Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = MODFLOW

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5097 KB  
Article
A Robust Optimization Framework for Hydraulic Containment System Design Under Uncertain Hydraulic Conductivity Fields
by Wenfeng Gao, Yawei Kou, Hao Dong, Haoran Liu and Simin Jiang
Water 2025, 17(17), 2617; https://doi.org/10.3390/w17172617 - 4 Sep 2025
Viewed by 153
Abstract
Effective containment of contaminant plumes in heterogeneous aquifers is critically challenged by the inherent uncertainty in hydraulic conductivity (K). Conventional, deterministic optimization approaches for pump-and-treat (P&T) system design often fail when confronted with real-world geological variability. This study proposes a novel robust simulation-optimization [...] Read more.
Effective containment of contaminant plumes in heterogeneous aquifers is critically challenged by the inherent uncertainty in hydraulic conductivity (K). Conventional, deterministic optimization approaches for pump-and-treat (P&T) system design often fail when confronted with real-world geological variability. This study proposes a novel robust simulation-optimization framework to design reliable hydraulic containment systems that explicitly account for this subsurface uncertainty. The framework integrates the Karhunen–Loève Expansion (KLE) for efficient stochastic representation of heterogeneous K-fields with a Genetic Algorithm (GA) implemented via the pymoo library, coupled with the MODFLOW groundwater flow model for physics-based performance evaluation. The core innovation lies in a multi-scenario assessment process, where candidate well configurations (locations and pumping rates) are evaluated against an ensemble of K-field realizations generated by KLE. This approach shifts the design objective from optimality under a single scenario to robustness across a spectrum of plausible subsurface conditions. A structured three-step filtering method—based on mean performance, consistency (pass rate), and stability (low variability)—is employed to identify the most reliable solutions. The framework’s effectiveness is demonstrated through a numerical case study. Results confirm that deterministic designs are highly sensitive to the specific K-field realization. In contrast, the robust framework successfully identifies well configurations that maintain a high and stable containment performance across diverse K-field scenarios, effectively mitigating the risk of failure associated with single-scenario designs. Furthermore, the analysis reveals how varying degrees of aquifer heterogeneity influence both the required operational cost and the attainable level of robustness. This systematic approach provides decision-makers with a practical and reliable strategy for designing cost-effective P&T systems that are resilient to geological uncertainty, offering significant advantages over traditional methods for contaminated site remediation. Full article
(This article belongs to the Special Issue Groundwater Quality and Contamination at Regional Scales)
Show Figures

Figure 1

33 pages, 4078 KB  
Article
Review of Sub-Models in Groundwater System Dynamics Models to Facilitate “Lego-like” Modeling
by Mehdi Moghadam Manesh and Allyson Beall King
Water 2025, 17(17), 2559; https://doi.org/10.3390/w17172559 - 29 Aug 2025
Viewed by 470
Abstract
Groundwater resource management involves complex socio-hydrological systems characterized by dynamic feedback, uncertainty, and common misconceptions among decision-makers. While deterministic models like MODFLOW simulate physical hydrology effectively, they fall short in capturing the social, legal, and behavioral dynamics shaping groundwater use. System dynamics (SD) [...] Read more.
Groundwater resource management involves complex socio-hydrological systems characterized by dynamic feedback, uncertainty, and common misconceptions among decision-makers. While deterministic models like MODFLOW simulate physical hydrology effectively, they fall short in capturing the social, legal, and behavioral dynamics shaping groundwater use. System dynamics (SD) modeling offers a robust alternative by incorporating feedback loops, delays, and nonlinearities. Yet, model conceptualization remains one of the most challenging steps in SD practice. Experienced modelers often apply a “Lego-like” approach—assembling new models from pre-validated sub-models. However, this strategy depends on access to well-documented sub-model libraries, which are typically unavailable to newcomers. To address this barrier, we systematically review and classify socio-economic sub-models from existing groundwater SD literature, organizing them by system archetypes and generic structures. The resulting modular library offers a practical resource that supports newcomers in building structured, scalable models. This approach improves conceptual clarity, enhances model reusability, and facilitates faster development of SD models tailored to groundwater systems. The study concludes by identifying directions for future research, including expanding the sub-model library, clarifying criteria for base-model selection, improving integration methods, and applying these approaches through diverse case studies to further strengthen the robustness and utility of groundwater SD modeling. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

21 pages, 7033 KB  
Article
Patterns of Groundwater Flow Systems and Travel Times Controlled by Leaking Streams, Evapotranspiration, and Pumping Wells in the Kongqi River Basin, China
by Qian Xu and Xu-Sheng Wang
Water 2025, 17(17), 2542; https://doi.org/10.3390/w17172542 - 27 Aug 2025
Viewed by 390
Abstract
Groundwater flow systems (GFSs) and associated distribution of travel times provide critical insight into the regional subsurface hydrology, especially in arid regions experiencing intensive groundwater use. This study examines the impact of large-scale irrigation pumping on GFS patterns in the arid Kongqi River [...] Read more.
Groundwater flow systems (GFSs) and associated distribution of travel times provide critical insight into the regional subsurface hydrology, especially in arid regions experiencing intensive groundwater use. This study examines the impact of large-scale irrigation pumping on GFS patterns in the arid Kongqi River Basin, China. A three-dimensional (3D) steady-state groundwater flow model was constructed using MODFLOW, and flow paths were delineated through particle tracking to quantify travel time and residence time distributions. Two scenarios with and without pumping were compared. Results show that groundwater abstraction significantly alters GFS patterns, lowering water tables in pumping zones while raising them in irrigation areas fed by surface water. This hydrologic redistribution fragments recharge and discharge zones, particularly under the influence of evapotranspiration (ET) from shallow groundwater. Simulated travel times range up to ~506 ka, with median values decreasing from 9.7 ka (no-pumping) to 8.3 ka (pumping). Both travel time distribution (TTD) and residence time distribution (RTD) exhibit power-law characteristics, reflecting the dominance of slow flow paths in deep GFSs. While the modeling results provide valuable insight into current regional groundwater flow, it does not account for transient flow effects and hydrodynamic dispersion of solutions. Future research should incorporate groundwater isotope data to validate the model and assess time-dependent changes in GFSs. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

15 pages, 2779 KB  
Article
Groundwater Flow Impact in Complex Karst Regions Considering Tunnel Construction Conditions: A Case Study of the New Construction Project at XLS Tunnel
by Zhou Chen, Hongtu Zhang, Qi Shen, Zihao Chen, Kai Wang and Changsheng Chen
Water 2025, 17(16), 2383; https://doi.org/10.3390/w17162383 - 12 Aug 2025
Viewed by 438
Abstract
Tunneling in structurally complex, tectonically active regions such as southwest China poses significant environmental risks to groundwater, especially in heterogeneous karst fault systems where conventional prediction methods often fail. This study innovatively coupled MODFLOW’s STREAM package (for simulating karst conduit networks) and DRAIN [...] Read more.
Tunneling in structurally complex, tectonically active regions such as southwest China poses significant environmental risks to groundwater, especially in heterogeneous karst fault systems where conventional prediction methods often fail. This study innovatively coupled MODFLOW’s STREAM package (for simulating karst conduit networks) and DRAIN package (for tunnel inflow prediction) within a 3D groundwater model to assess hydrogeological impacts in complex mountainous terrain. The simulations show that an uncased tunnel lining causes significant groundwater changes under natural conditions, with predicted inflows reaching 34,736 m3/d. Conventional cement grouting (permeability: 1 × 10−5 cm/s; thickness: 10 m) mitigates the effects considerably and reduces the inflows in the tunnel sections by 27–97%. Microfine cement grouting (5 × 10−6 cm/s; 10 m thickness) further improves performance by achieving a 49–98% reduction in inflows and limiting the reduction in spring discharge to ≤13.28%. These results establish a valid theoretical framework for predicting groundwater impacts in heterogeneous terrain and demonstrate that targeted seepage control—particularly grouting with microfine cement—effectively protects groundwater-dependent ecosystems during infrastructure development. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 1395 KB  
Review
A Systematic Literature Review of MODFLOW Combined with Artificial Neural Networks (ANNs) for Groundwater Flow Modelling
by Kunal Kishor, Ashish Aggarwal, Pankaj Kumar Srivastava, Yaggesh Kumar Sharma, Jungmin Lee and Fatemeh Ghobadi
Water 2025, 17(16), 2375; https://doi.org/10.3390/w17162375 - 11 Aug 2025
Viewed by 765
Abstract
The sustainable management of global groundwater resources is increasingly challenged by climatic uncertainty and escalating anthropogenic stress. Thus, there is a need for simulation tools that are more robust and flexible. This systematic review addresses the integration of two dominant modeling paradigms: the [...] Read more.
The sustainable management of global groundwater resources is increasingly challenged by climatic uncertainty and escalating anthropogenic stress. Thus, there is a need for simulation tools that are more robust and flexible. This systematic review addresses the integration of two dominant modeling paradigms: the physically grounded Modular Finite-Difference Flow (MODFLOW) model and the data-agile Artificial Neural Network (ANN). While the MODFLOW model provides deep process-based understanding, it is often limited by extensive data requirements and computational intensity. In contrast, an ANN offers remarkable predictive accuracy and computational efficiency, particularly in complex, non-linear systems, but traditionally lacks physical interpretability. This review synthesizes existing research to present a functional classification framework for MODFLOW–ANN integration, providing a systematic analysis of the literature within this structure. Our analysis of the literature, sourced from Scopus, Web of Science, and Google Scholar reveals a clear trend of the strategic integration of these models, representing a new trend in hydrogeological simulation. The literature reveals a classification framework that categorizes the primary integration strategies into three distinct approaches: (1) training an ANN on MODFLOW model outputs to create computationally efficient surrogate models; (2) using an ANN to estimate physical parameters for improved MODFLOW model calibration; and (3) applying ANNs as post-processors to correct systematic errors in MODFLOW model simulations. Our analysis reveals that these hybrid methods consistently outperform standalone approaches by leveraging ANNs for computational acceleration through surrogate modeling, for enhanced model calibration via intelligent parameter estimation, and for improved accuracy through systematic error correction. Full article
(This article belongs to the Special Issue Application of Hydrological Modelling to Water Resources Management)
Show Figures

Figure 1

14 pages, 7406 KB  
Article
Machine Learning-Driven Calibration of MODFLOW Models: Comparing Random Forest and XGBoost Approaches
by Husam Musa Baalousha
Geosciences 2025, 15(8), 303; https://doi.org/10.3390/geosciences15080303 - 5 Aug 2025
Viewed by 440
Abstract
The groundwater inverse problem has several challenges such as instability, non-uniqueness, and complexity, especially for heterogeneous aquifers. Solving the inverse problem is the traditional way to calibrate models, but it is both time-consuming and sensitive to errors in the measurements. This study explores [...] Read more.
The groundwater inverse problem has several challenges such as instability, non-uniqueness, and complexity, especially for heterogeneous aquifers. Solving the inverse problem is the traditional way to calibrate models, but it is both time-consuming and sensitive to errors in the measurements. This study explores the use of machine learning (ML) surrogate models, namely Random Forest (RF) and Extreme Gradient Boosting (XGBoost), to solve the inverse problem for the groundwater model calibration. Datasets for 20 hydraulic conductivity fields were created randomly based on statistics of hydraulic conductivity from the available data of the Northern Aquifer of Qatar, which was used as a case study. The corresponding hydraulic head values were obtained using MODFLOW simulations, and the data were used to train and validate the ML models. The trained surrogate models were used to estimate the hydraulic conductivity based on field observations. The results show that both RF and XGBoost have considerable predictive skill, with RF having better R2 and RMSE values (R2 = 0.99 for training, 0.93 for testing) than XGBoost (R2 = 0.86 for training, 0.85 for testing). The ML-based method lowered the computational effort greatly compared to the classical solution of the inverse problem (i.e., using PEST) and still produced strong and reliable spatial patterns of hydraulic conductivity. This demonstrates the potential of machine learning models for calibrating complex groundwater systems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Graphical abstract

23 pages, 4456 KB  
Article
Assessing Climate Change Impacts on Groundwater Recharge and Storage Using MODFLOW in the Akhangaran River Alluvial Aquifer, Eastern Uzbekistan
by Azam Kadirkhodjaev, Dmitriy Andreev, Botir Akramov, Botirjon Abdullaev, Zilola Abdujalilova, Zulkhumar Umarova, Dilfuza Nazipova, Izzatullo Ruzimov, Shakhriyor Toshev, Erkin Anorboev, Nodirjon Rakhimov, Farrukh Mamirov, Inessa Gracheva and Samrit Luoma
Water 2025, 17(15), 2291; https://doi.org/10.3390/w17152291 - 1 Aug 2025
Viewed by 1265
Abstract
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly [...] Read more.
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly understood. This study employed a three-dimensional MODFLOW-based groundwater flow model to assess climate change impacts on water budget components under the SSP5-8.5 scenario for 2020–2099. Model calibration yielded RMSE values between 0.25 and 0.51 m, indicating satisfactory performance. Simulations revealed that lateral inflows from upstream and side-valley alluvial deposits contribute over 84% of total inflow, while direct recharge from precipitation (averaging 120 mm/year, 24.7% of annual rainfall) and riverbed leakage together account for only 11.4%. Recharge occurs predominantly from November to April, with no recharge from June to August. Under future scenarios, winter recharge may increase by up to 22.7%, while summer recharge could decline by up to 100%. Groundwater storage is projected to decrease by 7.3% to 58.3% compared to 2010–2020, indicating the aquifer’s vulnerability to prolonged dry periods. These findings emphasize the urgent need for adaptive water management strategies and long-term monitoring to ensure sustainable groundwater use under changing climate conditions. Full article
(This article belongs to the Special Issue Climate Change Uncertainties in Integrated Water Resources Management)
Show Figures

Figure 1

24 pages, 4061 KB  
Article
The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2239; https://doi.org/10.3390/w17152239 - 27 Jul 2025
Viewed by 442
Abstract
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in [...] Read more.
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in coastal regions, agricultural areas, and contaminated sites, where variable-density flow poses a challenge. Numerical simulations assessed hydrogeological properties such as hydraulic conductivity, anisotropy, specific yield, mechanical dispersion, and molecular diffusion. A conceptual model integrated hydraulic conditions with spatial and temporal discretization using the FLOPY API for MODFLOW 6 and the IFM API for FEFLOW 10. Python algorithms were run within the high-performance computing (HPC) server, executing simulations in parallel to efficiently process a large number of scenarios, including both preprocessing input data and post-processing results. The study simulated 6950 scenarios, each modeling flow and transport processes over 3000 days of method implementation and focusing on mass extraction efficiency under different initial salinity conditions (3.5 to 35 kg/m3). The results show that the MAR-MASS effectively removed salts from aquifers, with higher hydraulic conductivity prolonging mass removal efficiency. Of the scenarios, 88% achieved potability (0.5 kg/m3) in under five years; among these, 79% achieved potability within two years, and 92% of cases with initial concentrations of 3.5–17.5 kg/m3 reached potability within 480 days. This study advances scientific knowledge by providing a robust model for optimizing managed aquifer recharge, with practical applications in rehabilitating salinized aquifers and improving water quality. Future research may explore MAR-MASS adaptation for diverse hydrogeological contexts and its long-term performance. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

31 pages, 7304 KB  
Article
Integrating Groundwater Modelling for Optimized Managed Aquifer Recharge Strategies
by Ghulam Zakir-Hassan, Jehangir F. Punthakey, Catherine Allan and Lee Baumgartner
Water 2025, 17(14), 2159; https://doi.org/10.3390/w17142159 - 20 Jul 2025
Viewed by 887
Abstract
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological [...] Read more.
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological characteristics of the subsurface media. This paper demonstrates the use of a groundwater model (MODFLOW) to evaluate a new, large-scale regional MAR project in the agricultural heartland in Punjab, Pakistan. In this MAR project, flood waters have been diverted to the bed of an abandoned canal, where 144 recharge wells (the wells for accelerating the recharge into the aquifer) have been constructed to accelerate the recharge to the aquifer. The model was calibrated for a period of five years from October 2015 to June 2020 on a monthly stress period and the resulting water levels were simulated till 2035. The water balance components and future response of the aquifer to different scenarios up to 2035 including with and without MAR situations are presented. The model simulations showed that MAR can contribute to the replenishment of the aquifer and its potential for the case study site to contribute significantly to the management of groundwater and to enhance supplies for intensive agriculture. It was further established that MODFLOW can help in the evaluation of effectiveness of a MAR scheme. This study is unique as it evaluates a significantly large MAR project in an area where this practice has not been developed for improving groundwater access for large scale irrigation. The model provides guidelines for decision makers in the region as well as for the global community and livelihood benefits for rural communities. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

24 pages, 3815 KB  
Article
Evaluating Natural Attenuation of Dissolved Volatile Organic Compounds in Shallow Aquifer in Industrial Complex Using Numerical Models
by Muhammad Shoaib Qamar, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Zakir Afridi and Schradh Saenton
Water 2025, 17(13), 2038; https://doi.org/10.3390/w17132038 - 7 Jul 2025
Viewed by 1566
Abstract
A VOC-contaminated shallow aquifer in an industrial site was investigated to evaluate its potential for natural attenuation. The shallow groundwater aquifer beneath the industrial site has been contaminated by dissolved volatile organic compounds (VOCs) such as trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), [...] Read more.
A VOC-contaminated shallow aquifer in an industrial site was investigated to evaluate its potential for natural attenuation. The shallow groundwater aquifer beneath the industrial site has been contaminated by dissolved volatile organic compounds (VOCs) such as trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC) for more than three decades. Monitoring and investigation were implemented during 2011–2024, aiming to propose future groundwater aquifer management strategies. This study included groundwater borehole investigation, well installation monitoring, hydraulic head measurements, slug tests, groundwater samplings, and microbial analyses. Microbial investigations identified the predominant group of microorganisms of Proteobacteria, indicating biodegradation potential, as demonstrated by the presence of cis-DCE and VC. BIOSCREEN was used to evaluate the process of natural attenuation, incorporating site-specific parameters. A two-layer groundwater flow model was developed using MODFLOW with hydraulic conductivities obtained from slug tests. The site has an average hydraulic head of 259.6 m amsl with a hydraulic gradient of 0.026, resulting in an average groundwater flow velocity of 11 m/y. Hydraulic conductivities were estimated during model calibration using the PEST pilot point technique. A reactive transport model, RT3D, was used to simulate dissolved TCE transport over 30 years, which can undergo sorption as well as biodegradation. Model calibration demonstrated a satisfactory fit between observed and simulated groundwater heads with a root mean square error of 0.08 m and a correlation coefficient (r) between measured and simulated heads of 0.81, confirming the validity of the hydraulic conductivity distribution. The TCE plume continuously degraded and gradually migrated southward, generating a cis-DCE plume. The concentrations in both plumes decreased toward the end of the simulation period at Source 1 (located upstream), while BIOSCREEN results confirmed ongoing natural attenuation primarily by biodegradation. The integrated MODFLOW-RT3D-BIOSCREEN approach effectively evaluated VOC attenuation and plume migration. However, future remediation strategies should consider enhanced bioremediation to accelerate contaminant degradation at Source 2 and ensure long-term groundwater quality. Full article
(This article belongs to the Special Issue Application of Bioremediation in Groundwater and Soil Pollution)
Show Figures

Figure 1

20 pages, 4438 KB  
Article
Impacts of Urbanization and Climate Variability on Groundwater Environment in a Basin Scale
by Olawale Joshua Abidakun, Mitsuyo Saito, Shin-ichi Onodera and Kunyang Wang
Hydrology 2025, 12(7), 173; https://doi.org/10.3390/hydrology12070173 - 30 Jun 2025
Viewed by 962
Abstract
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant [...] Read more.
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant challenge to the sustainability of groundwater resources. This study aims to assess the combined influence of urbanization and climate change on the groundwater resources of the Nara Basin using MODFLOW 6 for two distinct periods: The Pre-Urbanization Period (PreUP: 1980–1988), and the Post-Urbanization Period (PostUP, 2000–2008) with an emphasis on spatiotemporal distribution of recharge in a multi-layer aquifer system. Simulated hydraulic heads were evaluated under three different recharge scenarios: uniformly, spatiotemporally and spatially distributed. The uniform recharge scenario both overestimates and underestimates hydraulic heads, while the spatially distributed scenario produced a simulated heads distribution similar to the spatiotemporally distributed recharge scenario, underscoring the importance of incorporating spatiotemporal variability in recharge input for accurate groundwater flow simulation. Moreover, our results highlight the relevance of spatial distribution of recharge input than temporal distribution. Our findings indicate a significant decrease in hydraulic heads of approximately 5 m from the PreUP to PostUP in the unconfined aquifer, primarily driven by changes in land use and climate. In contrast, the average head decline in deep confined aquifers is about 4 m and is mainly influenced by long-term climatic variations. The impervious land use types experienced more decline in hydraulic heads than the permeable areas under changing climate because of the impedance to infiltration and percolation exacerbating the climate variability effect. These changes in hydraulic heads were particularly evident in the interactions between surface and groundwater. The cumulative volume of groundwater discharge to the river decreased by 27%, while the river seepage into the aquifer increased by 16%. Sustainable groundwater resources management under conditions of urbanization and climate change necessitates a holistic and integrated approach. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

22 pages, 9661 KB  
Article
Regional Groundwater Flow and Advective Contaminant Transport Modeling in a Typical Hydrogeological Environment of Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(7), 167; https://doi.org/10.3390/hydrology12070167 - 27 Jun 2025
Viewed by 778
Abstract
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where [...] Read more.
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where fracture networks control hydraulic conductivity and porosity. The urbanized setting—encompassing Montclair State University (MSU) and municipal wells—features heterogeneous groundwater systems and critical water resources, providing an ideal case study for worst-case contaminant transport scenarios. Using MODFLOW and MODPATH, we simulated flow and tracked particles over 20 years. Results show that chloride from MSU reached the Third River in 4 years and the Passaic River in 10 years in low-porosity fractures (0.2), with longer times (8 and 20 years) in high-porosity zones (0.4). The First Watchung Mountains were identified as the primary recharge area. Chloride was retained in immobile pores but transported rapidly through fractures, with local flow systems (MSU to Third River) faster than regional systems (MSU to Passaic River). These findings confirm chloride in groundwater, which may originate from road salt application, can reach discharge points in 4–20 years, emphasizing the need for recharge-area monitoring, salt-reduction policies, and site-specific assessments to protect fractured-rock aquifers. Full article
Show Figures

Figure 1

22 pages, 7146 KB  
Article
Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes
by Muhammad Zakir Afridi, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Shoaib Qamar and Schradh Saenton
Sustainability 2025, 17(12), 5560; https://doi.org/10.3390/su17125560 - 17 Jun 2025
Viewed by 2186
Abstract
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas [...] Read more.
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas in Chiang Mai and Lamphun provinces. This study employed hydrogeological investigations, hydrometeorological data analyses, stable isotopic analysis (δ18O and δ2H), and groundwater flow modeling using a 3D groundwater flow model (MODFLOW) to quantify groundwater recharge and delineate important groundwater recharge zones within the basin. The results showed that floodplain deposits exhibited the highest recharge rate, 104.4 mm/y, due to their proximity to rivers and high infiltration capacity. In contrast, younger terrain deposits, covering the largest area of 1314 km2, contributed the most to total recharge volume with an average recharge rate of 99.8 mm/y. Seven significant recharge zones within the basin, where annual recharge rates exceeded 105 mm/y (average recharge of the entire basin), were also delineated. Zone 4, covering parts of densely populated Muaeng Lamphun, Ban Thi, and Saraphi districts, had the largest area of 330 km2 and a recharge rate of 130.2 mm/y. Zone 6, encompassing Wiang Nong Long, Bai Hong, and Pa Sang districts, exhibited the highest recharge rate of 134.6 mm/y but covered a smaller area of 67 km2. Stable isotopic data verified that recent precipitation predominantly recharged shallow groundwater, with minimal evaporation or isotopic exchange. The basin-wide average recharge rate was 104 mm/y, reflecting the combined influence of geology, permeability, and spatial distribution. These findings provide critical insights for sustainable groundwater management in the region, particularly in the context of climate change and increasing water demand. Full article
Show Figures

Figure 1

21 pages, 7172 KB  
Article
Future Streamflow and Hydrological Drought Under CMIP6 Climate Projections
by Tao Liu, Yan Liu, Zhenjiang Si, Longfei Wang, Yusu Zhao and Jing Wang
Atmosphere 2025, 16(6), 691; https://doi.org/10.3390/atmos16060691 - 6 Jun 2025
Cited by 1 | Viewed by 1200
Abstract
Droughts caused by runoff are an important environmental issue in the context of global climate change, with profound impacts on ecosystems, agriculture and water resource management. To assess the impact of future climate change on the hydrological response of watersheds, this study combines [...] Read more.
Droughts caused by runoff are an important environmental issue in the context of global climate change, with profound impacts on ecosystems, agriculture and water resource management. To assess the impact of future climate change on the hydrological response of watersheds, this study combines the SWAT (Soil and Water Assessment Tool) and MODFLOW (MODular groundwater FLOW model) models to predict future changes in runoff and hydrological drought in watersheds using data from two scenarios under 15 CMIP6 climate models. The results show that: (1) The R2 and NSE values of monthly runoff at the Caizuzi station in the Naoli River basin are greater than 0.60 in different periods; (2) the ensemble of climate models after screening can effectively improve the accuracy of runoff simulation and reduce the prediction uncertainty of a single climate model; (3) under different scenarios, the temperature generally increases, the precipitation increases and evapotranspiration increased under the SSP2-4.5 scenario and decreased under the SSP5-8.5 scenario; (4) runoff showed an increasing trend under the SSP2-4.5 scenario and the opposite trend under the SSP5-8.5 scenario; (5) the frequency of winter runoff droughts decreased in the future period, while the frequency of spring and summer droughts increased, with the change trend being more pronounced under the SSP5-8.5 scenario; (6) compared with the baseline period (1965–2014), under the SSP2-4.5 and SSP5-8.5 scenarios, the average annual temperature in the watershed increased by 1.89 °C and 3.22 °C, respectively, and the annual precipitation increased by 32% and 36.19%, respectively, but the summer and autumn runoff decreased; and (7) The SRI-3 model analysis indicates that hydrological droughts will significantly intensify under both future emission scenarios. Under the SSP5-8.5 scenario, droughts will worsen earlier and the abrupt change will occur earlier, while under the SSP2-4.5 scenario, although the abrupt change will occur later, the drought intensity will be higher. The critical drought transition periods are 2030–2047 (SSP5-8.5) and 2045–2055 (SSP2-4.5). This study provides important scientific basis for adaptive water resources management and drought mitigation strategies in cold-region watersheds under future climate scenarios. Full article
Show Figures

Figure 1

24 pages, 2384 KB  
Article
An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support
by Malgorzata Borowiecka, Mar Alcaraz and Marisol Manzano
Hydrology 2025, 12(6), 137; https://doi.org/10.3390/hydrology12060137 - 3 Jun 2025
Viewed by 1636
Abstract
Increasing pressures on groundwater in the last decades have led to a deterioration in the quality of groundwater for human consumption around the world. Beyond the essential evaluation of groundwater dynamics and quality, analyzing the situation from the perspective of the Ecosystem Services [...] Read more.
Increasing pressures on groundwater in the last decades have led to a deterioration in the quality of groundwater for human consumption around the world. Beyond the essential evaluation of groundwater dynamics and quality, analyzing the situation from the perspective of the Ecosystem Services Assessment (ESA) approach can be useful to support aquifer management plans aiming to recover aquifers’ capacity to provide good quality water. This work illustrates how to implement the ESA using groundwater flow and nitrate transport modelling for evaluating future trends of the provisioning service Groundwater of Good Quality for Human Supply. It has been applied to the Medina del Campo Groundwater Body (Spain), where the intensification of agricultural activities and groundwater exploitation since the 1970s caused severe nitrate pollution. Nitrate status and future trends under different fertilizer and aquifer exploitation scenarios were modelled with MT3DMS coupled to a MODFLOW model calibrated with piezometric time series. Historical land use and fertilizer data were compiled to assess nitrogen loadings. Besides the uncertainties of the model, the results clearly show that: (i) managing fertilizer loads is more effective than managing aquifer exploitation; and (ii) only the cessation of nitrogen application by the year 2030 would improve the evaluated provisioning service in the long term. The study illustrates how the ESA can be incorporated to evaluate the expected relative impact of different management actions aimed at improving significant groundwater services to humans. Full article
Show Figures

Figure 1

Back to TopTop