Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = NADP+-preferring enzyme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4383 KB  
Article
Biocatalytic Cascade of Sebacic Acid Production with In Situ Co-Factor Regeneration Enabled by Engineering of an Alcohol Dehydrogenase
by Jie Lu, Dong Lu, Qiuyang Wu, Shuming Jin, Junfeng Liu, Meng Qin, Li Deng, Fang Wang and Kaili Nie
Catalysts 2022, 12(11), 1318; https://doi.org/10.3390/catal12111318 - 27 Oct 2022
Cited by 3 | Viewed by 3453
Abstract
Sebacic acid (1,10-decanedioic acid) is an important chemical intermediate. Traditional chemical oxidation methods for sebacic acid production do not conform with “green” manufacturing. With the rapid development of enzymatic technologies, a biocatalytic cascade method based on the Baeyer–Villiger monooxygenase was developed. The most [...] Read more.
Sebacic acid (1,10-decanedioic acid) is an important chemical intermediate. Traditional chemical oxidation methods for sebacic acid production do not conform with “green” manufacturing. With the rapid development of enzymatic technologies, a biocatalytic cascade method based on the Baeyer–Villiger monooxygenase was developed. The most attractive point of the method is the oleic acid that can be utilized as raw material, which is abundant in nature. However, this bio-catalysis process needs co-factor electron carriers, and the high cost of the co-factor limits its progress. In this piece of work, a co-factor in situ regeneration system between ADH from Micrococcus luteus WIUJH20 (MlADH) and BVMO is proposed. Since the co-factors of both enzymes are different, switching the co-factor preference of native MlADH from NAD+ to NADP+ is necessary. Switching research was carried out based on in silico simulation, and the sites of Tyr36, Asp 37, Ala38, and Val39 were selected for mutation investigation. The experimental results demonstrated that mutants of MlADH_D37G and MlADH_D37G/A38T/V39K would utilize NADP+ efficiently, and the mutant of MlADH_D37G/A38T/V39K demonstrated the highest sebacic acid yield with the combination of BVMO. The results indicated that the in situ co-factor generation system is successfully developed, which would improve the efficiency of the biocatalytic cascade for sebacic acid production and is helpful for simplifying product isolation, thus, reducing the cost of the enzymatic transformations process. Full article
(This article belongs to the Special Issue High-Throughput Computational Design of Catalysts)
Show Figures

Figure 1

18 pages, 2030 KB  
Article
Highly Stable, Cold-Active Aldehyde Dehydrogenase from the Marine Antarctic Flavobacterium sp. PL002
by Georgiana Necula-Petrareanu, Paris Lavin, Victoria Ioana Paun, Giulia Roxana Gheorghita, Alina Vasilescu and Cristina Purcarea
Fermentation 2022, 8(1), 7; https://doi.org/10.3390/fermentation8010007 - 27 Dec 2021
Cited by 10 | Viewed by 4016
Abstract
Stable aldehyde dehydrogenases (ALDH) from extremophilic microorganisms constitute efficient catalysts in biotechnologies. In search of active ALDHs at low temperatures and of these enzymes from cold-adapted microorganisms, we cloned and characterized a novel recombinant ALDH from the psychrotrophic Flavobacterium PL002 isolated from Antarctic [...] Read more.
Stable aldehyde dehydrogenases (ALDH) from extremophilic microorganisms constitute efficient catalysts in biotechnologies. In search of active ALDHs at low temperatures and of these enzymes from cold-adapted microorganisms, we cloned and characterized a novel recombinant ALDH from the psychrotrophic Flavobacterium PL002 isolated from Antarctic seawater. The recombinant enzyme (F-ALDH) from this cold-adapted strain was obtained by cloning and expressing of the PL002 aldH gene (1506 bp) in Escherichia coli BL21(DE3). Phylogeny and structural analyses showed a high amino acid sequence identity (89%) with Flavobacterium frigidimaris ALDH and conservation of all active site residues. The purified F-ALDH by affinity chromatography was homotetrameric, preserving 80% activity at 4 °C for 18 days. F-ALDH used both NAD+ and NADP+ and a broad range of aliphatic and aromatic substrates, showing cofactor-dependent compensatory KM and kcat values and the highest catalytic efficiency (0.50 µM−1 s−1) for isovaleraldehyde. The enzyme was active in the 4–60 °C-temperature interval, with an optimal pH of 9.5, and a preference for NAD+-dependent reactions. Arrhenius plots of both NAD(P)+-dependent reactions indicated conformational changes occurring at 30 °C, with four(five)-fold lower activation energy at high temperatures. The high thermal stability and substrate-specific catalytic efficiency of this novel cold-active ALDH favoring aliphatic catalysis provided a promising catalyst for biotechnological and biosensing applications. Full article
(This article belongs to the Special Issue Extremophiles—Source for Novel Biomolecules with Applied Potential)
Show Figures

Figure 1

12 pages, 1701 KB  
Article
Cloning, Expression, and Characterization of a Psychrophilic Glucose 6-Phosphate Dehydrogenase from Sphingomonas sp. PAMC 26621
by Kiet TranNgoc, Nhung Pham, ChangWoo Lee and Sei-Heon Jang
Int. J. Mol. Sci. 2019, 20(6), 1362; https://doi.org/10.3390/ijms20061362 - 18 Mar 2019
Cited by 5 | Viewed by 3536
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) (EC 1.1.1.363) is a crucial regulatory enzyme in the oxidative pentose phosphate pathway that provides reductive potential in the form of NADPH, as well as carbon skeletons for the synthesis of macromolecules. In this study, we report the cloning, [...] Read more.
Glucose 6-phosphate dehydrogenase (G6PD) (EC 1.1.1.363) is a crucial regulatory enzyme in the oxidative pentose phosphate pathway that provides reductive potential in the form of NADPH, as well as carbon skeletons for the synthesis of macromolecules. In this study, we report the cloning, expression, and characterization of G6PD (SpG6PD1) from a lichen-associated psychrophilic bacterium Sphingomonas sp. PAMC 26621. SpG6PD1 was expressed in Escherichia coli as a soluble protein, having optimum activity at pH 7.5–8.5 and 30 °C for NADP+ and 20 °C for NAD+. SpG6PD1 utilized both NADP+ and NAD+, with the preferential utilization of NADP+. A high Km value for glucose 6-phosphate and low activation enthalpy (ΔH) compared with the values of mesophilic counterparts indicate the psychrophilic nature of SpG6PD1. Despite the secondary structure of SpG6PD1 being maintained between 4–40 °C, its activity and tertiary structure were better preserved between 4–20 °C. The results of this study indicate that the SpG6PD1 that has a flexible structure is most suited to a psychrophilic bacterium that is adapted to a permanently cold habitat. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop