Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,806)

Search Parameters:
Keywords = MR820

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1920 KB  
Article
Effects of CCL20/CCR6 Modulators in a T Cell Adoptive Transfer Model of Colitis
by Marika Allodi, Lisa Flammini, Carmine Giorgio, Maria Grazia Martina, Francesca Barbieri, Vigilio Ballabeni, Elisabetta Barocelli, Marco Radi and Simona Bertoni
Pharmaceuticals 2025, 18(9), 1327; https://doi.org/10.3390/ph18091327 (registering DOI) - 4 Sep 2025
Abstract
Background/Objectives: IBDs are chronic relapsing inflammatory intestinal disorders whose precise etiology is still only poorly defined: critical for their pathogenesis is the CCL20/CCR6 axis, whose modulation by small molecules may represent an innovative therapeutic approach. The aim of the present work is [...] Read more.
Background/Objectives: IBDs are chronic relapsing inflammatory intestinal disorders whose precise etiology is still only poorly defined: critical for their pathogenesis is the CCL20/CCR6 axis, whose modulation by small molecules may represent an innovative therapeutic approach. The aim of the present work is to test the potential efficacy of two molecules, MR120, a small selective CCR6 antagonist, active in TNBS- and chronic DSS-induced murine models of intestinal inflammation, and its derivative MR452, a well-tolerated agent endowed with improved anti-chemotactic in vitro properties, in the adoptive transfer colitis model. To the best of our knowledge, this is the first attempt to use adoptive transfer colitis to test modulators of the CCL20/CCR6 axis. Methods and Results: The induction of colitis in immunocompromised mice receiving CD4+CD25 T cells i.p. resulted in a moderate inflammation and was met with limited protective responses following daily subcutaneous administration of MR120 or MR452 for 8 weeks. Both compounds significantly reduced colonic myeloperoxidase activity, and MR452 also lowered CCL20 levels in the gut, but they failed to prevent the increase in the Disease Activity Index, colon wall thickening, and macroscopic inflammation score. Conclusions: Our findings suggest that, despite the beneficial effects played by MR120 against subacute TNBS- and chronic DSS-induced colitis, the pharmacological targeting of the CCL20/CCR6 axis in the adoptive transfer model has a negligible effect in ameliorating the IBD-like phenotype driven by the altered intestinal immune homeostasis and by the disrupted function of immune-suppressive Treg cells. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

24 pages, 2920 KB  
Article
Thermoelectric Optimisation of Park-Level Integrated Energy System Considering Two-Stage Power-to-Gas and Source-Load Uncertainty
by Zhuo Song, Xin Mei, Cheng Huang, Xiang Jin, Min Zhang, Junjun Wang and Xin Zou
Processes 2025, 13(9), 2835; https://doi.org/10.3390/pr13092835 (registering DOI) - 4 Sep 2025
Abstract
The integration of renewable energy and power-to-gas (P2G) technology into park-level integrated energy systems (PIES) offers a sustainable pathway for low-carbon development. This paper presents a low-carbon economic dispatch model for PIES that incorporates uncertainties in renewable energy generation and load demand. A [...] Read more.
The integration of renewable energy and power-to-gas (P2G) technology into park-level integrated energy systems (PIES) offers a sustainable pathway for low-carbon development. This paper presents a low-carbon economic dispatch model for PIES that incorporates uncertainties in renewable energy generation and load demand. A novel two-stage P2G, replacing traditional devices with electrolysers (EL), methane reactors (MR), and hydrogen fuel cells (HFC), enhances energy efficiency and facilitates the utilisation of captured carbon. Furthermore, adjustable thermoelectric ratios in combined heat and power (CHP) and HFC improve both economic and environmental performance. A ladder-type carbon trading and green certificate trading mechanism is introduced to effectively manage carbon emissions. To address the uncertainties in supply and demand, the study applies information gap decision theory (IGDT) and develops a robust risk-averse model. The results from various operating scenarios reveal the following key findings: (1) the integration of CCT with the two-stage P2G system increases renewable energy consumption and reduces carbon emissions by 5.8%; (2) adjustable thermoelectric ratios in CHP and HFC allow for flexible adjustment of output power in response to load requirements, thereby reducing costs while simultaneously lowering carbon emissions; (3) the incorporation of ladder-type carbon trading and green certificate trading reduces the total cost by 7.8%; (4) in the IGDT-based robust model, there is a positive correlation between total cost, uncertainty degree, and the cost deviation coefficient. The appropriate selection of the cost deviation coefficient is crucial for balancing system economics with the associated risk of uncertainty. Full article
Show Figures

Figure 1

13 pages, 2058 KB  
Article
Development of a Spatial Alignment System for Interacting with BIM Objects in Mixed Reality
by Jaehong Cho, Sungpyo Kim and Sanghyeok Kang
Appl. Sci. 2025, 15(17), 9713; https://doi.org/10.3390/app15179713 - 4 Sep 2025
Abstract
This study proposes a Two-points Spatial Alignment System (TSAS) for accurate positioning of Building Information Modeling (BIM) objects in Mixed Reality (MR) environments at construction sites. Conventional spatial alignment methods present limitations: marker-based approaches require precise marker installation and setup in predefined locations, [...] Read more.
This study proposes a Two-points Spatial Alignment System (TSAS) for accurate positioning of Building Information Modeling (BIM) objects in Mixed Reality (MR) environments at construction sites. Conventional spatial alignment methods present limitations: marker-based approaches require precise marker installation and setup in predefined locations, while drag-based methods rely considerably on user manipulation skills. TSAS utilizes Y-axis rotation and vector-based scaling mechanisms to facilitate alignment processes. Through usability evaluation with 30 participants in MR environments, TSAS demonstrated a performance with a 50.3 mm alignment error, compared to marker-based (64.0 mm) and drag methods (199.7 mm). A one-way Analysis of Variance (ANOVA) confirmed that these differences in accuracy were statistically significant (p < 0.001). Notably, TSAS meets the Korean building regulation’s tolerance while maintaining consistent accuracy in indoor environments. Although the marker method showed better efficiency in operation time, this evaluation excluded initial installation time requirements. The usability evaluation suggests this approach could be beneficial for BIM visualization and review processes in construction settings. Future research will focus on validating the system’s performance in diverse construction environments, including larger buildings and complex sites. Full article
Show Figures

Figure 1

17 pages, 1522 KB  
Article
Effects of Foliar Organic Selenium Application During the Main Season on Ratoon Rice Yield, Grain Quality, and Selenium Accumulation
by Jinfu Hu, Dehao Feng, Ziran Tang, Caise Ya, Xueer Lin, Kai Zhang and Xiong Yao
Plants 2025, 14(17), 2758; https://doi.org/10.3390/plants14172758 - 3 Sep 2025
Abstract
With the growing global demand for rice and the urgent need to enhance sustainable production, ratoon rice systems and selenium (Se) biofortification technologies have become important strategies. This study investigated the effects of the foliar application of ethylenediaminetetraacetic acid Se (EDTA-Se) during key [...] Read more.
With the growing global demand for rice and the urgent need to enhance sustainable production, ratoon rice systems and selenium (Se) biofortification technologies have become important strategies. This study investigated the effects of the foliar application of ethylenediaminetetraacetic acid Se (EDTA-Se) during key growth stages of the main rice season on the yield, grain quality, and Se accumulation in ratoon rice. Two rice varieties—Fengliangyouxiang-1 (FLYX1) and Jinliangyouhuazhan (JLYHZ)—were selected for a two-year field experiment. A systematic analysis was performed on yield components, processing quality, appearance quality, nutritional quality, and Se speciation. The results showed that under an equivalent total amount of spraying EDTA-Se, the best effect on improving the yield, grain quality, and grain Se content of ratoon rice was observed at the heading stage and seven days after full heading. This treatment increased ratoon season yield by 6.45%, primarily due to enhanced grain filling rate (GF) and spikelets per panicle (SP). Processing quality was significantly improved; milled rice rate (MR) increased by 5.59–6.24% in FLYX1 and 3.38–3.52% in JLYHZ, while appearance quality also improved, with chalky grain rate (CGR) decreasing by 21.51–22.93% in FLYX1 and 14.50–14.53% in JLYHZ. These improvements were closely associated with elevated protein content and increased accumulation of selenomethionine (SM). Notably, FLYX1 exhibited higher efficiency in converting selenium to organic forms, whereas JLYHZ showed a greater accumulation of inorganic selenium, highlighting genotype-specific responses. This study confirmed that the foliar application of EDTA-Se during key growth phases of rice during the main season can synergistically optimize yield and quality in ratoon rice while achieving Se biofortification and providing a theoretical basis and technical support for improving the quality and efficiency of ratoon rice, as well as producing Se-enriched ratoon rice. Full article
(This article belongs to the Special Issue Nutrient Management for Better Crop Production)
Show Figures

Figure 1

11 pages, 793 KB  
Article
Anatomical Relationship of the Mylohyoid Ridge, Lingual Concavity, and Mandibular Canal: A Retrospective CBCT Study
by Selva Sen, Melike Nur Girit, Gamze Ansen, Kadriye Betul Pence and Neslihan Yuzbasioglu
Diagnostics 2025, 15(17), 2233; https://doi.org/10.3390/diagnostics15172233 - 3 Sep 2025
Abstract
Background/Objective: This study aimed to determine the position of the mylohyoid ridge (MR) and lingual concavity (LC) in the mandible and their relationship with the mandibular canal (MC) and submandibular fossa, to provide anatomical guidance for surgical procedures in this region. Methods [...] Read more.
Background/Objective: This study aimed to determine the position of the mylohyoid ridge (MR) and lingual concavity (LC) in the mandible and their relationship with the mandibular canal (MC) and submandibular fossa, to provide anatomical guidance for surgical procedures in this region. Methods: A retrospective analysis was performed on cone beam computed tomography (CBCT) scans from 200 adult patients who had undergone imaging for dental treatment. On cross-sectional images at the level between the first and second molar roots, the following measurements were obtained: LC horizontal depth, LC height, LC depth, MR height, MR depth, and the distances from MR to MC (MR–MC) and LC to MC (LC–MC). Results: Mean values were: LC horizontal depth: 3.72 ± 0.90 mm, LC height: 11.74 ± 2.01 mm, LC depth: 12.54 ± 3.03 mm, MR height: 17.66 ± 2.60 mm, MR depth: 6.87 ± 2.38 mm, MR-MC: 8.30 ± 2.00 mm, and LC-MC: 3.72 ± 0.87 mm. All parameters were symmetrical between the right and left sides of the mandible, with no significant sex differences. The positions of the MR and LC were related to each other, and the position of the MC was related to the positions of the LC and MR. There was no correlation between the horizontal depth of the LC and the position of the MR, LC and MC. Conclusions: The vertical positions of the MR and LC are related to each other and MC. Therefore, it can be used as a landmark in implant surgery. Full article
(This article belongs to the Special Issue Advances in Dental Imaging)
Show Figures

Graphical abstract

28 pages, 2595 KB  
Article
Resilient Leadership and SME Performance in Times of Crisis: The Mediating Roles of Temporal Psychological Capital and Innovative Behavior
by Wen Long, Dechuan Liu and Wei Zhang
Sustainability 2025, 17(17), 7920; https://doi.org/10.3390/su17177920 - 3 Sep 2025
Abstract
Small and medium-sized enterprises (SMEs) often face severe resource constraints and operational fragility during crises. However, little is known about how managerial resilience (MR) translates into performance through time-related psychological resources and innovation—two capabilities that are both scarce and critical under such conditions. [...] Read more.
Small and medium-sized enterprises (SMEs) often face severe resource constraints and operational fragility during crises. However, little is known about how managerial resilience (MR) translates into performance through time-related psychological resources and innovation—two capabilities that are both scarce and critical under such conditions. Drawing on Temporal Motivation Theory (TMT), this study develops and tests a dual-mediation model in which employee temporal psychological capital (TPC) and employee innovative behavior (EIB) transmit the effects of MR on performance. As a core methodological innovation, we adopt a multi-method analytical strategy to provide robust and complementary evidence rather than a hierarchy of results: Partial Least Squares Structural Equation Modeling (PLS-SEM) is used to examine sufficiency-based causal pathways and quantify the mediating mechanisms; Support Vector Machine (SVM) classification offers a non-parametric predictive validation of how MR and its mediators distinguish high- and low-performance cases; and Necessary Condition Analysis (NCA) identifies non-compensatory conditions that must be present for high performance to occur. These three methods address different research questions—sufficiency, classification robustness, and necessity—therefore serving as parallel, equally important components of the analysis. A total of 455 SME managers and employees were surveyed, and results show that MR significantly enhances all three dimensions of TPC (temporal control, temporal fit, time pressure resilience) and EIB (idea generation, idea promotion, idea realization), which in turn improve employee performance. SVM classification confirms that high MR, strong TPC, and active innovation align with high performance, while NCA reveals temporal control, idea generation, and idea realization as necessary bottleneck conditions. By integrating sufficiency–necessity logic with predictive classification, our findings suggest that SMEs should prioritize leadership resilience training to strengthen managers’ adaptive capacity, while simultaneously implementing time management interventions—such as temporal control workshops, workload balancing, and innovation pipeline support—to enhance employees’ ability to align tasks with organizational timelines, execute ideas effectively, and sustain performance during crises. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

12 pages, 1709 KB  
Article
Clinical Implementation of PSMA-PET Guided Tumor Response-Based Boost Adaptation in Online Adaptive Radiotherapy for High-Risk Prostate Cancer
by Ruiqi Li, Mu-Han Lin, Nghi C. Nguyen, Fan-Chi Su, David Parsons, Erica Salcedo, Elizeva Phillips, Sean Domal, Aurelie Garant, Raquibul Hannan, Daniel Yang, Asim Afaq, MinJae Lee, Orhan K. Oz and Neil Desai
Cancers 2025, 17(17), 2893; https://doi.org/10.3390/cancers17172893 - 3 Sep 2025
Abstract
Purpose or Objective: To evaluate the feasibility and clinical utility of integrating sequential PSMA-PET imaging into an offline–online adaptive workflow for response-based dominant intraprostatic lesion (DIL)-boosting high-risk prostate cancer treated with stereotactic ablative radiotherapy (SABR). Materials and Methods: As part of a prospective [...] Read more.
Purpose or Objective: To evaluate the feasibility and clinical utility of integrating sequential PSMA-PET imaging into an offline–online adaptive workflow for response-based dominant intraprostatic lesion (DIL)-boosting high-risk prostate cancer treated with stereotactic ablative radiotherapy (SABR). Materials and Methods: As part of a prospective trial, patients were treated on MR- or CBCT-guided adaptive radiotherapy (ART) systems with prostate/pelvic node 5-fraction SABR (36.25 Gy/25 Gy) with DIL boost (50 Gy). Whereas traditional DIL boost volumes delineate full pre-therapy imaging-defined disease (GTVinitial), this study serially refined DIL boost volumes based on treatment response defined by PSMA-PET scans after neoadjuvant androgen deprivation therapy (nADT, GTVmb1) and fraction 3 SABR (GTVmb2). DIL delineation employed PET-PSMA fusion to CT/MR simulation and was guided by a rule-based %SUVmax threshold approach. Comparisons of GTV volumes and OAR dosimetry were performed between plans using GTVinitial versus GTVmb1/GTVmb2 for DIL boost, for each of the initial cohorts of five patients from the initially treated cohorts. Results: Five patients treated on MR-Linac (n = 3) or CBCT-based ART (n = 2) were analyzed. Three patients exhibited complete imaging response after nADT, omitting GTVmb boosts. Offline GTVmb refinements based on PSMA-PET were seamlessly integrated into ART workflows without introducing additional treatment time. DIL GTV volumes significantly decreased (p = 0.03) from an initial mean of 11.4 cc (GTVinitial) to 4.1 cc (GTVmb1) and 3.0 cc (GTVmb2). Dosimetric analysis showed meaningful reductions in OAR doses: rectal wall D0.035 cc decreased by up to 12 Gy, while bladder wall D0.035 cc and V18.3 Gy reduced from 52.3 Gy and 52.3 cc (Plan_initial) to 42.9 Gy and 24.9 cc (Plan_mb2), respectively. Urethra doses remained stable, with minor reductions. Sigmoid and femoral head doses remained within acceptable limits. Online adaptation efficiently addressed daily anatomical variations, enabling simulation-free plan re-optimization. Conclusion: PSMA-PET-guided adaptive microboosting for HRPCa SABR is feasible and effective. Standard MR-Linac and CBCT systems offer practical alternatives to BgRT platforms, enabling biology-driven dose personalization and potentially reducing toxicity. Full article
(This article belongs to the Special Issue New Approaches in Radiotherapy for Cancer)
Show Figures

Figure 1

15 pages, 4052 KB  
Review
Hybrid PET/CT and PET/MR in Coronary Artery Disease: An Update for Clinicians, with Insights into AI-Guided Integration
by Francesco Antonio Veneziano, Flavio Angelo Gioia and Francesco Gentile
J. Cardiovasc. Dev. Dis. 2025, 12(9), 338; https://doi.org/10.3390/jcdd12090338 - 3 Sep 2025
Abstract
Imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MR) have emerged as powerful and versatile tools for the comprehensive assessment of coronary artery disease (CAD). By combining anatomical and functional information in a single examination, these [...] Read more.
Imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MR) have emerged as powerful and versatile tools for the comprehensive assessment of coronary artery disease (CAD). By combining anatomical and functional information in a single examination, these modalities offer complementary insights that significantly enhance diagnostic accuracy and support clinical decision-making. This is particularly relevant in complex clinical scenarios, such as multivessel disease, balanced ischemia, or suspected microvascular dysfunction, where conventional imaging may be inconclusive. This review aims to provide clinicians with an up-to-date summary of the principles, technical considerations, and clinical applications of hybrid PET/CT and PET/MR in CAD. Here, we describe how these techniques can improve the evaluation of myocardial perfusion, coronary plaque characteristics, and ischemic burden. Advantages such as improved sensitivity, spatial resolution, and quantification capabilities are discussed alongside limitations including cost, radiation exposure, availability, and workflow challenges. A dedicated focus is given to the emerging role of artificial intelligence (AI), which is increasingly being integrated to optimize image acquisition, fusion processes, and interpretation. AI has the potential to streamline hybrid imaging and promote a more personalized and efficient management of CAD. Finally, we outline future directions in the field, including novel radiotracers, automated quantitative tools, and the expanding use of hybrid imaging to guide patient selection and therapeutic decisions, particularly in revascularization strategies. Full article
Show Figures

Figure 1

11 pages, 404 KB  
Article
Do PCSK9 Inhibitors Impair Memory? A Dual Approach Combining Real-World Data and Genetic Evidence
by Xuezhong Shi, Shijia Wang, Yongli Yang, Xudong Xia, Jingwen Fan, Jingjing Wang, Nana Wang and Xiaocan Jia
Pharmacy 2025, 13(5), 125; https://doi.org/10.3390/pharmacy13050125 - 3 Sep 2025
Abstract
Emerging evidence suggested a potential link between lipid-lowering therapies and neurocognitive effects, raising concerns regarding the possible adverse impact of PCSK9 inhibitors on memory loss. We extracted adverse events associated with memory loss for PCSK9 inhibitors from the Food and Drug Administration Adverse [...] Read more.
Emerging evidence suggested a potential link between lipid-lowering therapies and neurocognitive effects, raising concerns regarding the possible adverse impact of PCSK9 inhibitors on memory loss. We extracted adverse events associated with memory loss for PCSK9 inhibitors from the Food and Drug Administration Adverse Event Reporting System (FAERS), covering the period from the first quarter (Q1) of 2022 to Q1 of 2025. Reporting odds ratio (ROR), Medicines and Healthcare Products Regulatory Agency (MHRA), empirical Bayesian geometric mean (EBGM), and information component (IC) were used for pharmacovigilance analysis. Drug target Mendelian randomization (MR) was utilized to assess the causal association between PCSK9 inhibitors and memory loss. A total of 389 occurrences of memory loss associated with PCSK9 inhibitors were recorded among 388 patients. In the pharmacovigilance analysis, memory loss did not show a significant signal for PCSK9 inhibitors in both the full dataset [ROR (95% CI): 0.79 (0.72, 0.88); PRR = 0.79, χ2 = 20.64; EBGM05 = 0.73; IC025 = −2.00] and the lipid-lowering targets dataset [ROR (95%CI): 0.59 (0.53, 0.66); PRR = 0.59, χ2 = 95.33; EBGM05 = 0.59; IC025 = −2.30]. The drug target MR revealed no causal association between PCSK9 inhibitors and memory loss (p < 0.05). The present study failed to establish a causal relationship between PCSK9 inhibitors and memory loss. By providing both real-world and genetic evidence, our findings might help alleviate concerns and support the notion that PCSK9 inhibitors were relatively safe regarding memory function. Full article
Show Figures

Figure 1

14 pages, 914 KB  
Article
Standardized Myocardial T1 and T2 Relaxation Times: Defining Age- and Comorbidity-Adjusted Reference Values for Improved CMR-Based Tissue Characterization
by Mukaram Rana, Vitali Koch, Simon Martin, Thomas Vogl, Marco M. Ochs, David M. Leistner and Sebastian M. Haberkorn
J. Clin. Med. 2025, 14(17), 6198; https://doi.org/10.3390/jcm14176198 - 2 Sep 2025
Abstract
Background: This study aims to establish standardized reference values for myocardial T1 and T2 relaxation times in a clinically and imaging-defined real-world patient cohort, evaluating their variability in relation to age, sex, and comorbidities. By identifying key physiological and pathological influences, this investigation [...] Read more.
Background: This study aims to establish standardized reference values for myocardial T1 and T2 relaxation times in a clinically and imaging-defined real-world patient cohort, evaluating their variability in relation to age, sex, and comorbidities. By identifying key physiological and pathological influences, this investigation seeks to enhance CMR-based myocardial mapping for improved differentiation between normal and pathological myocardial conditions. Methods: This retrospective observational study analyzed T1 and T2 relaxation times using CMR at 1.5 Tesla in a cohort of 491 subjects. T1 and T2 times were measured using MOLLI and GRASE sequences, and statistical analyses assessed intra- and interindividual variations, including the influence of age, sex, and comorbidities, to establish reference values and improve myocardial tissue characterization. Results: T1 and T2 relaxation times were analyzed in 291 and 200 participants, respectively. The mean global T1 time was 1004.7 ± 49.8 ms, with no significant differences between age groups (p = 0.81) or sexes (p = 0.58). However, atrial fibrillation (AF) and mitral regurgitation (MR) were associated with significantly prolonged T1 times (p < 0.05). The mean global T2 time was 67.4 ± 8.6 ms, with age-related prolongation (p < 0.05), but no sex differences (p = 0.46). Comorbidities did not significantly influence T2 times, except for NYHA Class III–IV patients, who exhibited prolonged T2 values (p < 0.05). Conclusions: Standardized T1 and T2 reference values are essential to improve diagnostic accuracy and risk stratification in CMR-based myocardial tissue characterization. Future research should focus on multicenter validation, AI-driven analysis, and the development of age- and comorbidity-adjusted normative databases to enhance individualized cardiovascular care. Full article
Show Figures

Graphical abstract

19 pages, 15830 KB  
Article
LARS: A Light-Augmented Reality System for Collective Robotic Interaction
by Mohsen Raoufi, Pawel Romanczuk and Heiko Hamann
Sensors 2025, 25(17), 5412; https://doi.org/10.3390/s25175412 - 2 Sep 2025
Viewed by 69
Abstract
Collective robotics systems hold great potential for future education and public engagement; however, only a few are utilized in these contexts. One reason is the lack of accessible tools to convey their complex, embodied interactions. In this work, we introduce the Light-Augmented Reality [...] Read more.
Collective robotics systems hold great potential for future education and public engagement; however, only a few are utilized in these contexts. One reason is the lack of accessible tools to convey their complex, embodied interactions. In this work, we introduce the Light-Augmented Reality System (LARS), an open-source, marker-free, cross-platform tool designed to support experimentation, education, and outreach in collective robotics. LARS employs Extended Reality (XR) to project dynamic visual objects into the physical environment. This enables indirect robot–robot communication through stigmergy while preserving the physical and sensing constraints of the real robots, and enhances robot–human interaction by making otherwise hidden information visible. The system is low-cost, easy to deploy, and platform-independent without requiring hardware modifications. By projecting visible information in real time, LARS facilitates reproducible experiments and bridges the gap between abstract collective dynamics and observable behavior. We demonstrate that LARS can serve both as a research tool and as a means to motivate students and the broader public to engage with collective robotics. Its accessibility and flexibility make it an effective platform for illustrating complex multi-robot interactions, promoting hands-on learning, and expanding public understanding of collective, embodied intelligence. Full article
Show Figures

Figure 1

19 pages, 3792 KB  
Article
Whole Genome Sequencing and Extracellular Metabolite Profiling of Lactiplantibacillus plantarum FRT4: Insights into Probiotic Functionality
by Yuyin Huang, Kun Meng, Guohua Liu, Zhimin Chen, Yunsheng Han, Peilong Yang, Rui Zhang and Hongying Cai
Biology 2025, 14(9), 1167; https://doi.org/10.3390/biology14091167 - 1 Sep 2025
Viewed by 188
Abstract
Lactiplantibacillus plantarum is a widely studied probiotic species with significant strain-specific functional diversity, yet the molecular mechanisms underlying these variations remain largely unexplored. In this study, whole genome sequencing (WGS) and untargeted metabolomics were employed to comprehensively characterize the genetic architecture and extracellular [...] Read more.
Lactiplantibacillus plantarum is a widely studied probiotic species with significant strain-specific functional diversity, yet the molecular mechanisms underlying these variations remain largely unexplored. In this study, whole genome sequencing (WGS) and untargeted metabolomics were employed to comprehensively characterize the genetic architecture and extracellular metabolic profile of Lp. plantarum FRT4 (CGMCC 17955), a probiotic strain previously studied for its metabolic effects in animal models. WGS revealed a circular chromosome and five plasmids, encoding 3301 protein-coding genes enriched in amino acid biosynthesis, carbohydrate metabolism, and environmental response pathways. Carbohydrate-active enzymes (CAZy) annotation revealed 135 carbohydrate-active enzyme genes, dominated by glycoside hydrolases and glycosyl transferases. Untargeted metabolomic analysis comparing the fermentation supernatant of FRT4 with non-inoculated MRS medium revealed significant alterations in metabolite composition, including elevated levels of acetylcholine, nicotinamide adenine dinucleotide (NAD), and trans-3-coumarate, and reduced levels of uridine, inosine, and fructose-1-phosphate, indicating active modulation of neurotransmission, redox balance, and purine metabolism. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment showed significant regulation of pathways related to amino acid metabolism, carbon metabolism, and cofactor biosynthesis. These findings highlight the metabolic versatility and functional potential of FRT4, offering mechanistic insights into its probiotic effects and providing a basis for its potential application in fermentation-based formulations. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

22 pages, 3866 KB  
Article
Development of a BIM-Based Metaverse Virtual World for Collaborative Architectural Design
by David Stephen Panya, Taehoon Kim, Soon Min Hong and Seungyeon Choo
Architecture 2025, 5(3), 71; https://doi.org/10.3390/architecture5030071 - 1 Sep 2025
Viewed by 86
Abstract
The rapid evolution of the metaverse is driving the development of new digital design tools that integrate Computer-Aided Design (CAD) and Building Information Modeling (BIM) technologies. Core technologies such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) are increasingly combined [...] Read more.
The rapid evolution of the metaverse is driving the development of new digital design tools that integrate Computer-Aided Design (CAD) and Building Information Modeling (BIM) technologies. Core technologies such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) are increasingly combined with BIM to enhance collaboration and innovation in design and construction workflows. However, current BIM–VR integration often remains limited to isolated tasks, lacking persistent, multi-user environments that support continuous project collaboration. This study proposes a BIM-based Virtual World (VW) framework that addresses these limitations by creating an immersive, real-time collaborative platform for the Architecture, Engineering, and Construction (AEC) industry. The system enables multi-user access to BIM data through avatars, supports direct interaction with 3D models and associated metadata, and maintains a persistent virtual environment that evolves alongside project development. Key functionalities include interactive design controls, real-time decision-making support, and integrated training capabilities. A prototype was developed using Unreal Engine and supporting technologies to validate the approach. The results demonstrate improved interdisciplinary collaboration, reduced information loss during design iteration, and enhanced stakeholder engagement. This research highlights the potential of BIM-based Virtual Worlds to transform AEC collaboration by fostering an open, scalable ecosystem that bridges immersive environments with data-driven design and construction processes. Full article
(This article belongs to the Special Issue Architecture in the Digital Age)
Show Figures

Figure 1

12 pages, 1254 KB  
Article
Atherogenic Index of Plasma Predicts Futile Reperfusion and Early Deterioration After Successful Recanalization: A Multicenter Study of EVT-Treated LAA Stroke
by Jong-Hee Sohn, Yong-Ho In, Chulho Kim, Joo Hye Sung, Minwoo Lee, Yerim Kim, Jae Jun Lee and Sang-Hwa Lee
Biomedicines 2025, 13(9), 2127; https://doi.org/10.3390/biomedicines13092127 - 31 Aug 2025
Viewed by 236
Abstract
Background: Futile reperfusion (FR), which is defined as successful revascularization without a favorable functional outcome, is a major limitation of endovascular treatment (EVT) for acute ischemic stroke. Although clinical and imaging predictors of FR have been studied, the role of systemic metabolic markers, [...] Read more.
Background: Futile reperfusion (FR), which is defined as successful revascularization without a favorable functional outcome, is a major limitation of endovascular treatment (EVT) for acute ischemic stroke. Although clinical and imaging predictors of FR have been studied, the role of systemic metabolic markers, such as the atherogenic index of plasma (AIP), remains unclear. No prior studies have examined the use of AIP in patients with large artery atherosclerosis (LAA)-related stroke. Methods: We analyzed data from four university-affiliated, prospectively maintained registries in the Republic of Korea (2015–2024). We included patients with anterior-circulation LVO who underwent EVT and achieved successful reperfusion. AIP was calculated as log(triglyceride/HDL-C) in mmol/L. The primary outcome was FR, defined as modified Rankin Scale (mRS) 3–6 at 3 months. The secondary outcome was early neurological deterioration (END). Multivariable logistic regression and ROC analysis were used. Results: Among the 406 LAA patients, 227 (55.9%) experienced FR, while 82 (20.2%) had END. Higher AIP quartiles were significantly associated with an increased risk of both FR and END (p for trend < 0.01). The highest AIP quartile (Q4 ≥ 0.26) had adjusted odds ratios of 4.34 (95% CI: 2.18–8.65) for FR and 9.62 (95% CI: 3.66–25.26) for END. The AUCs were 0.775 for FR and 0.726 for END. Conclusions: In a multicenter cohort of EVT-treated LAA stroke with successful reperfusion, elevated AIP independently predicted FR and END. AIP is a simple, widely available biomarker that may support pre-procedural risk stratification and inform post-reperfusion management after EVT. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

16 pages, 4547 KB  
Article
Semi-Active Vibration Controllers for Magnetorheological Fluid-Based Systems via Frequency Shaping
by Young T. Choi, Norman M. Wereley and Gregory J. Hiemenz
Actuators 2025, 14(9), 425; https://doi.org/10.3390/act14090425 - 30 Aug 2025
Viewed by 114
Abstract
This study introduces novel semi-active vibration controllers for magnetorheological (MR) fluid-based vibration control systems, specifically a band-pass frequency-shaped semi-active control (FSSC) and a narrow-band FSSC. These algorithms are designed without requiring an accurate damper model or system identification for control current input. Unlike [...] Read more.
This study introduces novel semi-active vibration controllers for magnetorheological (MR) fluid-based vibration control systems, specifically a band-pass frequency-shaped semi-active control (FSSC) and a narrow-band FSSC. These algorithms are designed without requiring an accurate damper model or system identification for control current input. Unlike active controllers, the FSSC algorithms treat the MR damper as a semi-active dissipative device, and their control signal is a control current, not a control force. The performance of both FSSC algorithms is evaluated through simulation using a single-degree-of-freedom (SDOF) MR fluid-based engine mount system. A comparative analysis with the classical semi-active skyhook control demonstrates the advantages of the proposed FSSC algorithms. Full article
Show Figures

Figure 1

Back to TopTop