Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Motile Aeromonas Septicemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2304 KB  
Article
Genomic Insights into the Pathogenicity of Hypervirulent Aeromonas hydrophila Strain D4 Isolated from Diseased Blunt Snout Bream with the Epidemic Sequence Type 251 Clones
by Li Xu, Xingyu Kang, Zhicheng Wang, Zuyuan Xiao and Yi Luo
Pathogens 2025, 14(6), 570; https://doi.org/10.3390/pathogens14060570 - 6 Jun 2025
Viewed by 1070
Abstract
Aeromonas hydrophila ST251 is a crucial pathogen responsible for the outbreaks of Motile Aeromonas Septicemia (MAS) in global aquaculture. To elucidate the genetic basis underlying its hypervirulence, we investigated strain D4, an ST251 isolate recovered from diseased blunt snout bream. Phenotypic assays revealed [...] Read more.
Aeromonas hydrophila ST251 is a crucial pathogen responsible for the outbreaks of Motile Aeromonas Septicemia (MAS) in global aquaculture. To elucidate the genetic basis underlying its hypervirulence, we investigated strain D4, an ST251 isolate recovered from diseased blunt snout bream. Phenotypic assays revealed that, compared to the environmental strain ATCC 7966T, D4 exhibited enhanced motility, hemolytic activity, and protease production. Average nucleotide identity (ANI) analysis demonstrated that D4 clustered within a distinct ST251 clade, with ANI values ≥ 99.74%. Comparative genomic analysis of D4, nine additional ST251 strains, and ATCC 7966T identified multiple unique genomic islands in ST251 strains, including pathways for myo-inositol and L-fucose utilization and a pseudaminic acid biosynthesis gene cluster. These genetic elements are associated with nutrient acquisition and flagellar assembly, potentially enhancing colonization and environmental adaptability. In addition, distinct plasmids and prophages in ST251 strains may contribute to host adaptation and virulence by regulating stress responses and virulence-associated genes. These findings offer new insights into the molecular mechanisms driving the pathogenicity and adaptability of hypervirulent A. hydrophila ST251 strains. Full article
Show Figures

Figure 1

14 pages, 4020 KB  
Article
Efficacy of Feed-Based Genome-Free Bacterial Vaccine Against Aeromonas hydrophila Infection in Red Tilapia (Oreochromis sp.)
by Nur Shidaa Mohd Ali, Mohamad Syazwan Ngalimat, Boon Chuan Lim, Chia-Chen Hsu, Annas Salleh, Muhammad Farhan Nazarudin, Ina Salwany Md Yasin and Mohammad Noor Amal Azmai
Vaccines 2024, 12(11), 1271; https://doi.org/10.3390/vaccines12111271 - 11 Nov 2024
Cited by 1 | Viewed by 2804
Abstract
Aeromonas hydrophila causes motile Aeromonas septicemia (MAS), a disease with a high mortality rate in tilapia culture. Feed-based vaccines with the incorporation of inactivated whole-cell bacteria into the feed offer promising tools to control MAS. Currently, the incorporation of genome-free bacteria as bacterial [...] Read more.
Aeromonas hydrophila causes motile Aeromonas septicemia (MAS), a disease with a high mortality rate in tilapia culture. Feed-based vaccines with the incorporation of inactivated whole-cell bacteria into the feed offer promising tools to control MAS. Currently, the incorporation of genome-free bacteria as bacterial vaccine through the implementation of SimCells® technology into the feed has become a particular interest. Background/Objectives: This study investigates the efficacy of a feed-based vaccine incorporating genome-free A. hydrophila (FBV-GFAH) against MAS infection in red tilapia. Methods: The vaccine was prepared and delivered at 5% fish body weight for three consecutive days in weeks 0 (prime vaccination) and 2 (first booster vaccination), orally. Throughout a five-week experimental period, the immune-related genes (IL-1β, MHC-II, CD4, IgT, and IgM) expression in the hindgut and head kidney of the fish was determined using RT-qPCR assay. Lysozyme (serum) and overall IgM (serum, gut lavage, and skin mucus) productions were also detected. Results: Fish vaccinated with FBV-GFAH showed a significant (p ≤ 0.05) improvement in relative percent survival compared with unvaccinated fish following bacterial challenge. FBV-GFAH induced the expression of immune-related genes in the hindgut and head kidney, especially after booster vaccination. Furthermore, serum lysozyme activity and overall IgM production in serum, skin mucus, and gut lavage were also significantly (p ≤ 0.05) improved in the FBV-GFAH vaccinated fish than the unvaccinated fish. Conclusions: This study showed that FBV-GFAH is a promising feed-based vaccine technology to control MAS in cultured tilapia. Full article
(This article belongs to the Special Issue Fish Disease Occurrence and Immune Prevention and Control)
Show Figures

Figure 1

17 pages, 3717 KB  
Article
Pathogenicity of Aeromonas veronii from Nile Tilapia (Oreochromis niloticus) and Efficacy of Fish Oral Vaccine against Motile Aeromonad Septicemia in Tank Trials
by Anacleto M. Argayosa, Mary Nia M. Santos, Vina B. Argayosa, Rolando V. Pakingking, William Buhian, Mizpah L. Salvador and Rosaneth E. Teh
Aquac. J. 2024, 4(3), 163-179; https://doi.org/10.3390/aquacj4030012 - 15 Aug 2024
Cited by 8 | Viewed by 4370
Abstract
Motile aeromonad septicemia (MAS), caused by the Aeromonas species, has been a serious problem in fish health management, particularly in Nile tilapia (Oreochromis niloticus). This study characterized an Aeromonas species isolated from farmed tilapia fingerlings in Binangonan, Rizal, Philippines, and tested [...] Read more.
Motile aeromonad septicemia (MAS), caused by the Aeromonas species, has been a serious problem in fish health management, particularly in Nile tilapia (Oreochromis niloticus). This study characterized an Aeromonas species isolated from farmed tilapia fingerlings in Binangonan, Rizal, Philippines, and tested for its pathogenicity in tank trials. The isolate, designated as Aeromonas veronii DFR01 (Diseased Fish Rizal), was identified based on 16S rRNA phylogenetic analysis, 16S rRNA homology, and MALDI-TOF mass spectrometry. Its biochemical profile was generated from API and Biolog Gen III systems. A median lethal dose of A. veronii DFR01 was determined to be 107 CFU/mL in tank trials and was utilized as a whole-cell inactivated antigen for oral vaccine development. The immunized tilapia fingerlings produced elevated levels of immunoglobulin M (IgM) in the blood as determined by an enzyme-linked immunosorbent assay (ELISA). There was a significant increase in IgM levels 14 days post-vaccination. A quantitative polymerase chain reaction (qPCR) showed increasing levels of IgM gene expression after vaccination until 38 days of culture. Vaccinated fish showed 25–35% cumulative mortality after the challenge, while non-vaccinated-challenged fish showed 75% mortality. The findings of this research suggest that the fish oral vaccine may prove beneficial for farmed tilapia populations. The vaccine elicited improved immune responses in the fish and resulted in higher survival rates. Full article
Show Figures

Figure 1

24 pages, 749 KB  
Review
Advancements in Fish Vaccination: Current Innovations and Future Horizons in Aquaculture Health Management
by Garima S. Rathor and Banikalyan Swain
Appl. Sci. 2024, 14(13), 5672; https://doi.org/10.3390/app14135672 - 28 Jun 2024
Cited by 26 | Viewed by 11727
Abstract
Aquaculture is rapidly becoming one of the pivotal sectors in the farming economy, driven by the increasing demand for high-quality animal protein at an affordable cost, especially with the escalating human population. However, the expansion of high-density fish populations also brings forth a [...] Read more.
Aquaculture is rapidly becoming one of the pivotal sectors in the farming economy, driven by the increasing demand for high-quality animal protein at an affordable cost, especially with the escalating human population. However, the expansion of high-density fish populations also brings forth a challenge—the rapid transmission and spread of infectious disease agents among them. To combat this, vaccination is emerging as a reliable and standardized method for providing immunity against viral and bacterial outbreaks. The ideal vaccine is expected to be safe, effective, economical, and easily administered. The fish vaccination industry continually publishes new information on fish immunology and vaccinology, contributing to the improvement in vaccine formulation and efficacy. This review aims to offer insights into the current status of bacterial, viral, and parasitic diseases, discuss existing vaccinations, and address potential industry-threatening diseases like infectious edwardsiellosis, motile aeromonas septicemia (MAS), Tilapia Lake Virus (TiLV) disease, infectious salmon anemia (ISA), vibriosis, and white spot disease. Technological advancements have played a crucial role in enhancing our understanding of fish immunological mechanisms, leading to improved vaccine administration and the development of recombinant live attenuated, subunit, DNA, and RNA vaccines. However, challenges such as oral tolerance, vaccine degradation, and stressful environments persist, impacting vaccine efficacy. Addressing these challenges and gaining a deeper understanding of the fish immune system and host–pathogen interactions will be pivotal for future improvements, contributing to the sustainability of aquaculture and enhancing global food security. Full article
Show Figures

Figure 1

16 pages, 2587 KB  
Article
A Novel Transposon Tn7709 Harbors Multidrug Resistance Genes in a Pathogenic Aeromonas media Strain QST31
by Baodi Shang, Xiaoyi Li, Xiaoping Zhang, Meiyan Zhang, Jie Kong, Jinle Wang, Aiping Tan, Feng Zhao and Defeng Zhang
Microorganisms 2024, 12(3), 572; https://doi.org/10.3390/microorganisms12030572 - 13 Mar 2024
Viewed by 1917
Abstract
Pathogenic Aeromonas spp. are the etiological agents of Motile Aeromonas Septicemia (MAS). This study aimed to identify the pathogen of diseased tadpoles (Quasipaa spinosa) and the antibiotic-resistance characteristics of this bacterium. A Gram-negative bacterium, named strain QST31, was isolated from the [...] Read more.
Pathogenic Aeromonas spp. are the etiological agents of Motile Aeromonas Septicemia (MAS). This study aimed to identify the pathogen of diseased tadpoles (Quasipaa spinosa) and the antibiotic-resistance characteristics of this bacterium. A Gram-negative bacterium, named strain QST31, was isolated from the ascites of diseased tadpoles and was identified as Aeromonas media based on physiological and biochemical tests, as well as molecular identification. Artificial infection experiments showed that strain QST31 was highly virulent to tadpoles, with an LC50 of 2.56 × 107 CFU/mL. The antimicrobial susceptibility of strain QST31 was evaluated using the disk diffusion method, and the results indicated that strain QST31 was resistant to 28 antibacterial agents. In addition, the whole genome of strain QST31 was sequenced, and the presence of antimicrobial resistance genes, integron, and transposon was investigated. Genes involved in adherence, hemolysis, type II secretion system (T2SS), T6SS, iron uptake system, and quorum sensing were identified in the genome of strain QST31. More than 12 antimicrobial resistance genes were predicted in the genome of strain QST31. Interestingly, a novel Tn7709 transposon harboring sul1, aadA16, catB3, blaOXA-21, aac(6′)-IIa, and tet(A) genes was identified. In conclusion, this is the first report on the isolation and identification of pathogenic A. media with multidrug resistance genes from diseased tadpoles. The results revealed that preventing and controlling aquatic animal diseases caused by multidrug resistance A. media will be a huge challenge in the future. Full article
(This article belongs to the Special Issue Pathogens and Aquaculture)
Show Figures

Figure 1

15 pages, 2967 KB  
Article
First Report of Aeromonas veronii as an Emerging Bacterial Pathogen of Farmed Nile Tilapia (Oreochromis niloticus) in Brazil
by Sandie Bispo dos Santos, Miguel Fernandez Alarcon, Anelise Stella Ballaben, Ricardo Harakava, Renata Galetti, Mateus Cardoso Guimarães, Mariene Miyoko Natori, Leonardo Susumu Takahashi, Ricardo Ildefonso and Marco Rozas-Serri
Pathogens 2023, 12(8), 1020; https://doi.org/10.3390/pathogens12081020 - 8 Aug 2023
Cited by 14 | Viewed by 7984
Abstract
Brazil is one of the world’s leading producers of Nile tilapia, Oreochromis niloticus. However, the industry faces a major challenge in terms of infectious diseases, as at least five new pathogens have been formally described in the last five years. Aeromonas species [...] Read more.
Brazil is one of the world’s leading producers of Nile tilapia, Oreochromis niloticus. However, the industry faces a major challenge in terms of infectious diseases, as at least five new pathogens have been formally described in the last five years. Aeromonas species are Gram-negative anaerobic bacteria that are often described as fish pathogens causing Motile Aeromonas Septicemia (MAS). In late December 2022, an epidemic outbreak was reported in farmed Nile tilapia in the state of São Paulo, Brazil, characterized by clinical signs and gross pathology suggestive of MAS. The objective of this study was to isolate, identify, and characterize in vitro and in vivo the causative agent of this epidemic outbreak. The bacterial isolates were identified as Aeromonas veronii based on the homology of 16S rRNA (99.9%), gyrB (98.9%), and the rpoB gene (99.1%). A. veronii showed susceptibility only to florfenicol, while it was resistant to the other three antimicrobials tested, oxytetracycline, enrofloxacin, and amoxicillin. The lowest florfenicol concentration capable of inhibiting bacterial growth was ≤0.5 µg/mL. The phenotypic resistance of the A. veronii isolate observed for quinolones and tetracycline was genetically confirmed by the presence of the qnrS2 (colE plasmid) and tetA antibiotic-resistant genes, respectively. A. veronii isolate was highly pathogenic in juvenile Nile tilapia tested in vivo, showing a mortality rate ranging from 3 to 100% in the lowest (1.2 × 104) and highest (1.2 × 108) bacterial dose groups, respectively. To our knowledge, this study would constitute the first report of highly pathogenic and multidrug-resistant A. veronii associated with outbreaks and high mortality rates in tilapia farmed in commercial net cages in Brazil. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

18 pages, 6006 KB  
Article
Development of Bioluminescent Virulent Aeromonas hydrophila for Understanding Pathogenicity
by Eda Ozdemir, Hossam Abdelhamed, Ozan Ozdemir, Mark Lawrence and Attila Karsi
Pathogens 2023, 12(5), 670; https://doi.org/10.3390/pathogens12050670 - 2 May 2023
Cited by 2 | Viewed by 2493
Abstract
Virulent Aeromonas hydrophila (vAh) strains that cause motile Aeromonas septicemia (MAS) in farmed channel catfish (Ictalurus punctatus) have been an important problem for more than a decade. However, the routes of infection of vAh in catfish are not well understood. Therefore, [...] Read more.
Virulent Aeromonas hydrophila (vAh) strains that cause motile Aeromonas septicemia (MAS) in farmed channel catfish (Ictalurus punctatus) have been an important problem for more than a decade. However, the routes of infection of vAh in catfish are not well understood. Therefore, it is critical to study the pathogenicity of vAh in catfish. To this goal, a new bioluminescence expression plasmid (pAKgfplux3) with the chloramphenicol acetyltransferase (cat) gene was constructed and mobilized into vAh strain ML09-119, yielding bioluminescent vAh (BvAh). After determining optimal chloramphenicol concentration, plasmid stability, bacteria number–bioluminescence relationship, and growth kinetics, the catfish were challenged with BvAh, and bioluminescent imaging (BLI) was conducted. Results showed that 5 to 10 µg/mL chloramphenicol was suitable for stable bioluminescence expression in vAh, with some growth reduction. In the absence of chloramphenicol, vAh could not maintain pAKgfplux3 stably, with the half-life being 16 h. Intraperitoneal injection, immersion, and modified immersion (adipose fin clipping) challenges of catfish with BvAh and BLI showed that MAS progressed faster in the injection group, followed by the modified immersion and immersion groups. BvAh was detected around the anterior mouth, barbels, fin bases, fin epithelia, injured skin areas, and gills after experimental challenges. BLI revealed that skin breaks and gills are potential attachment and entry portals for vAh. Once vAh breaches the skin or epithelial surfaces, it can cause a systemic infection rapidly, spreading to all internal organs. To our best knowledge, this is the first study that reports the development of a bioluminescent vAh and provides visual evidence for catfish–vAh interactions. Findings are expected to provide a better understanding of vAh pathogenicity in catfish. Full article
(This article belongs to the Special Issue Emerging Infections in Aquatic Animals)
Show Figures

Figure 1

18 pages, 8382 KB  
Article
Innate Immune Response Assessment in Cyprinus carpio L. upon Experimental Administration with Artemia salina Bio-Encapsulated Aeromonas hydrophila Bacterin
by Akshaya Radhakrishnan, D. S. Prabakaran, Thiyagarajan Ramesh, Ramalingam Sakthivel, Kavikumar Ramasamy, Hyo-Shim Han and Sivakamavalli Jeyachandran
Vaccines 2023, 11(4), 877; https://doi.org/10.3390/vaccines11040877 - 21 Apr 2023
Cited by 1 | Viewed by 2808
Abstract
The present study aimed to analyze the enhancement of innate immune responses in juvenile-stage common carp (Cyprinus carpio L.), upon the administration of heat-killed Aeromonas hydrophila at a dosage of 1 × 107 CFU ml−1 through bio-encapsulation in the aquatic [...] Read more.
The present study aimed to analyze the enhancement of innate immune responses in juvenile-stage common carp (Cyprinus carpio L.), upon the administration of heat-killed Aeromonas hydrophila at a dosage of 1 × 107 CFU ml−1 through bio-encapsulation in the aquatic crustacean, Artemia salina. This work emphasizes the modulation of innate immune response when administered with the bio-encapsulated heat-killed antigen that acts as an inactivated vaccine against Motile Aeromonas Septicemia disease. Bio-encapsulated oral administration of antigens promotes innate immunity in juvenile-stage fishes. The optimization of effective bio-encapsulation of bacterin in Artemia salina nauplii was carried out and the best optimal conditions were chosen for immunization. The functional immune parameters such as myeloperoxidase, lysozyme, alkaline phosphatase, antiprotease and respiratory burst activity in serum, blood and intestinal tissue samples were analyzed along with blood differential leukocyte count and tissue histopathology studies. Both humoral and cellular immune responses analyzed were substantially induced or enhanced in the treatment groups in comparison with the control group. The results showed a significant variation in the bio-encapsulation group than the control group and also were comparable to the protection conferred with immersion route immunization under similar conditions. Thus, most of the innate non-specific immune responses are inducible, despite being constitutive of the fish immune system, to exhibit a basal level of protection and a road to better vaccination strategy in Cyprinus carpio L. aquaculture worldwide. Full article
(This article belongs to the Special Issue Fish Viruses and Vaccination)
Show Figures

Figure 1

16 pages, 17399 KB  
Article
In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila
by Ting Qin, Kai Chen, Bingwen Xi, Liangkun Pan, Jun Xie, Liushen Lu and Kai Liu
Antibiotics 2023, 12(4), 686; https://doi.org/10.3390/antibiotics12040686 - 31 Mar 2023
Cited by 25 | Viewed by 4474
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that widely exists in various aquatic environments and causes septicemia in fish and humans. Resveratrol, a natural polyterpenoid product, has potential chemo-preventive and antibacterial properties. In this study, we investigated the effect of resveratrol on A. hydrophila [...] Read more.
Aeromonas hydrophila is a Gram-negative bacterium that widely exists in various aquatic environments and causes septicemia in fish and humans. Resveratrol, a natural polyterpenoid product, has potential chemo-preventive and antibacterial properties. In this study, we investigated the effect of resveratrol on A. hydrophila biofilm formation and motility. The results demonstrated that resveratrol, at sub-MIC levels, can significantly inhibit the biofilm formation of A. hydrophila, and the biofilm was decreased with increasing concentrations. The motility assay showed that resveratrol could diminish the swimming and swarming motility of A. hydrophila. Transcriptome analyses (RNA-seq) showed that A. hydrophila treated with 50 and 100 μg/mL resveratrol, respectively, presented 230 and 308 differentially expressed genes (DEGs), including 90 or 130 upregulated genes and 130 or 178 downregulated genes. Among them, genes related to flagellar, type IV pilus and chemotaxis were significantly repressed. In addition, mRNA of virulence factors OmpA, extracellular proteases, lipases and T6SS were dramatically suppressed. Further analysis revealed that the major DEGs involved in flagellar assembly and bacterial chemotaxis pathways could be regulated by cyclic-di-guanosine monophosphate (c-di-GMP)- and LysR-Type transcriptional regulator (LTTR)-dependent quorum sensing (QS) systems. Overall, our results indicate that resveratrol can inhibit A. hydrophila biofilm formation by disturbing motility and QS systems, and can be used as a promising candidate drug against motile Aeromonad septicemia. Full article
(This article belongs to the Special Issue Antibiofilm Activity against Multidrug-Resistant Pathogens)
Show Figures

Figure 1

13 pages, 15003 KB  
Article
Identification and Characterization of Differentially Expressed IgM Transcripts of Channel Catfish Vaccinated with Antigens of Virulent Aeromonas hydrophila
by Dunhua Zhang, Miles D. Lange, Craig A. Shoemaker and Benjamin H. Beck
Fishes 2022, 7(1), 24; https://doi.org/10.3390/fishes7010024 - 19 Jan 2022
Cited by 3 | Viewed by 3519
Abstract
Channel catfish (Ictalurus punctatus) is the top species produced in US aquaculture and motile Aeromonas septicemia, caused by virulent Aeromonas hydrophila (vAh), is one of the most severe diseases that afflict catfish farms. Previously, vaccination of fish with extracellular proteins (ECP) [...] Read more.
Channel catfish (Ictalurus punctatus) is the top species produced in US aquaculture and motile Aeromonas septicemia, caused by virulent Aeromonas hydrophila (vAh), is one of the most severe diseases that afflict catfish farms. Previously, vaccination of fish with extracellular proteins (ECP) of vAh was shown to produce a robust antibody-mediated immune response against vAh infection. In this study, we analyzed IgM transcripts that were differentially expressed in the head kidney and liver of ECP-immunized and mock-immunized (control) fish with emphasis on a variable domain of heavy chain. Quantitative PCR analysis indicated that immunized fish produced significantly more IgM transcripts than control fish. Full-length IgM heavy chain cDNA was cloned, which encoded typical IgM peptide, including signal peptide, variable domain (VH), constant domain (CH), and carboxyl terminal peptide. Great sequence diversity was revealed in a VH segment, with the third complementarity diversity region (CDR3) being most variable. Using germline VH gene grouping method, variants (clones) of VH characterized in this study belonged to nine VH families. The most unique variants (approximately 49%) were found in the VH2 family. Vaccinated fish apparently had more unique variants than in the control fish. There were 62% and 79% of unique variants in the head kidney and liver of vaccinated fish, respectively, while 44% and 27% unique variants in the head kidney and liver of control fish, respectively. Among the unique variants in VH2 family, approximately 87% of them were found in vaccinated fish. Two-dimensional gel electrophoresis of semi-purified IgM protein confirmed that matured IgM protein was as variable as IgM transcripts identified in this study, with isoelectric points crossing from 6 to 10. Results of this study provided insight into the molecular and genetic basis of antibody diversity and enriched our knowledge of the complex interplay between antigens and antibodies in Ictalurid catfish. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Graphical abstract

14 pages, 3962 KB  
Article
Construction and Characterization of an Aeromonas hydrophila Multi-Gene Deletion Strain and Evaluation of Its Potential as a Live-Attenuated Vaccine in Grass Carp
by Jihong Li, Shilin Ma, Zhi Li, Wei Yu, Peng Zhou, Xiang Ye, Md. Sharifull Islam, Yong-An Zhang, Yang Zhou and Jinquan Li
Vaccines 2021, 9(5), 451; https://doi.org/10.3390/vaccines9050451 - 3 May 2021
Cited by 30 | Viewed by 4689
Abstract
Aeromonas hydrophila is an important pathogen that causes motile Aeromonas septicemia (MAS) in the aquaculture industry. Aerolysin, hemolysin, serine protease and enterotoxins are considered to be the major virulence factors of A. hydrophila. In this study, we constructed a five-gene (aer [...] Read more.
Aeromonas hydrophila is an important pathogen that causes motile Aeromonas septicemia (MAS) in the aquaculture industry. Aerolysin, hemolysin, serine protease and enterotoxins are considered to be the major virulence factors of A. hydrophila. In this study, we constructed a five-gene (aerA, hly, ahp, alt and ast) deletion mutant strain (named Aeromonas hydrophila five-gene deletion strain, AHFGDS) to observe the biological characteristics and detect its potential as a live-attenuated vaccine candidate. AHFGDS displayed highly attenuated and showed increased susceptibility to fish blood and skin mucus killing, while the wild-type strain ZYAH72 was highly virulent. In zebrafish (Danio rerio), AHFGDS showed a 240-fold higher 50% lethal dose (LD50) than that of the wild-type strain. Immunization with AHFGDS by intracelomic injection or immersion routes both provided grass carp (Ctenopharyngodon idella) significant protection against the challenge of the strain ZYAH72 or J-1 and protected the fish organs from serious injury. Further agglutinating antibody titer test supported that AHFGDS could elicit a host-adaptive immune response. These results suggested the potential of AHFGDS to serve as a live-attenuated vaccine to control A. hydrophila infection in aquaculture. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

20 pages, 5326 KB  
Article
Structural Studies of the Lipopolysaccharide of Aeromonas veronii bv. sobria Strain K133 Which Represents New Provisional Serogroup PGO1 Prevailing among Mesophilic Aeromonads on Polish Fish Farms
by Katarzyna Dworaczek, Maria Kurzylewska, Magdalena Laban, Dominika Drzewiecka, Agnieszka Pękala-Safińska and Anna Turska-Szewczuk
Int. J. Mol. Sci. 2021, 22(8), 4272; https://doi.org/10.3390/ijms22084272 - 20 Apr 2021
Cited by 9 | Viewed by 3070
Abstract
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia [...] Read more.
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia (MAI/MAS) on a Polish fish farm. The structural characterization of the O-PS, which was obtained by mild acid degradation of the LPS, was performed with chemical methods, MALDI-TOF mass spectrometry, and 1H and 13C NMR spectroscopy. It was revealed that the O-PS has a unique composition of a linear tetrasaccharide repeating unit and contains a rarely occurring sugar 2,4-diamino-2,4,6-trideoxy-D-glucose (bacillosamine), which may determine the specificity of the serogroup. Western blotting and ELISA confirmed that A. veronii bv. sobria strain K133 belongs to the new serogroup PGO1, which is one of the most commonly represented immunotypes among carp and trout isolates of Aeromonas sp. in Polish aquacultures. Considering the increase in the MAI/MAS incidences and their impact on freshwater species, also with economic importance, and in the absence of an effective immunoprophylaxis, studies of the Aeromonas O-antigens are relevant in the light of epidemiological data and monitoring emergent pathogens representing unknown antigenic variants and serotypes. Full article
Show Figures

Graphical abstract

22 pages, 2538 KB  
Article
Vaccine Efficacy of a Newly Developed Feed-Based Whole-Cell Polyvalent Vaccine against Vibriosis, Streptococcosis and Motile Aeromonad Septicemia in Asian Seabass, Lates calcarifer
by Aslah Mohamad, Mohd Zamri-Saad, Mohammad Noor Azmai Amal, Nurhidayu Al-saari, Md. Shirajum Monir, Yong Kit Chin and Ina-Salwany Md Yasin
Vaccines 2021, 9(4), 368; https://doi.org/10.3390/vaccines9040368 - 10 Apr 2021
Cited by 57 | Viewed by 7173
Abstract
Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been [...] Read more.
Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been proposed as a promising technique since it requires no handling of the fish and is easy to perform. This research attempts to develop and evaluate a potential feed-based polyvalent vaccine that can be used to treat multiple infections by Vibrios spp., Streptococcus agalactiae, and Aeromonas hydrophila, simultaneously. The oral polyvalent vaccine was prepared by mixing formalin-killed vaccine of V. harveyi, S. agalactiae, and A. hydrophila strains with commercial feed pellet, and palm oil as an adjuvant was added to improve their antigenicity. Thereafter, a vaccinated feed pellet was tested for feed quality analysis in terms of feed stability in water, proximate nutrient analysis, and palatability, safety, and growth performance using Asian seabass, Lates calcarifer as a fish host model. For immune response analysis, a total of 300 Asian seabass juveniles (15.8 ± 2.6 g) were divided into two groups in triplicate. Fish of group 1 were not vaccinated, while group 2 was vaccinated with the feed-based polyvalent vaccine. Vaccinations were carried out on days 0 and 14 with oral administration of the feed containing the bacterin at 5% body weight. Samples of serum for antibody and lysozyme study and the spleen and gut for gene expression analysis were collected at 7-day intervals for 6 weeks. Its efficacy in protecting fish was evaluated in aquarium challenge. Following vaccination by the polyvalent feed-based vaccine, IgM antibody levels showed a significant (p < 0.05) increase in serum against Vibrio harveyi, Aeromonas hydrophila, and Streptococcus agalactiae and reached the peak at week 3, 5, and 6, respectively. The high-stimulated antibody in the serum remained significantly higher than the control (p < 0.05) at the end of the 6 weeks vaccination trial. Not only that, but the serum lysozyme level was also increased significantly at week 4 (p < 0.05) as compared to the control treatment. The immune-related gene, dendritic cells, C3, Chemokine ligand 4 (CCL4), and major histocompatibility complex class I (MHC I) showed significantly higher expression (p < 0.05) after the fish were vaccinated with the oral vaccine. In the aquarium challenge, the vaccine provided a relative percentage survival of 75 ± 7.1%, 80 ± 0.0%, and 80 ± 0.0% after challenge with V. harveyi, A. hydrophila, and S. agalactiae, respectively. Combining our results demonstrate that the feed-based polyvalent vaccine could elicit significant innate and adaptive immunological responses, and this offers an opportunity for a comprehensive immunization against vibriosis, streptococcosis, and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Nevertheless, this newly developed feed-based polyvalent vaccination can be a promising technique for effective and large-scale fish immunization in the aquaculture industry shortly. Full article
(This article belongs to the Special Issue Evaluation of Vaccine Immunogenicity)
Show Figures

Figure 1

19 pages, 4501 KB  
Article
Investigation of the Prevalence, Virulence Genes, and Antibiogram of Motile Aeromonads Isolated from Nile Tilapia Fish Farms in Egypt and Assessment of their Water Quality
by Fatma A. El-Gohary, Eman Zahran, Eman A. Abd El-Gawad, Adel H. El-Gohary, Fatma M. Abdelhamid, Amany El-Mleeh, Ehab Kotb Elmahallawy and Mona Mohieldin Elsayed
Animals 2020, 10(8), 1432; https://doi.org/10.3390/ani10081432 - 16 Aug 2020
Cited by 45 | Viewed by 5420
Abstract
The aquaculture industry is a fast-growing sector in Egypt; however, the progress of this industry is impeded by many challenges such as poor water quality and associated bacterial infections. Among others, Motile Aeromonas Septicemia (MAS), caused by aeromonads, is among the most important [...] Read more.
The aquaculture industry is a fast-growing sector in Egypt; however, the progress of this industry is impeded by many challenges such as poor water quality and associated bacterial infections. Among others, Motile Aeromonas Septicemia (MAS), caused by aeromonads, is among the most important bacterial diseases affecting aquaculture due to its zoonotic potential. In the present work, motile aeromonads were isolated from water samples (n= 8) and Nile tilapia (n= 240) in four fish farms (farms I, II, III, and IV) in Kafr El-Sheikh province during the period March to August 2017. This step was followed by investigation of the prevalence and phenotypic, molecular, and histopathological characterization of aeromonads. In addition, antimicrobial susceptibility and virulence gene detection were analyzed. Interestingly, physicochemical water analysis revealed different ranges in relation to the fish farms and seasons. More importantly, Aeromonas isolates were phenotypically identified in 33.3% and 12.5% from fish and water samples, respectively. The highest prevalence of motile aeromonads (46.7%) was recorded from farm IV, and only 12.5% of water samples were positive for them. Out of 80 isolates, 65 (81.25%) were molecularly identified at the genus level using gyrase B (gyrB). The prevalence of the virulence genes detected in the isolated motile aeromonads was aerolysin (aer), 52.2%; elastase (ahp), 26.25%; hemolysin (hyl), 35%; and lipase (lip), 3.75%. The antibiogram profile revealed that the highest resistance of aeromonads isolates (80%) was recorded to chloramphenicol, kanamycin, and azithromycin. Meanwhile, lower resistance levels of 40%, 30%, and 20% were found for streptomycin, cefotaxime, and amoxicillin, respectively. The multiple antibiotic resistance (MAR) index values ranged between 0.27 and 0.82 of motile aeromonads isolates. Furthermore, the histopathological examinations of naturally diseased tilapia revealed widespread hepatocellular necrosis with diffuse, numerous rod-shaped bacteria in liver with melanomacrophages and lymphocytic depletion with edema and hemosiderosis in the spleen. Our findings provide an updated epidemiological baseline for future reference and highlight the likely role of the adverse impact of water quality in the outbreaks of motile aeromonads with special reference to virulence genes and antibiotic resistant traits. Full article
(This article belongs to the Special Issue Fish Pathology)
Show Figures

Figure 1

15 pages, 2564 KB  
Article
Molecular Typing, Antibiogram and PCR-RFLP Based Detection of Aeromonas hydrophila Complex Isolated from Oreochromis niloticus
by Abdelazeem M. Algammal, Mohamed Fathi Mohamed, Basma A. Tawfiek, Wael N. Hozzein, Waleed M. El Kazzaz and Mahmoud Mabrok
Pathogens 2020, 9(3), 238; https://doi.org/10.3390/pathogens9030238 - 22 Mar 2020
Cited by 79 | Viewed by 8741
Abstract
Motile Aeromonas septicemia is a common bacterial disease that affects Oreochromis niloticus and causes tremendous economic losses globally. In order to investigate the prevalence, molecular typing, antibiogram and the biodiversity of Aeromonas hydrophila complex, a total of 250 tilapia (Oreochromis niloticus) [...] Read more.
Motile Aeromonas septicemia is a common bacterial disease that affects Oreochromis niloticus and causes tremendous economic losses globally. In order to investigate the prevalence, molecular typing, antibiogram and the biodiversity of Aeromonas hydrophila complex, a total of 250 tilapia (Oreochromis niloticus) were collected randomly from 10 private tilapia farms (25 fish/farm) at El-Sharkia Governorate, Egypt. The collected fish were subjected to clinical and bacteriological examinations. The majority of infected fish displayed ulcerative necrosis, exophthalmia, and internal signs of hemorrhagic septicemia. The prevalence of A. hydrophia complex was 13.2%, where the liver was the most predominant affected organ (54.1%). Polymerase chain reaction (PCR) was used to verify the identification of A. hydrophila complex using one set of primers targeting gyrB as well as the detection of virulent genes (aerA, alt, and ahp). All isolates were positive for the gyrB-conserved gene and harbored aerA and alt virulence genes. However, none of those isolates were positive for the ahp gene. The antimicrobial sensitivity was carried out, where the recovered strains were completely sensitive to ciprofloxacin and highly resistant to amoxicillin. All retrieved strains showed the same phenotypic characteristics and were identical based on the restriction fragment length polymorphism (RFLP). Experimentally challenged fish presented a high mortality rate (76.67%) and showed typical signs as in naturally infected ones. In conclusion, the synergism of phenotypic and genotypic characterization is a valuable epidemiological tool for the diagnosis of A. hydrophila complex. RFLP is a fundamental tool for monitoring the biodiversity among all retrieved strains of A. hydrophia. Full article
(This article belongs to the Special Issue Animal Parasitic Diseases)
Show Figures

Figure 1

Back to TopTop