser, U.; Zidorn, C.; Joehrer, K. Cytotoxic Constituents and a New Hydroxycinnamic Acid Derivative from Leontodon saxatilis (Asteraceae, Cichorieae). RSC Adv. 2021, 11, 10489–10496. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, L.-P.; Chen, Y.; Tian, X.; Qin, J.; Wang, D.; Li, Z.; Mo, S.-L. Wogonin Induces Apoptosis in RPMI 8226, a Human Myeloma Cell Line, by Downregulating Phospho-Akt and Overexpressing Bax. Life Sci. 2013, 92, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Cicek, S.S. Structure-Dependent Activity of Natural GABA(A) Receptor Modulators. Molecules 2018, 23, 1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nik Salleh, N.N.H.; Othman, F.A.; Kamarudin, N.A.; Tan, S.C. The Biological Activities and Therapeutic Potentials of Baicalein Extracted from Oroxylum Indicum: A Systematic Review. Molecules 2020, 25, 5677. [Google Scholar] [CrossRef]
- Tuli, H.S.; Aggarwal, V.; Kaur, J.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Tuorkey, M.; Kaur, G.; Savla, R.; Sak, K.; et al. Baicalein: A Metabolite with Promising Antineoplastic Activity. Life Sci. 2020, 259, 118183. [Google Scholar] [CrossRef]
- Gong, W.-Y.; Zhao, Z.-X.; Liu, B.-J.; Lu, L.-W.; Dong, J.-C. Exploring the Chemopreventive Properties and Perspectives of Baicalin and Its Aglycone Baicalein in Solid Tumors. Eur. J. Med. Chem. 2017, 126, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-P.; He, L.; Zhang, Q.-P.; Zeng, X.-T.; Liu, S.-Q. Baicalein Inhibits Proliferation of Myeloma U266 Cells by Downregulating IKZF1 and IKZF3. Med. Sci. Monit. 2018, 24, 2809–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021, 26, 1315. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shabestari, F.A.; Vaezi, S.; Abak, A.; Shoorei, H.; Karimi, A.; Taheri, M.; Basiri, A. Emerging Impact of Quercetin in the Treatment of Prostate Cancer. Biomed. Pharmacother. 2021, 138, 111548. [Google Scholar] [CrossRef]
- Bailly, C. Molecular and Cellular Basis of the Anticancer Activity of the Prenylated Flavonoid Icaritin in Hepatocellular Carcinoma. Chem. Biol. Interact. 2020, 325, 109124. [Google Scholar] [CrossRef]
- Yang, X.-J.; Xi, Y.-M.; Li, Z.-J. Icaritin: A Novel Natural Candidate for Hematological Malignancies Therapy. Biomed. Res. Int. 2019, 2019, 4860268. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, Z.; Li, Z.; Peng, H.; Luo, Y.; Deng, M.; Li, R.; Dai, C.; Xu, Y.; Liu, S.; et al. Icaritin Suppresses Multiple Myeloma, by Inhibiting IL-6/JAK2/STAT3. Oncotarget 2015, 6, 10460–10472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phromnoi, K.; Reuter, S.; Sung, B.; Limtrakul, P.; Aggarwal, B.B. A Dihydroxy-Pentamethoxyflavone from Gardenia Obtusifolia Suppresses Proliferation and Promotes Apoptosis of Tumor Cells Through Modulation of Multiple Cell Signaling Pathways. Anticancer Res. 2010, 30, 3599–3610. [Google Scholar] [PubMed]
- Phromnoi, K.; Prasad, S.; Gupta, S.C.; Kannappan, R.; Reuter, S.; Limtrakul, P.; Aggarwal, B.B. Dihydroxypentamethoxyflavone Down-Regulates Constitutive and Inducible Signal Transducers and Activators of Transcription-3 through the Induction of Tyrosine Phosphatase SHP-1. Mol. Pharmacol. 2011, 80, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of Flavonoids and Other Phenylpropanoid-Derived Natural Products. Part I: Chemical Diversity, Impacts on Plant Biology and Human Health. Biotechnol. J. 2007, 2, 1214–1234. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Frame, L.T.; Hoo, K.A.; Li, Y.; D’Cunha, N.; Cobos, E. Genistein Inhibited Proliferation and Induced Apoptosis in Acute Lymphoblastic Leukemia, Lymphoma and Multiple Myeloma Cells in Vitro. Leuk. Lymphoma 2011, 52, 2380–2390. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Zhu, B. Genistein Inhibits the Proliferation of Human Multiple Myeloma Cells through Suppression of Nuclear Factor-κB and Upregulation of MicroRNA-29b. Mol. Med. Rep. 2016, 13, 1627–1632. [Google Scholar] [CrossRef] [Green Version]
- Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front. Pharmacol. 2019, 10, 1336. [Google Scholar] [CrossRef] [Green Version]
- Mukund, V.; Mukund, D.; Sharma, V.; Mannarapu, M.; Alam, A. Genistein: Its Role in Metabolic Diseases and Cancer. Crit. Rev. Oncol. Hematol. 2017, 119, 13–22. [Google Scholar] [CrossRef]
- Liu, R.; Yu, X.; Chen, X.; Zhong, H.; Liang, C.; Xu, X.; Xu, W.; Cheng, Y.; Wang, W.; Yu, L.; et al. Individual Factors Define the Overall Effects of Dietary Genistein Exposure on Breast Cancer Patients. Nutr. Res. 2019, 67, 1–16. [Google Scholar] [CrossRef]
- Chae, H.-S.; Xu, R.; Won, J.-Y.; Chin, Y.-W.; Yim, H. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects. Int. J. Mol. Sci. 2019, 20, 2420. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Chen, L.; Zhai, M.; Chen, J.Z.S. Genistein Down-Regulates the Constitutive Activation of Nuclear Factor-ΚB in Human Multiple Myeloma Cells, Leading to Suppression of Proliferation and Induction of Apoptosis. Phytother. Res. 2009, 23, 868–873. [Google Scholar] [CrossRef]
- Kim, C.; Lee, S.-G.; Yang, W.M.; Arfuso, F.; Um, J.-Y.; Kumar, A.P.; Bian, J.; Sethi, G.; Ahn, K.S. Formononetin-Induced Oxidative Stress Abrogates the Activation of STAT3/5 Signaling Axis and Suppresses the Tumor Growth in Multiple Myeloma Preclinical Model. Cancer Lett. 2018, 431, 123–141. [Google Scholar] [CrossRef]
- Fellows, I.M.; Schwaebe, M.; Dexheimer, T.S.; Vankayalapati, H.; Gleason-Guzman, M.; Whitten, J.P.; Hurley, L.H. Determination of the Importance of the Stereochemistry of Psorospermin in Topoisomerase II–Induced Alkylation of DNA and in Vitro and in Vivo Biological Activity. Mol. Cancer Ther. 2005, 4, 1729–1739. [Google Scholar] [CrossRef] [Green Version]
- Carey, S.S.; Gleason-Guzman, M.; Gokhale, V.; Hurley, L.H. Psorospermin Structural Requirements for P-Glycoprotein Resistance Reversal. Mol. Cancer Ther. 2008, 7, 3617–3623. [Google Scholar] [CrossRef] [Green Version]
- Takeda, T.; Tsubaki, M.; Kino, T.; Yamagishi, M.; Iida, M.; Itoh, T.; Imano, M.; Tanabe, G.; Muraoka, O.; Satou, T.; et al. Mangiferin Induces Apoptosis in Multiple Myeloma Cell Lines by Suppressing the Activation of Nuclear Factor Kappa B-Inducing Kinase. Chem. Biol. Interact. 2016, 251, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Morozkina, S.N.; Nhung Vu, T.H.; Generalova, Y.E.; Snetkov, P.P.; Uspenskaya, M.V. Mangiferin as New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems—A Novel Research Direction. Biomolecules 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y.; Lin, L.; Li, H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int. J. Nanomed. 2020, 15, 10385–10399. [Google Scholar] [CrossRef]
- Banik, K.; Harsha, C.; Bordoloi, D.; Sailo, B.L.; Sethi, G.; Leong, H.C.; Arfuso, F.; Mishra, S.; Wang, L.; Kumar, A.P.; et al. Therapeutic Potential of Gambogic Acid, a Caged Xanthone, to Target Cancer. Cancer Lett. 2018, 416, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Hatami, E.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Gambogic Acid: A Shining Natural Compound to Nanomedicine for Cancer Therapeutics. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188381. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-J.; Chen, Y.; He, J.; Yi, S.; Wen, L.; Zhao, S.; Cui, G.-H. Effects of Gambogic Acid on the Activation of Caspase-3 and Downregulation of SIRT1 in RPMI-8226 Multiple Myeloma Cells via the Accumulation of ROS. Oncol. Lett. 2012, 3, 1159–1165. [Google Scholar] [CrossRef] [Green Version]
- Pandey, M.K.; Kale, V.P.; Song, C.; Sung, S.; Sharma, A.K.; Talamo, G.; Dovat, S.; Amin, S.G. Gambogic Acid Inhibits Multiple Myeloma Mediated Osteoclastogenesis through Suppression of Chemokine Receptor CXCR4 Signaling Pathways. Exp. Hematol. 2014, 42, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, W.; Guo, L.; Bao, W.; Jin, N.; Liu, R.; Liu, P.; Wang, Y.; Guo, Q.; Chen, B. Gambogic Acid Suppresses Hypoxia-Induced Hypoxia-Inducible Factor-1α/Vascular Endothelial Growth Factor Expression via Inhibiting Phosphatidylinositol 3-Kinase/Akt/Mammalian Target Protein of Rapamycin Pathway in Multiple Myeloma Cells. Cancer Sci. 2014, 105, 1063–1070. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, M.; Fang, F. The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseases. Med. Sci. Monitor 2020, 26, e924558. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Wang, K.-L.; Chen, H.-Y.; Chiang, Y.-F.; Hsia, S.-M. Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers. Biomolecules 2020, 10, 1481. [Google Scholar] [CrossRef] [PubMed]
- Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020, 25, 3146. [Google Scholar] [CrossRef] [PubMed]
- Bimonte, S.; Cascella, M. The Potential Roles of Epigallocatechin-3-Gallate in the Treatment of Ovarian Cancer: Current State of Knowledge. Drug Des. Dev. Ther. 2020, 14, 4245–4250. [Google Scholar] [CrossRef] [PubMed]
- Piwowarczyk, L.; Stawny, M.; Mlynarczyk, D.T.; Muszalska-Kolos, I.; Goslinski, T.; Jelinska, A. Role of Curcumin and (-)-Epigallocatechin-3-O-Gallate in Bladder Cancer Treatment: A Review. Cancers 2020, 12, 1801. [Google Scholar] [CrossRef]
- Doudican, N.A.; Wen, S.Y.; Mazumder, A.; Orlow, S.J. Identification of Agents That Promote Endoplasmic Reticulum Stress Using an Assay That Monitors Luciferase Secretion. J. Biomol. Screen 2014, 19, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Tseeleesuren, D.; Kant, R.; Yen, C.-H.; Hsiao, H.-H.; Chen, Y.-M.A. 1,2,3,4,6-Penta-O-Galloyl-Beta-D-Glucopyranoside Inhibits Proliferation of Multiple Myeloma Cells Accompanied with Suppression of MYC Expression. Front. Pharmacol. 2018, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Nam, D.; Song, J.; Kim, S.-M.; Chiang, S.Y.; Kim, J.-S.; Chung, W.-S.; Jang, H.-J.; Jung, S.H.; Na, Y.-S.; Kim, S.-H.; et al. 8-Hydrocalamenene, Derived from Reynoutria Elliptica, Suppresses Constitutive STAT3 Activation, Inhibiting Proliferation and Enhancing Chemosensitization of Human Multiple Myeloma Cells. J. Med. Food 2014, 17, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Sztiller-Sikorska, M.; Czyz, M. Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals 2020, 13, 194. [Google Scholar] [CrossRef] [PubMed]
- Freund, R.R.A.; Gobrecht, P.; Fischer, D.; Arndt, H.-D. Advances in Chemistry and Bioactivity of Parthenolide. Nat. Prod. Rep. 2020, 37, 541–565. [Google Scholar] [CrossRef] [PubMed]
- Suvannasankha, A.; Crean, C.D.; Shanmugam, R.; Farag, S.S.; Abonour, R.; Boswell, H.S.; Nakshatri, H. Antimyeloma Effects of a Sesquiterpene Lactone Parthenolide. Clin. Cancer Res. 2008, 14, 1814–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, E.J.; Williams, J.T.; Huynh, D.T.; Iannotti, M.J.; Han, C.; Barrios, F.J.; Kendall, S.; Glackin, C.A.; Colby, D.A.; Kirshner, J. The Natural Products Parthenolide and Andrographolide Exhibit Anticancer Stem Cell Activity in Multiple Myeloma. Leuk. Lymphoma 2011, 52, 1085–1097. [Google Scholar] [CrossRef]
- Curry, E.A.; Murry, D.J.; Yoder, C.; Fife, K.; Armstrong, V.; Nakshatri, H.; O’Connell, M.; Sweeney, C.J. Phase I Dose Escalation Trial of Feverfew with Standardized Doses of Parthenolide in Patients with Cancer. Investig. New Drugs 2004, 22, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Babaei, G.; Gholizadeh-Ghaleh Aziz, S.; Rajabi Bazl, M.; Khadem Ansari, M.H. A Comprehensive Review of Anticancer Mechanisms of Action of Alantolactone. Biomed. Pharmacother. 2021, 136, 111231. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xia, D.; Bian, Y.; Sun, Y.; Zhu, F.; Pan, B.; Niu, M.; Zhao, K.; Wu, Q.; Qiao, J.; et al. Alantolactone Induces G1 Phase Arrest and Apoptosis of Multiple Myeloma Cells and Overcomes Bortezomib Resistance. Apoptosis 2015, 20, 1122–1133. [Google Scholar] [CrossRef]
- Liu, J.-L.; Zeng, G.-Z.; Liu, X.-L.; Liu, Y.-Q.; Hu, Z.-G.; Liu, Y.; Tan, N.-H.; Zhou, G.-B. Small Compound Bigelovin Exerts Inhibitory Effects and Triggers Proteolysis of E2F1 in Multiple Myeloma Cells. Cancer Sci. 2013, 104, 1697–1704. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Zhang, B.; Cheng, Y.-X. Small Compound 6-O-Angeloylplenolin Induces Caspase-Dependent Apoptosis in Human Multiple Myeloma Cells. Oncol. Lett. 2013, 6, 556–558. [Google Scholar] [CrossRef]
- Olson, B.E.; Kelsey, R.G. Effect of Centaurea Maculosa on Sheep Rumen Microbial Activity and Mass in Vitro. J. Chem. Ecol. 1997, 23, 1131–1144. [Google Scholar] [CrossRef]
- Joehrer, K.; Obkircher, M.; Neureiter, D.; Parteli, J.; Zelle-Rieser, C.; Maizner, E.; Kern, J.; Hermann, M.; Hamacher, F.; Merkel, O.; et al. Antimyeloma Activity of the Sesquiterpene Lactone Cnicin: Impact on Pim-2 Kinase as a Novel Therapeutic Target. J. Mol. Med. 2012, 90, 681–693. [Google Scholar] [CrossRef]
- Lin, J.; Wu, Y.; Yang, D.; Zhao, Y. Induction of Apoptosis and Antitumor Effects of a Small Molecule Inhibitor of Bcl-2 and Bcl-Xl, Gossypol Acetate, in Multiple Myeloma in Vitro and in Vivo. Oncol. Rep. 2013, 30, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Sadahira, K.; Sagawa, M.; Nakazato, T.; Uchida, H.; Ikeda, Y.; Okamoto, S.; Nakajima, H.; Kizaki, M. Gossypol Induces Apoptosis in Multiple Myeloma Cells by Inhibition of Interleukin-6 Signaling and Bcl-2Mcl-1 Pathway. Int. J. Oncol. 2014, 45, 2278–2286. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Ma, J.; Xu, L.; Wu, D. Natural Product Gossypol and Its Derivaties in Percision Cancer Medicine. Curr. Med. Chem. 2019, 26, 1849–1873. [Google Scholar] [CrossRef] [PubMed]
- Heinstein, P.F.; Herman, D.L.; Tove, S.B.; Smith, F.H. Biosynthesis of Gossypol: Incorporation of Mevalonate-2-14C and Isoprenyl Pyrophosphates. J. Biol. Chem. 1970, 245, 4658–4665. [Google Scholar] [CrossRef]
- Soo, H.L.; Quah, S.Y.; Sulaiman, I.; Sagineedu, S.R.; Lim, J.C.W.; Stanslas, J. Advances and Challenges in Developing Andrographolide and Its Analogues as Cancer Therapeutic Agents. Drug Discov. Today 2019, 24, 1890–1898. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Attar, R.; Sabitaliyevich, U.Y.; Alaaeddine, N.; de Sousa, D.P.; Xu, B.; Cho, W.C. The Prowess of Andrographolide as a Natural Weapon in the War against Cancer. Cancers 2020, 12, 2159. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhang, M.; Liu, J.; Zhao, X.; Zhang, Y.; Fang, L. Tanshinone IIA: A Review of Its Anticancer Effects. Front. Pharmacol. 2021, 11, 611087. [Google Scholar] [CrossRef]
- Yun, S.-M.; Jung, J.H.; Jeong, S.-J.; Sohn, E.J.; Kim, B.; Kim, S.-H. Tanshinone IIA Induces Autophagic Cell Death via Activation of AMPK and ERK and Inhibition of MTOR and P70 S6K in KBM-5 Leukemia Cells. Phytother. Res. 2014, 28, 458–464. [Google Scholar] [CrossRef]
- Suto, Y.; Sato, M.; Fujimori, K.; Kitabatake, S.; Okayama, M.; Ichikawa, D.; Matsushita, M.; Yamagiwa, N.; Iwasaki, G.; Kiuchi, F.; et al. Synthesis and Biological Evaluation of the Natural Product Komaroviquinone and Related Compounds Aiming at a Potential Therapeutic Lead Compound for High-Risk Multiple Myeloma. Bioorg. Med. Chem. Lett. 2017, 27, 4558–4563. [Google Scholar] [CrossRef]
- Cretton, S.; Saraux, N.; Monteillier, A.; Righi, D.; Marcourt, L.; Genta-Jouve, G.; Wolfender, J.-L.; Cuendet, M.; Christen, P. Anti-Inflammatory and Antiproliferative Diterpenoids from Plectranthus Scutellarioides. Phytochemistry 2018, 154, 39–46. [Google Scholar] [CrossRef]
- Sapio, L.; Gallo, M.; Illiano, M.; Chiosi, E.; Naviglio, D.; Spina, A.; Naviglio, S. The Natural CAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time? J. Cell. Physiol. 2017, 232, 922–927. [Google Scholar] [CrossRef]
- Follin-Arbelet, V.; Misund, K.; Naderi, E.H.; Ugland, H.; Sundan, A.; Blomhoff, H.K. The Natural Compound Forskolin Synergizes with Dexamethasone to Induce Cell Death in Myeloma Cells via BIM. Sci. Rep. 2015, 5, 13001. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, G.; Su, Y. Oridonin Improves the Sensitivity of Multiple Myeloma Cells to Bortezomib through the PTEN/PI3K/Akt Pathway. Curr. Top. Nutraceutical Res. 2020, 18, 292–296. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Md Hashim, N.F.; Ammar, A.; Muhamad Zakuan, N. An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential. Molecules 2021, 26, 775. [Google Scholar] [CrossRef]
- Xu, J.; Wold, E.A.; Ding, Y.; Shen, Q.; Zhou, J. Therapeutic Potential of Oridonin and Its Analogs: From Anticancer and Antiinflammation to Neuroprotection. Molecules 2018, 23, 474. [Google Scholar] [CrossRef] [Green Version]
- Cuendet, M.; Christov, K.; Lantvit, D.D.; Deng, Y.; Hedayat, S.; Helson, L.; McChesney, J.D.; Pezzuto, J.M. Multiple Myeloma Regression Mediated by Bruceantin. Clin. Cancer Res. 2004, 10, 1170–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issa, M.E.; Berndt, S.; Carpentier, G.; Pezzuto, J.M.; Cuendet, M. Bruceantin Inhibits Multiple Myeloma Cancer Stem Cell Proliferation. Cancer Biol. Ther. 2016, 17, 966–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcino Vieira, I.J.; Braz-Filho, R. Quassinoids: Structural Diversity, Biological Activity and Synthetic Studies. In Studies in Natural Product Chemistry; Atta-ur-Rahman, Ed.; Elsevier, B.V.: Amsterdam, The Netherlands, 2006; pp. 433–492. [Google Scholar]
- Ben Bakrim, W.; El Bouzidi, L.; Nuzillard, J.-M.; Cretton, S.; Saraux, N.; Monteillier, A.; Christen, P.; Cuendet, M.; Bekkouche, K. Bioactive Metabolites from the Leaves of Withania Adpressa. Pharm. Biol. 2018, 56, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.K.; Sung, B.; Aggarwal, B.B. Betulinic Acid Suppresses STAT3 Activation Pathway through Induction of Protein Tyrosine Phosphatase SHP-1 in Human Multiple Myeloma Cells. Int. J. Cancer 2010, 127, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Hu, Y.; Yang, Y.; Wang, L.; Yang, X.; Wang, B.; Huang, M. Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-Kappa B Pathway in Human Multiple Myeloma. Oxid. Med. Cell. Longev. 2019, 2019, 5083158. [Google Scholar] [CrossRef] [Green Version]
- Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and Betulinic Acid: Triterpenoids Derivatives with a Powerful Biological Potential. Phytochem. Rev. 2019, 18, 929–951. [Google Scholar] [CrossRef] [Green Version]
- Grymel, M.; Zawojak, M.; Adamek, J. Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity: A Comprehensive Review. J. Nat. Prod. 2019, 82, 1719–1730. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, W.; Zeng, C.; Zhang, Y.; Wang, L.; Yao, W.; Nie, C. PP2A Mediates Apoptosis or Autophagic Cell Death in Multiple Myeloma Cell Lines. Oncotarget 2017, 8, 80770–80789. [Google Scholar] [CrossRef] [Green Version]
- Kannaiyan, R.; Shanmugam, M.K.; Sethi, G. Molecular Targets of Celastrol Derived from Thunder of God Vine: Potential Role in the Treatment of Inflammatory Disorders and Cancer. Cancer Lett. 2011, 303, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-R.; Dai, Y.; Zhao, J.; Lin, L.; Wang, Y.; Wang, Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium Wilfordii Hook F. Front. Pharmacol. 2018, 9, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.W.; Chan, Y.; Chellappan, D.K.; Madheswaran, T.; Zeeshan, F.; Chan, Y.L.; Collet, T.; Gupta, G.; Oliver, B.G.; Wark, P.; et al. Molecular Modulators of Celastrol as the Keystones for Its Diverse Pharmacological Activities. Biomed. Pharmacother. 2019, 109, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Haroon, M.; Kang, S.C. Celastrol-Mediated Autophagy Regulation in Cancer. Appl. Biol. Chem. 2020, 63, 81. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Zhou, J.; Li, D.; Gao, W. Biosynthesis, Total Synthesis, Structural Modifications, Bioactivity, and Mechanism of Action of the Quinone-Methide Triterpenoid Celastrol. Med. Res. Rev. 2021, 41, 1022–1060. [Google Scholar] [CrossRef]
- Shi, J.; Li, J.; Xu, Z.; Chen, L.; Luo, R.; Zhang, C.; Gao, F.; Zhang, J.; Fu, C. Celastrol: A Review of Useful Strategies Overcoming Its Limitation in Anticancer Application. Front. Pharmacol. 2020, 11, 558741. [Google Scholar] [CrossRef]
- Tozawa, K.; Sagawa, M.; Kizaki, M. Quinone Methide Tripterine, Celastrol, Induces Apoptosis in Human Myeloma Cells via NF-Kappa B Pathway. Int. J. Oncol. 2011, 39, 1117–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Teriete, P.; Hu, A.; Raveendra-Panickar, D.; Pendelton, K.; Lazo, J.S.; Eiseman, J.; Holien, T.; Misund, K.; Oliynyk, G.; et al. Direct Inhibition of C-Myc-Max Heterodimers by Celastrol and Celastrol-Inspired Triterpenoids. Oncotarget 2015, 6, 32380–32395. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yan, Y.; Sun, H.; Liu, Y.; Su, C.; Chen, H.; Zhang, J. Anti-Cancer Effects of Pristimerin and the Mechanisms: A Critical Review. Front. Pharmacol. 2019, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- Tiedemann, R.E.; Schmidt, J.; Keats, J.J.; Shi, C.-X.; Zhu, Y.X.; Palmer, S.E.; Mao, X.; Schimmer, A.D.; Stewart, A.K. Identification of a Potent Natural Triterpenoid Inhibitor of Proteosome Chymotrypsin-like Activity and NF-Kappa B with Antimyeloma Activity in Vitro and in Vivo. Blood 2009, 113, 4027–4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. Int. J. Mol. Sci. 2020, 21, 5920. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.-M.; Su, X.-L. Anticancer Effect of Ursolic Acid via Mitochondria-Dependent Pathways. Oncol. Lett. 2019, 17, 4761–4767. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Fang, Y.; Zhao, R.; Chen, F.; Yang, M.; Jiang, J.; Chen, Z.; Yuan, X.; Jia, L. Evolution from Small Molecule to Nano-Drug Delivery Systems: An Emerging Approach for Cancer Therapy of Ursolic Acid. Asian J. Pharm. Sci. 2020, 15, 685–700. [Google Scholar] [CrossRef]
- Pathak, A.K.; Bhutani, M.; Nair, A.S.; Ahn, K.S.; Chakraborty, A.; Kadara, H.; Guha, S.; Sethi, G.; Aggarwal, B.B. Ursolic Acid Inhibits STAT3 Activation Pathway Leading to Suppression of Proliferation and Chemosensitization of Human Multiple Myeloma Cells. Mol. Cancer Res. 2007, 5, 943–955. [Google Scholar] [CrossRef] [Green Version]
- Jing, B.; Liu, M.; Yang, L.; Cai, H.; Chen, J.; Li, Z.; Kou, X.; Wu, Y.; Qin, D.; Zhou, L.; et al. Characterization of Naturally Occurring Pentacyclic Triterpenes as Novel Inhibitors of Deubiquitinating Protease USP7 with Anticancer Activity in Vitro. Acta Pharmacol. Sin. 2018, 39, 492–498. [Google Scholar] [CrossRef]
- Yingchun, L.; Huihan, W.; Rong, Z.; Guojun, Z.; Ying, Y.; Zhuogang, L. Antitumor Activity of Asiaticoside Against Multiple Myeloma Drug-Resistant Cancer Cells Is Mediated by Autophagy Induction, Activation of Effector Caspases, and Inhibition of Cell Migration, Invasion, and STAT-3 Signaling Pathway. Med. Sci. Monit. 2019, 25, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Joehrer, K.; Stuppner, H.; Greil, R.; Cicek, S.S. Structure-Guided Identification of Black Cohosh (Actaea racemosa) Triterpenoids with In Vitro Activity against Multiple Myeloma. Molecules 2020, 25, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Rajendran, P.; Sethi, G. Thymoquinone Inhibits Proliferation, Induces Apoptosis and Chemosensitizes Human Multiple Myeloma Cells through Suppression of Signal Transducer and Activator of Transcription 3 Activation Pathway. Br. J. Pharmacol. 2010, 161, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Gomathinayagam, R.; Ha, J.H.; Jayaraman, M.; Song, Y.S.; Isidoro, C.; Dhanasekaran, D.N. Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets. J. Cancer Prev. 2020, 25, 136–151. [Google Scholar] [CrossRef]
- Afrose, S.S.; Junaid, M.; Akter, Y.; Tania, M.; Zheng, M.; Khan, M.A. Targeting Kinases with Thymoquinone: A Molecular Approach to Cancer Therapeutics. Drug Discov. Today 2020, 25, 2294–2306. [Google Scholar] [CrossRef]
- Almajali, B.; Al-Jamal, H.A.N.; Taib, W.R.W.; Ismail, I.; Johan, M.F.; Doolaanea, A.A.; Ibrahim, W.N. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals 2021, 14, 369. [Google Scholar] [CrossRef]
- Hoshyar, R.; Mollaei, H. A Comprehensive Review on Anticancer Mechanisms of the Main Carotenoid of Saffron, Crocin. J. Pharm. Pharmacol. 2017, 69, 1419–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colapietro, A.; Mancini, A.; D’Alessandro, A.M.; Festuccia, C. Crocetin and Crocin from Saffron in Cancer Chemotherapy and Chemoprevention. Anti-Cancer Agents Med. Chem. 2019, 19, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, K.Y.; Park, B. Crocin Suppresses Constitutively Active STAT3 Through Induction of Protein Tyrosine Phosphatase SHP-1. J. Cell. Biochem. 2017, 118, 3290–3298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Qiao, L.; Wang, X.; Senthilkumar, R.; Wang, F.; Chen, B. Inducing Cell Cycle Arrest and Apoptosis by Dimercaptosuccinic Acid Modified Fe3O4 Magnetic Nanoparticles Combined with Nontoxic Concentration of Bortezomib and Gambogic Acid in RPMI-8226 Cells. Int. J. Nanomed. 2015, 10, 3257–3289. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Huang, H.; Xu, L.; Hua, X.; Li, X.; Liu, S.; Yang, C.; Zhao, C.; Zhao, C.; Li, S.; et al. The Combination of Proteasome Inhibitors Bortezomib and Gambogic Acid Triggers Synergistic Cytotoxicity in Vitro but Not in Vivo. Toxicol. Lett. 2014, 224, 333–340. [Google Scholar] [CrossRef]
- Chi, Y.; Zhan, X.; Yu, H.; Xie, G.; Wang, Z.; Xiao, W.; Wang, Y.; Xiong, F.; Hu, J.; Yang, L.; et al. An Open-Labeled, Randomized, Multicenter Phase IIa Study of Gambogic Acid Injection for Advanced Malignant Tumors. Chin. Med. J. 2013, 126, 1642–1646. [Google Scholar]
- Issa, M.E.; Cretton, S.; Cuendet, M. Targeting Multiple Myeloma Cancer Stem Cells with Natural Products-Lessons from Other Hematological Malignancies. Planta Med. 2017, 83, 752–760. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.; Park, H.; Kim, B. Anticancer Activity and Underlying Mechanism of Phytochemicals against Multiple Myeloma. Int. J. Mol. Sci. 2019, 20, 2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pojero, F.; Poma, P.; Spano, V.; Montalbano, A.; Barraja, P.; Notarbartolo, M. Targeting Multiple Myeloma with Natural Polyphenols. Eur. J. Med. Chem. 2019, 180, 465–485. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, L.; De Luca, A.; Giavaresi, G.; Barone, A.; Tagliaferri, P.; Tassone, P.; Amodio, N. Impact of Natural Dietary Agents on Multiple Myeloma Prevention and Treatment: Molecular Insights and Potential for Clinical Translation. Curr. Med. Chem. 2020, 27, 187–215. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, G.; Carcache, P.J.B.; Addo, E.M.; Kinghorn, A.D. Current Status and Contemporary Approaches to the Discovery of Antitumor Agents from Higher Plants. Biotechnol. Adv. 2020, 38, 107337. [Google Scholar] [CrossRef]
- Ren, Y.; Kinghorn, A.D. Natural Product Triterpenoids and Their Semi-Synthetic Derivatives with Potential Anticancer Activity. Planta Med. 2019, 85, 802–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Kinghorn, A.D. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J. Med. Chem. 2020, 63, 15410–15448. [Google Scholar] [CrossRef]
- Ren, Y.; de Blanco, E.J.C.; Fuchs, J.R.; Soejarto, D.D.; Burdette, J.E.; Swanson, S.M.; Kinghorn, A.D. Potential Anticancer Agents Characterized from Selected Tropical Plants. J. Nat. Prod. 2019, 82, 657–679. [Google Scholar] [CrossRef]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef]
- van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Doré, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 4531–4538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound Name | H929 | INA6 | MM1S | OPM2 | RPMI8226 | U266 | Additional Myeloma Cell Lines | Section |
---|---|---|---|---|---|---|---|---|
1′-acetoxychavicol acetate | x | x | 3.2.2 | |||||
25-O-acetylcimigenol-3-O-α-L-arabinopyranoside | 27.3 (24 h) | >50 (24 h) | 37.3 (24 h) | 3.3.3 | ||||
25-O-acetylcimigenol-3-O-β-D-xylopyranoside | 30.6 (24 h) | 39.7 (24 h) | >50 (24 h) | 3.3.3 | ||||
6-acetylfredericone B | 21.6 (24 h) | 3.3.2 | ||||||
23-O-acetylshengmanol-3-O-β-D-xylopyranoside | x | x | x | 3.3.3 | ||||
actein | x | x | x | 3.3.3 | ||||
Alantolactone | 4.13 (48 h) | 3.85 (48 h) 3.19 (48 h) | 3.56 (48 h) | 4.32 (48 h) | 5.79 (48 h) | RPMI8226/BTZ7 (5.03, 48 h) RPMI8226/BTZ100 (5.29, 48 h) | 3.3.1 | |
Ancistrocladisine A | 4.8 (72 h) | 3.1.1 | ||||||
Andrographolide | ~25 (18 h) | ~25 (18 h) | 3.3.2 | |||||
6-angeloylplenolin | ~7.5 (48 h) | ~7.5 (48 h) | ~7.5 (48 h) | 3.3.1 | ||||
Apigenin | x | x | 3.2.6 | |||||
Apigenin 7-O-(4″-O-p-E-coumaroyl)-glucoside | x | x | 3.2.6 | |||||
Arctiin | x | x | <20 (24 h) | 3.2.2 | ||||
Asiaticoside | KM3 (12, 48 h) | 3.3.3 | ||||||
Baicalein | ~60 (24 h) | 3.2.6 | ||||||
Berberine | 135 (48 h) | x | 3.1.1 | |||||
Bergamottin | x | x | 3.2.3 | |||||
Betulinic acid | ~30 (72 h) | x | ~40 (12 h) ~20 (72 h) | 3.3.3 | ||||
Bigelovin | 0.5–0.99 (24 h) | 0.5–0.99 (24 h) | 0.5–0.99 (24 h) | MM1R (0.5–0.99, 24 h) | 3.3.1 | |||
Bruceantin | 0.115 (24 h) | 0.013 (24 h) | 0.049 (24 h) | 3.3.3 | ||||
Butein | 30–40 (72 h) | ~10 (72 h) | 3.2.5 | |||||
Capillarisin | 200 (36 h) | 3.2.3 | ||||||
Capsaicin | x | 5 (72 h) | 3.1.2 | |||||
Cardamonin | ~60 (24 h) ~10 (48 h) | ~45 (24 h) 15 (48 h) | 3.2.5 | |||||
Celastrol | 0.47 (24 h) | 3.3.3 | ||||||
Cnicin | ~1 (72 h) | 1–3 (72 h) | 1–3 (72 h) | 1–3 (72 h) | ~3.5 (72 h) | LP1 (1–3, 72 h) MM1R (1–3, 72 h) | 3.3.1 | |
Coleon G | 38.4 (24 h) | 3.3.2 | ||||||
Coleon O | 8.4 (24 h) | 3.3.2 | ||||||
Crocin | x | 3.3.4 | ||||||
Curcumin | 5–10 (72 h) | x | 10–25 (72 h) | MM1R | 3.2.3 | |||
4′-O-demethyldioncophylline A | 2.7 (72 h) | 3.1.1 | ||||||
5′-O-demethyldioncophylline A | 1.5 (72 h) | 3.1.1 | ||||||
4′-O-demethyl-7-epi-dioncophylline A | 7.5 (72 h) | 3.1.1 | ||||||
Diallyl trisulfide | 378.8 (24 h) 251.1 (48 h) 130.9 (72 h) | 265.7 (24 h) 204.9 (48 h) 100.5 (72 h) | 3.1.2 | |||||
Dihydrocaffeic acid | 344.0 (48 h) | 61.9 (48 h) | 3.2.2 | |||||
2,4-dihydroxy-3′-methoxy-4′-ethoxychalcone | 18.36 (24 h) | 25.97 (24 h) | 15.02 (24 h) | 3.2.5 | ||||
5,3′-dihydroxy-3,6,7,8,4′-pentamethoxyflavone | ~50 (48 h) | ~50 (72 h) | ~50 (48 h) | 3.2.6 | ||||
Dioncophylline A | 0.22 (72 h) | 3.1.1 | ||||||
Dioncophylline C | 16.0 (72 h) | 3.1.1 | ||||||
Dioncophylline D2 | 32.0 (72 h) | 3.1.1 | ||||||
Dioncophylline F | 21.0 (72 h) | 3.1.1 | ||||||
Dioncoquinone A | 29 (72 h) | 58 (72 h) | 3.2.1 | |||||
Dioncoquinone B | 11 /72 h) | 18 (72 h) | 3.2.1 | |||||
Dioncoquinone C | 14 (72 h) | 3.2.1 | ||||||
Dioncoquinone D | 80 (72 h) | 3.2.1 | ||||||
Dioncoquinone E | 100 (72 h) | 3.2.1 | ||||||
Emodin | 37.7 (24 h) | x | KMS12PE | 3.2.1 | ||||
Epigallocatechin gallate | 58.8 (48 h) | 28.0 (48 h) | 3.2.8 | |||||
Fangchinolin | >30 (24 h) | 3.1.1 | ||||||
Formononetin | ~75 (72 h) | x | 3.2.7 | |||||
Forskolin | ~80 (72 h) | ~4 (72 h) | ~4 (72 h) | ~80 (72 h) | ~4 (72 h) | 3.3.2 | ||
Gallic acid | 96.8 (48 h) | 23.3 (48 h) | 3.2.8 | |||||
Gambogic acid | x | x | ~2.5 (12 h) | ~2.8 (8 h) | 3.2.7 | |||
Genistein | 46.76 (72 h) | x | 128.82 (72 h) | 3.2.7 | ||||
Glucomoringin | 6.08 (48 h) | 3.1.2 | ||||||
Glucoraphanin | 7.73 (48 h) | 3.1.2 | ||||||
Gossypol | x | 9.9 (24 h) 2.4 (48 h) 0.9 (72 h) | 3.3.1 | |||||
Honokiol | x | 3.2.2 | ||||||
8-hydroxycalamene | 80 (24 h) | 3.3.1 | ||||||
Icaritin | 36.63 (24 h) 10.05 (48 h) 8.60 (72 h) | 3.2.6 | ||||||
Isobavachalcone | ~10 (48 h) | 3.2.5 | ||||||
Jozimine A2 | 5.0 (24 h) | 3.1.1 | ||||||
Komaroviquinone | MUM24 (0.65, 48 h) | 3.3.2 | ||||||
Luteolin | x | 3.2.6 | ||||||
Lycorine | ANBL6, ANBL6BR, ARP1, KMS11 | 3.1.1 | ||||||
Mangiferin | x | 3.2.7 | ||||||
Matrine | 9059 (24 h) 6603 (48 h) | 8777 (24 h) 6361 (48 h) | 3.1.1 | |||||
25-O-methylcimigenol-3-O-α-L-arabinopyranoside | 23.2 (24 h) | 33.4 (24 h) | 25.4 (24 h) | 3.3.3 | ||||
25-O-methylcimigenol-3-O-β-D-xylopyranoside | 22.4 (24 h) | 32,6 (24 h) | 49.0 (24 h) | 3.3.3 | ||||
5′-O-methyldioncophylline D | 2.6 (72 h) | 3.1.1 | ||||||
Miyabenol C | 20.8 (24 h) | 12.1 (24 h) | 3.2.4 | |||||
Naringenin | x | x | 3.2.6 | |||||
Oleacein | 5–20 (48 h) | 5–20 (48 h) | 5–20 (48 h) | 5–20 (48 h) | 5–20 (48 h) | AMO1, AMOBZB, JJN3 | 3.2.2 | |
Oridonin | 0.0071 (48 h) | RPMI8226R (0.2295, 48 h) | 3.3.2 | |||||
Parthenolide | 1–3 (72 h) | 1–3 (72 h) | ~25 (18 h)1–3 (72 h) | ~25 (18 h)1–3 (72 h) | MM1R (1–3, 72 h) RPMI8226/Dox6 (1–3, 72 h) | 3.3.1 | ||
Pentagalloyl glucose | 10.24 (72 h) | 23.92 (72 h) | U266B1 (36.18, 72 h) | 3.2.8 | ||||
Plumbagin | 0.8 (72 h) | 3.2.1 | ||||||
Pristimerin | 0.15–0.3 (72 h) | 0.15–0.3 (72 h) | 0.15–0.3 (72 h) | 0.15–0.3 (72 h) | KMS11 (0.75, 72 h) KMS18 (0.4, 72 h) MM1R (0.15–0.3, 72 h) OCIMY5 (0.15–0.3, 72 h) RPMI8226S (0.15–0.3, 72 h) SKMM2 (0.15–0.3, 72 h) UMTC2 (0.15–0.3, 72 h) | 3.3.3 | ||
Psorospermin | 0.072 (96 h) | RPMI8226S (0.036, 96 h)RPMI8226/Dox1V (0.097, 96 h)RPMI8226/Dox40 (0.037, 96 h) | 3.2.7 | |||||
Pterostilbene | 22.83 (48 h)15.37 (72 h) | 23.58 (72 h) | ARP1 (26.15, 72 h)H929R (34.8, 48 h)OCIMY5 (0.15–0.3, 72 h) | 3.2.4 | ||||
Quercetin | 120.5 (48 h) | 50.5 (48 h) | 3.2.6 | |||||
Resveratrol | ~100 (24 h) | 26.3 (24 h) 72 (48 h) | 39.6 (24 h) 74 (48 h) 33.74 (72 h) | KM3 (80, 48 h) LP1 (40.72, 72 h) MM1R RPMI8226/Dox6 RPMI8226/LR5 | 3.2.4 | |||
β-sesquiphellandrene | 5–10 (72 h) | 5–10 (72 h) | 3.3.1 | |||||
Tannic acid | 11.0 (48 h) | 12.5 (48 h) | 3.2.8 | |||||
Tanshinone IIA | x | 3.3.2 | ||||||
Theaflavin digallate | ARP1 (0.59, 72 h), KMS11 (0.27, 72 h) | 3.2.8 | ||||||
Thymoquinone | 10 (24 h) | 10 (48 h) | 3.3.4 | |||||
Ursolic acid | ~25 (96 h) | 26.56 (24 h) | ~25 (96 h) | 3.3.3 | ||||
ε-viniferin | 45.7 (24 h) | 30.8 (72 h) | 3.2.4 | |||||
Withaferin A | 0.17 (72 h) | 3.3.3 | ||||||
Withanolide F | 0.1 (72 h) | 3.3.3 | ||||||
Wogonin | 143.2 (24 h) | 3.2.6 |
Compound Name | Pathways Investigated | Regulated Genes/Proteins | Synergism/* Inhibition | Primary MM Cells Tested | Tumor Models | Tumor-ME Included | Section |
---|---|---|---|---|---|---|---|
1′-acetoxychavicol acetate | NFkB | NFkB, IkB | MG132, * Fas Ab,* PMA | NOD/SCID mice | 3.2.2 | ||
1′-acetoxychavicol acetate | apoptosis | TRAIL | 3.2.2 | ||||
25-O-acetylcimigenol-3-O-α-L-arabinopyranoside | apoptosis | AnnV | 3.3.3 | ||||
25-O-acetylcimigenol-3-O-β-D-xylopyranoside | apoptosis | AnnV | 3.3.3 | ||||
6-acetylfredericone B | proliferation | MM-CSC | 3.3.2 | ||||
23-O-acetylshengmanol-3-O-β-D-xylopyranoside | apoptosis | AnnV | 3.3.3 | ||||
actein | apoptosis | AnnV | 3.3.3 | ||||
Alantolactone | cell cycle, apoptosis | CDK4,2 cyclin D1 E2, | stroma cells | 3.3.1 | |||
Ancistrocladisine A | apoptosis | AnnV | 3.1.1 | ||||
Andrographolide | colony forming assay | MM-CSC, BM stroma | 3.3.2 | ||||
6-angeloylplenolin | apoptosis | PARP, Caspase 3, AnnV | CD138+ | 3.3.1 | |||
Apigenin | STAT3,AKT,NF-kB | CK2a, MCL-1, bcl-2,XIAP | geldanamyci, vorinostat | CD138+ | 3.2.6 | ||
Apigenin 7-O-(4″-O-p-E-coumaroyl)-glucoside | apoptosis | AnnV | 3.2.6 | ||||
Arctiin | JAK/STAT3 | bcl-2, VEGF, MMP-2, PTPepsilon | BTZ | 3.2.2 | |||
Asiaticoside | STAT3, autophagy | 3.3.3 | |||||
Baicalein | E3-ubiquitin ligase complex | CRBN, IKFZ 1 and 3 | 3.2.6 | ||||
Berberine | miRNA screens, cell cycle | miRNA21, PDCD4 | 3.1.1 | ||||
Berberine | miRNA screens | miR-99a-125b, miR-17–92, miR-106–25 | 3.1.1 | ||||
Berberine | miRNA screens | miR-106b-25, p38 MAPK | 3.1.1 | ||||
Bergamottin | STAT3 | STAT3 | 3.2.3 | ||||
Betulinic acid | NF-kB, MMP | NF-kB, ROS, bcl-2, bax | Nude mice | 3.3.3 | |||
Betulinic acid | STAT3 | 3.3.3 | |||||
Bigelovin | block E2F1 | cyclin D, E, A, CDK4 | CD138+ | 3.3.1 | |||
Bruceantin | MMP | c-myc | Scid mice | MMP | 3.3.3 | ||
Bruceantin | Migration, Notch | Notch | MM-CSC | 3.3.3 | |||
Butein | STAT3 | bcl-2, SHP, c-Src | 3.2.5 | ||||
Capillarisin | STAT3 | STAT3 location | 3.2.3 | ||||
Capsaicin | STAT3, cell cycle | STAT3, JAK, Src, bcl-2, bcl-XL, survivin, VEGF | BTZ, Thal | Athymic nude mice | 3.1.2 | ||
Cardamonin | NF-kB | bcl-2, bcl-XL | 3.2.5 | ||||
Celastrol | NF-kB, MMP | 3.3.3 | |||||
Cnicin | apoptosis | NF-kB, ROS, Pim-2 | AKT-inhibitor, Mel, BTZ | BMMC: MM CD38++/45- | Chicken CAM assay | stroma cells | 3.3.1 |
Coleon G | Proliferation | MM-CSC | 3.3.2 | ||||
Coleon O | proliferation | MM-CSC | 3.3.2 | ||||
Crocin | JAK2/STAT3 | SHP-1, blc-2, CXCR4, VEGF | 3.3.4 | ||||
Curcumin | STAT1/3 | STAT1/3 | Dex | 3.2.3 | |||
Curcumin | apoptosis | Caspases 3/9, bcl-2 | 3.2.3 | ||||
4′-O-demethyldioncophylline A | apoptosis | AnnV | 3.1.1 | ||||
5′-O-demethyldioncophylline A | apoptosis | AnnV | 3.1.1 | ||||
4′-O-demethyl-7-epi-dioncophylline A | apoptosis | AnnV | 3.1.1 | ||||
Diallyl trisulfide | apoptosis, clonogenic assay | AnnV | MM-CSC | 3.1.2 | |||
Dihydrocaffeic acid | proteasome activity | ROS, MMP | * inhibits BTZ | CD138+ | 3.2.2 | ||
2,4-dihydroxy-3′-methoxy-4′-ethoxychalcone | PI3K/p-AKT/mTOR | bcl-2, bad | 3.2.5 | ||||
5,3′-dihydroxy-3,6,7,8,4′-pentamethoxyflavone | proliferation | BTZ, Thal | 3.2.6 | ||||
Dioncophylline A | apoptosis | AnnV | 3.1.1 | ||||
Dioncophylline C | apoptosis | AnnV | 3.1.1 | ||||
Dioncophylline D2 | apoptosis | AnnV | 3.1.1 | ||||
Dioncophylline F | apoptosis | AnnV | 3.1.1 | ||||
Dioncoquinone A | apoptosis | AnnV | 3.2.1 | ||||
Dioncoquinone B | apoptosis | AnnV | 3.2.1 | ||||
Dioncoquinone C | apoptosis | AnnV | 3.2.1 | ||||
Dioncoquinone D | apoptosis | AnnV | 3.2.1 | ||||
Dioncoquinone E | apoptosis | AnnV | 3.2.1 | ||||
Emodin | JAK2/STAT3 | Mcl-1, gp130 | 3.2.1 | ||||
Epigallocatechin gallate | MMP | ROS | * inhibits BTZ | CD138+ | 3.2.8 | ||
Fangchinolin | apoptosis, NF-kB | bcl-2, bcl-XL, p65, AP-1,survivin, COX2 | 3.1.1 | ||||
Formononetin | STAT3/5, | bcl-2, VEGF, ROS | BTZ | Nude mice | 3.2.7 | ||
Forskolin | viability | bim | Dox, Dex, Mel Btz, Cyclophos | CD138+ | 3.3.2 | ||
Gallic acid | MMP | ROS | * inhibits BTZ | CD138+ | 3.2.8 | ||
Gambogic acid | CXCR4, migration, invasion | NFkB | Osteoclas s (murine) | 3.2.7 | |||
Gambogic acid | Hypoxia, PI3K/AKT/mTOR | HIF-1a | Balb/c nude mice | 3.2.7 | |||
Gambogic acid | ROS | Sirt1 | 3.2.7 | ||||
Genistein | NF-kB | miRNA-29b | 3.2.7 | ||||
Genistein | apoptosis | caspase 3 | 3.2.7 | ||||
Genistein | NF-kB | ICAM1, bcl-2, bcl-XL | 3.2.7 | ||||
Glucomoringin | NF-kB | NF-kB | Nude mice | 3.1.2 | |||
Glucoraphanin | NF-kB | NF-kB | Nude mice | 3.1.2 | |||
Gossypol | apoptosis | bcl-2, bcl-XL | 3.3.1 | ||||
Gossypol | IL-6 induced JAK2/STAT3 | Mcl-2, bcl-2 | 3.3.1 | ||||
Honokiol | osteoclastogenesis, NF-kB | NF-kB | osteoclasts | 3.2.2 | |||
8-hydroxycalamene | STAT3 | caspase3/9, bcl-2, PIAS3 | BTZ | 3.3.1 | |||
Icaritin | JAK2/STAT3, JNK/ERK | IL-6 | CD138+ | NOD/SCID mice | BM-stroma cells | 3.2.6 | |
Isobavachalcone | autophagy | LC3-II | chloroquine, beclin shRNA | 3.2.5 | |||
Jozimine A2 | viability | 3.1.1 | |||||
Komaroviquinone | cytotoxicity | 3.3.2 | |||||
Luteolin | autophagy | LC3-II | 3.2.6 | ||||
Lycorine | Wnt/b-catenin | ALDH1, c-myc, CCDN, GLI, SMO, Notch | Pom, Dox, Mel, BTZ | CD138+ | MM-CSC | 3.1.1 | |
Mangiferin | viability | 3.2.7 | |||||
Matrine | AKT | p-AKT, Casp3, PARP, bim, bcl-2, survivin | Arsenic trioxide | 3.1.1 | |||
25-O-methylcimigenol-3-O-α-L-arabinopyranoside | apoptosis | AnnV | 3.3.3 | ||||
25-O-methylcimigenol-3-O-β-D-xylopyranoside | apoptosis | AnnV | 3.3.3 | ||||
5′-O-methyldioncophylline D | apoptosis | AnnV | 3.1.1 | ||||
Miyabenol C | MMP | 3.2.4 | |||||
Naringenin | apoptosis | AnnV | 3.2.6 | ||||
Oleacein | epigenetic, cell cycle | acetylated histons, histon deacetylase, Sp-1, p27, p21 | Carfilzomib | CD138+ | stroma cells | 3.2.2 | |
Oridonin | pAKT | PTEN | CSC of RPMI8226/ BTZres | 3.3.2 | |||
Parthenolide | NF-kB | c-FLIP | Dex, TRAIL | CD138+ | 3.3.1 | ||
Parthenolide | proliferation | MM-CSC, stroma, and ECM | 3.3.1 | ||||
Pentagalloyl glucose | myc inhibition | * inhibits BTZ | 3.2.8 | ||||
Plumbagin | apoptosis | AnnV | 3.2.1 | ||||
Pristimerin | Proteasome | NF-kB | CD138+ | 3.3.3 | |||
Psorospermin | mdr1/P-glycoproptein | 3.2.7 | |||||
Pterostilbene | proliferation | AnnV, MMP, caspase 3/9, p-ERK, JNK | CD138+ | NOD/SCID mice | 3.2.4 | ||
Pterostilbene | proliferation | p-AKT, p-p38, MMP | 3.2.4 | ||||
Quercetin | MMP | ROS | * inhibits BTZ | CD138+ | 3.2.6 | ||
Resveratrol | NF-kB, osteoclast diff. and resorption | RANKL | 3.2.4 | ||||
Resveratrol | MMP | 3.2.4 | |||||
Resveratrol | ROS | SMAC | 3.2.4 | ||||
Resveratrol | UPR | lncRNA NEAT1 | 3.2.4 | ||||
Resveratrol | Invasion | MMP-2, MMP-9, bcl-2, bcl-XL | 3.2.4 | ||||
Resveratrol | STAT3, NF-kB, p-AKT | bcl-2, bcl-XL, bax | BTZ, Thal | CD138+ | 3.2.4 | ||
β-sesquiphellandrene | apoptosis | bcl-2 | 3.3.1 | ||||
Tannic acid | MMP | ROS | * inhibits BTZ | CD138+ | 3.2.8 | ||
Tanshinone IIA | Autophagy | LC3-II | 3.3.2 | ||||
Theaflavin digallate | ER stress, proliferation | ER-stress reporter protein; splicing of XBP1 | 3.2.8 | ||||
Thymoquinone | STAT3, p-AKT | bcl-2, bcl-XL | Thal, BTZ | 3.3.4 | |||
Ursolic acid | Inhibition of deubiquitination | USP7 activity, MDM2, DNMT1 | 3.3.3 | ||||
ε-viniferin | MMP | MMP | 3.2.4 | ||||
Withaferin A | Proliferation | HEK cells/NF-kB -reporter | MM-CSC | 3.3.3 | |||
Withanolide F | Proliferation | HEK cells/NF-kB -reporter | MM-CSC | 3.3.3 | |||
Wogonin | p-AKT | Bax | 3.2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jöhrer, K.; Ҫiҫek, S.S. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers 2021, 13, 2678. https://doi.org/10.3390/cancers13112678
Jöhrer K, Ҫiҫek SS. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers. 2021; 13(11):2678. https://doi.org/10.3390/cancers13112678
Chicago/Turabian StyleJöhrer, Karin, and Serhat Sezai Ҫiҫek. 2021. "Multiple Myeloma Inhibitory Activity of Plant Natural Products" Cancers 13, no. 11: 2678. https://doi.org/10.3390/cancers13112678
APA StyleJöhrer, K., & Ҫiҫek, S. S. (2021). Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers, 13(11), 2678. https://doi.org/10.3390/cancers13112678