Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = NPK fertilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3153 KB  
Article
Variation of Protein and Protein Fraction Content in Wheat in Relation to NPK Mineral Fertilization
by Alina Laura Agapie, Marinel Nicolae Horablaga, Gabriela Gorinoiu, Adina Horablaga, Mihai Valentin Herbei and Florin Sala
Agronomy 2025, 15(9), 2076; https://doi.org/10.3390/agronomy15092076 - 28 Aug 2025
Viewed by 191
Abstract
Wheat is a crucial crop for human nutrition, and the demand for high-quality indicators within the “from farm to fork” concept is increasing. Based on this premise, this study examined how, at the farm level, the fertilization system can influence key quality indicators [...] Read more.
Wheat is a crucial crop for human nutrition, and the demand for high-quality indicators within the “from farm to fork” concept is increasing. Based on this premise, this study examined how, at the farm level, the fertilization system can influence key quality indicators relevant to wheat production and final products. This research was conducted under specific conditions of the Western Plain of Romania at the Agricultural Research and Development Station (ARDS), Lovrin, during 2015–2017. Fertilization involved the autumn application of phosphorus (concentrated superphosphate; 0, 40, 80, 120, 160 kg ha−1 active substance, a.s.) and potassium (potassium chloride; 0, 40, 80, 120 kg ha−1 a.s.). Nitrogen (ammonium nitrate; 0, 30, 60, 90, 120 kg ha−1 active substance) was applied in spring in two stages. The combination of these three fertilizers resulted in 18 fertilized variants (T2 to T19), tested alongside an unfertilized control (T1). The experimental variants were arranged in four randomized replications. Grain quality was assessed based on protein content (PRO, %), gluten (GLT, g 100 g−1), gliadins (Gliad, %), glutenins (Glut, g 100 g−1), high-molecular-weight glutenins (HMW, g 100 g−1), low-molecular-weight glutenins (LMW, g 100 g−1), and the gliadin/glutenin ratio (Gliad/Glut). Compared to the average values for each indicator across the experiment, certain variants produced values above the mean, with statistical significance. Variant T16 stood out by producing values above the mean for all indicators, with statistical confidence. Multivariate analysis showed that five indicators with very strong (PRO, GLT) and strong (HMW, Glut, LMW) influence grouped in PC1, while two indicators (Gliad, Gliad/Glut) with very strong and strong influence grouped in PC2. The analysis revealed varying levels of correlation between the applied fertilizers, with nitrogen (N) showing very strong and strong correlations with most indicators, while phosphorus and potassium showed moderate-to-weak correlations. Regression analysis generated mathematical models that statistically described how each indicator varied in relation to the fertilizers applied. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 3649 KB  
Article
Circular Fertilization Strategy Using Sulphur with Orange Waste Enhances Soil Health and Broccoli Nutritional and Nutraceutical Quality in Mediterranean Systems
by Mariateresa Oliva, Federica Marra, Ludovica Santoro, Santo Battaglia, Carmelo Mallamaci and Adele Muscolo
Appl. Sci. 2025, 15(16), 9010; https://doi.org/10.3390/app15169010 - 15 Aug 2025
Viewed by 264
Abstract
Fertilization strategies are pivotal in sustainable agriculture, affecting both soil health and crop quality. This study investigated the impact of a circular fertilization approach based on agro-industrial residues—specifically, a blend of sulfur bentonite and orange processing waste (RecOrgFert PLUS)—on soil physicochemical and biological [...] Read more.
Fertilization strategies are pivotal in sustainable agriculture, affecting both soil health and crop quality. This study investigated the impact of a circular fertilization approach based on agro-industrial residues—specifically, a blend of sulfur bentonite and orange processing waste (RecOrgFert PLUS)—on soil physicochemical and biological properties, as well as the nutritional and nutraceutical quality of broccoli (Brassica oleracea var. italica) grown in Mediterranean conditions (Condofuri, Southern Italy). The effects of RecOrgFert PLUS were compared with those of a synthetic NPK fertilizer, an organic fertilizer (horse manure), and an unfertilized control. Results demonstrated that RecOrgFert PLUS significantly improved soil organic carbon (3.37%), microbial biomass carbon (791 μg C g−1), and key enzymatic activities, indicating enhanced soil biological functioning. Broccoli cultivated under RecOrgFert PLUS also exhibited the highest concentrations of health-promoting compounds, including total phenols (48.87 mg GAE g−1), vitamin C (51.93 mg ASA 100 g−1), and total proteins (82.45 mg BSA g−1). This work provides novel evidence that combining elemental sulphur with orange processing waste not only restores soil fertility but also boosts the nutraceutical and nutritional value of food crops. Unlike previous studies focusing on soil or plant yield alone, this study uniquely integrates soil health indicators with bioactive compound accumulation in broccoli, highlighting the potential of circular bio-based fertilization in functional food production and Mediterranean agroecosystem sustainability. Full article
Show Figures

Figure 1

20 pages, 1687 KB  
Article
Partial Organic Substitution Improves Soil Quality and Increases Latex Yield in Rubber Plantations
by Wenxian Xu, Wenjie Liu, Congju Zhao, Yingying Zhang, Ashar Tahir, Xinwei Guo, Rui Sun, Qiu Yang and Zhixiang Wu
Agronomy 2025, 15(8), 1936; https://doi.org/10.3390/agronomy15081936 - 12 Aug 2025
Viewed by 433
Abstract
Partial organic substitution (POS) is a promising strategy to enhance soil fertility and agricultural sustainability. However, the mechanisms by which varying organic substitution ratios affect soil quality and latex yields in rubber plantations remain unclear. We conducted a two-year field experiment in a [...] Read more.
Partial organic substitution (POS) is a promising strategy to enhance soil fertility and agricultural sustainability. However, the mechanisms by which varying organic substitution ratios affect soil quality and latex yields in rubber plantations remain unclear. We conducted a two-year field experiment in a rubber plantation with six treatments: no fertilizer (CK), 100% synthetic fertilizer (NPK), and synthetic nitrogen fertilizer substituted with 25% (25 M), 50% (50 M), 75% (75 M), and 100% (100 M) manure. The results indicated that POS treatments significantly increased pH, soil organic carbon (SOC), total phosphorus (TP), total nitrogen (TN), NH4+-N, enzyme activity, and leaf nutrient (C, N, and P) content compared to NPK. Compared with NPK, the soil quality (evaluated through the soil quality index, SQI) increased by 15.30–43.42% under POS across both years, with maximal values observed at 50 M (2020) and 75 M (2021); similarly, the latex yield increased by 2.10–18.60%. SOC, NO3-N,C:P ratio, TN, and pH are the key factors that influence soil quality and latex yield. Structural equation modeling indicated that fertilization and soil factors collectively explained 82% of the variation in latex yield. These results demonstrated that POS effectively alleviated soil acidity, enhanced soil quality, and improved latex productivity, with 50% manure substitution treatment (50M) identified as the optimal short-term substitution strategy in rubber plantations. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

22 pages, 2586 KB  
Article
Optimum N:P:K Ratio of Fertilization Enhances Tomato Yield and Quality Under Brackish Water Irrigation
by Lanqi Jing, Jianshe Li, Yongqiang Tian, Longguo Wu, Yanming Gao and Yune Cao
Plants 2025, 14(16), 2496; https://doi.org/10.3390/plants14162496 - 11 Aug 2025
Viewed by 604
Abstract
Excessive or improper fertilization not only salinizes soil but also reduces crop yield and quality. The objective of this study was to determine the optimum N, P, and K levels capable of improving tomato fruit quality and reducing environmental pollution for tomato plants [...] Read more.
Excessive or improper fertilization not only salinizes soil but also reduces crop yield and quality. The objective of this study was to determine the optimum N, P, and K levels capable of improving tomato fruit quality and reducing environmental pollution for tomato plants under brackish water irrigation conditions. The ‘Jingcai 8’ tomato was used as the research object, and an orthogonal experimental design was used to set up three nutritional factors of N, P, and K. Each factor was set at three levels: N (mmol·L−1): 2.00 (N1), 4.00 (N2), and 8.00 (N3); P (mmol·L−1): 0.67 (P1), 1.33 (P2), and 2.00 (P3); K (mmol·L−1): 8.00 (K1), 12.00 (K2), and 16.00 (K3). The effects of different levels of N, P, and K on plant growth indexes, root vigor and antistress enzymes, biomass and nutrients of plants and fruits, yield, quality, soil nutrients, and soil enzymes were investigated, and metabolomic measurements were performed on treatments ranked first (N:P:K ratio was 2:1.33:12) and ninth (N:P:K ratio was 8:1.33:8) for overall quality. In general, a N concentration of 8 mmol·L−1 promoted plant vegetative growth and plant biomass accumulation by promoting the accumulation of aboveground nitrogen content, but it reduced the weight of single fruit and tomato quality due to an increase in soil EC and pH. In contrast, 0.67 mmol·L−1 of P and 12 mmol·L−1 of K were able to promote both plant vegetative growth and tomato quality formation. In addition, 0.67 mmol·L−1 of P enhanced soil nutrient availability and enzyme activity, while 16 mmol·L−1 of K reduced nutrient availability and enzyme activity and increased soil EC. The concentrations of ferulic acid, cinnamic acid, caffeic acid, coumarin, and (-)-epigallocatechin were generally higher in tomatoes from the T2 treatment (N:P:K ratio was 2:1.33:12) than in those from other treatments. Together, the optimum N:P:K ratio (2:1.33:12) of fertilization enhances tomato yield and quality under brackish water irrigation. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 1407 KB  
Article
Black Soldier Fly Frass Fertilizer Outperforms Traditional Fertilizers in Terms of Plant Growth in Restoration in Madagascar
by Cédrique L. Solofondranohatra, Tanjona Ramiadantsoa, Sylvain Hugel and Brian L. Fisher
Sustainability 2025, 17(15), 7152; https://doi.org/10.3390/su17157152 - 7 Aug 2025
Viewed by 1235
Abstract
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF [...] Read more.
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF on the growth and survival of two native Malagasy tree species: the fast-growing Dodonaea madagascariensis and the slow-growing Verpis macrophylla. A six-month nursery experiment tested three BSFF application rates (half-, one-, and two-fold nitrogen equivalence), along with cattle manure, synthetic NPK, and a no-fertilizer control. The survival was highest in the half-fold BSFF (95% for D. madagascariensis, 87.5% for V. macrophylla) and lowest in BSFF two-fold (0% and 22.5%, respectively) treatments. NPK also significantly reduced the survival (5% for D. madagascariensis, 17.5% for V. macrophylla). The growth responses were most pronounced in D. madagascariensis, where the BSFF half- and one-fold treatments led to height growth rates that were 2.0–2.7 times higher than that of the control, cattle manure, and NPK treatments, and diameter growth that was 1.8–2.3 times higher. The biomass accumulation was also significantly higher under the BSFF half- and one-fold treatments for D. madagascariensis. In contrast, V. macrophylla showed limited response to the treatments. These findings indicate that calibrated BSFF application can enhance seedling performance in reforestation efforts, particularly for fast-growing species. Notably, the growth rate of D. madagascariensis doubled (in terms of cm/month) under optimal BSFF treatment—a critical advantage, as time is a key constraint in reforestation and faster growth directly supports more efficient forest restoration. This highlights BSFF’s potential as a sustainable and locally available input for forest restoration in Madagascar. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

23 pages, 3121 KB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Viewed by 413
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

11 pages, 1381 KB  
Article
Fertilization Promotes the Recovery of Plant Productivity but Decreases Biodiversity in a Khorchin Degraded Grassland
by Lina Zheng, Wei Zhao, Shaobo Gao, Ruizhen Wang, Haoran Yan and Mingjiu Wang
Nitrogen 2025, 6(3), 64; https://doi.org/10.3390/nitrogen6030064 - 4 Aug 2025
Viewed by 204
Abstract
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted [...] Read more.
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted a four-year (2017–2020) N, P, K addition experiment in the Khorchin Grassland, a degraded typical grassland located in Zhalute Banner, Tongliao City, Inner Mongolia, to investigate the effects of fertilization treatment on plant functional groups and microbial communities after grazing exclusion. Our results showed that the addition of P, NP, and NPK compound fertilizers significantly increased aboveground biomass of the plant community, which is mainly related to the improvement of nutrient availability to promote the growth of specific plant functional groups, especially annual and biennial plants and perennial bunchgrasses. However, the addition of N, P, and NP fertilizers significantly reduced the species diversity of the plant community. At the same time, the addition of N, P, and NP fertilizers and the application of N and NP significantly reduced fungal species diversity but had no significant effect on soil bacteria. Our study provides new insights into the relationships between different types of fertilization and plant community productivity and biodiversity in degraded grasslands over four years of fertilization, which is critical for evaluating the effect of fertilization on the restoration of degraded grassland. Full article
Show Figures

Figure 1

13 pages, 764 KB  
Article
Influence of Mineral Fertilizers and Application Methods on Raspberry Composition Cultivated in an Acid Soil
by Biljana Sikirić, Vesna Mrvić, Nikola Koković, Sonja Tošić Jojević, Mila Pešić, Nenad Prekop and Olivera Stajković-Srbinović
Horticulturae 2025, 11(8), 914; https://doi.org/10.3390/horticulturae11080914 - 4 Aug 2025
Viewed by 302
Abstract
Acid soils are often a limiting factor in the production of most cultivated plants. In practice, the application of inadequate, physiologically acidic fertilizers, urea and NPK, is often encountered, which further worsens the already poor physicochemical properties of such soils. In this study, [...] Read more.
Acid soils are often a limiting factor in the production of most cultivated plants. In practice, the application of inadequate, physiologically acidic fertilizers, urea and NPK, is often encountered, which further worsens the already poor physicochemical properties of such soils. In this study, the influence of different amounts of NPK and urea fertilizers and methods of their application on the chemical properties of a very acidic soil and the accumulation of essential biogenic elements (N, P, K, Ca, Mg, and Al) in raspberry plants (leaves and fruits) was evaluated. The field trial with the raspberry plants was set up on a very acidic soil (pH in KCl 3.6), type Dystric Cambisol, and was monitored for 2 years. The application of NPK and urea mainly increased soil acidity in the second year in all treatments (for 0.10–0.18 pH unit) (except for urea applied in rows). The application of higher amounts of NPK increased the content of available forms of P (for 9.3–30.8 mg/kg) and K (for 57–95 mg/kg) in soil in both years, as well as exchangeable Ca (for 200–510 mg/kg) and Mg in the first year (15–165 mg/kg). The introduction of fertilizers in rows, compared to fertilization of the entire surface, influenced the reduction in mobile Al (especially when applying NPK, from 5.89 to 7.13 mg/100 g), the increase in mineral N and K content in the soil, and the increase in Ca and Mg only when applying urea, i.e., P when applying NPK in rows. In the leaves, the application of fertilizers in rows increased the content of Ca and Mg in the first year and P and K in the second year. In the fruits, the content of all estimated elements was not in correlation with their content in leaves and the fertilizer application, which indicates the influence of other ecological and biological factors on plant nutrition. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

13 pages, 1316 KB  
Article
Effect of Fertilization Levels on Growth and Physiological Characteristics of Containerized Seedlings of Vaccinium oldhamii
by Da Hyun Lee, Chung Youl Park, Do Hyun Kim, Jun Hyeok Kim, Hyeon Min Kim, Chae Sun Na and Wan Geun Park
Plants 2025, 14(15), 2409; https://doi.org/10.3390/plants14152409 - 4 Aug 2025
Viewed by 397
Abstract
Vaccinium oldhamii, a blueberry species native to Korea, is a deciduous shrub in the Ericaceae family. Its fruit possesses various pharmacological properties, including anti-inflammatory effects and potential for treating osteoporosis. This study evaluated the effects of five fertilization concentration levels using Multifeed [...] Read more.
Vaccinium oldhamii, a blueberry species native to Korea, is a deciduous shrub in the Ericaceae family. Its fruit possesses various pharmacological properties, including anti-inflammatory effects and potential for treating osteoporosis. This study evaluated the effects of five fertilization concentration levels using Multifeed 20 (N:P:K = 20:20:20) on the growth and physiological characteristics of one-year-old V. oldhamii container seedlings. Treatments included 0 g·L−1 (control), 0.5, 1.0, 1.5, and 2.0 g·L−1. Increases in stem thickness, root length, and total dry weight were observed in the control, 0.5, 1.0, and 1.5 g·L−1 treatments, whereas growth declined at 2.0 g·L−1. Mortality rates exceeded 15% at concentrations above 1.0 g·L−1. Photosynthetic capacity and chlorophyll content increased with fertilization. However, while growth improved with increasing fertilizer up to a certain level, it declined at the highest concentration. A fertilization rate of 0.5 g·L−1 proved to be the most economically and environmentally efficient for producing healthy seedlings. This study provides the first fertilization threshold for V. oldhamii, offering practical guidance for nursery production and forming a foundation for future domestication strategies. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

18 pages, 2358 KB  
Article
Characterizing the Temporally Dynamic Nature of Relative Growth Rates: A Kinetic Analysis on Nitrogen-, Phosphorus-, and Potassium-Limited Growth
by Andrew Sharkey, Asher Altman, Yuming Sun, Thomas K. S. Igou and Yongsheng Chen
Agriculture 2025, 15(15), 1641; https://doi.org/10.3390/agriculture15151641 - 29 Jul 2025
Viewed by 439
Abstract
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and [...] Read more.
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and developed robust data-driven kinetic models observing nutrient uptake, biomass growth, and tissue composition based on all three primary macronutrients. The resulting Dynamic μ model is the first to integrate plant maturity’s impact on growth rate, significantly improving model accuracy across limiting nutrients, treatments, and developmental stages. This reduced error supports this simple expansion as a practical and necessary inclusion for agricultural kinetic modeling. Furthermore, analysis of nutrient uptake refines the ideal hydroponic nutrient balance for Bibb lettuce to 132, 35, and 174 mg L−1 (N, P, and K, respectively), while qualitative cell yield analysis identifies minimum nutrient thresholds at approximately 26.2–41.7 mg-N L−1, 3.7–5.6 mg-P L−1, and 17.4–31.5 mg-K L−1 to produce compositionally healthy lettuce. These findings evaluate reclaimed wastewater’s ability to offset the fertilizer burden for lettuce by 23–45%, 14–57%, and 3–23% for N, P, and K and guide the required minimum amount of wastewater pre-processing or nutrient supplements needed to completely fulfill hydroponic nutrient demands. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

26 pages, 2995 KB  
Article
A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances
by Martina Napolitano, Gianluca Malavasi, Daniele Malferrari, Giulio Galamini, Michelina Catauro, Veronica Viola, Fabrizio Marani and Luisa Barbieri
Materials 2025, 18(15), 3492; https://doi.org/10.3390/ma18153492 - 25 Jul 2025
Viewed by 460
Abstract
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and [...] Read more.
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and dried blood, and bone meal, aiming at producing sustainable and low-cost N-P-K SRFs. These were processed through mixing and granulation, both in the laboratory and on a semi-industrial scale. The formulations were evaluated through release tests in 2% citric acid solution simulating the acidic conditions of the rhizosphere, and in acetic acid to assess potential nutrient leaching under acid rain conditions. The results showed a progressive cumulative release of macronutrients (NPKs), ranging from approximately 8% at 24 h to 73% after 90 days for the most effective formulation (WBF6). Agronomic trials on lettuce confirmed the effectiveness of WBF6, resulting in significant biomass increases compared with both the untreated control and a conventional fertilizer. The use of livestock waste and minerals facilitated the development of a scalable product aligned with the principles of sustainable agriculture. The observed release behavior, combined with the simplicity of production, positions these formulations as a promising alternative to conventional slow-release fertilizers. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

21 pages, 1980 KB  
Article
Organic Manure with Chemical Fertilizers Improves Rice Productivity and Decreases N2O Emissions by Increasing Soil Nitrogen Sequestration
by Yiren Liu, Jingshang Xiao, Xianjin Lan, Jianhua Ji, Hongqian Hou, Liumeng Chen and Zhenzhen Lv
Agronomy 2025, 15(8), 1783; https://doi.org/10.3390/agronomy15081783 - 24 Jul 2025
Viewed by 429
Abstract
Soil organic nitrogen (SON) positively influences crop productivity, greenhouse gas (GHG) emissions, and sustained nitrogen (N) supply. Herein, we observed the effect of different treatments; no fertilizers (CK), chemical fertilizers (nitrogen, phosphorus, and potassium (NPK)), organic manure, and NPK + OM (NPKOM). This [...] Read more.
Soil organic nitrogen (SON) positively influences crop productivity, greenhouse gas (GHG) emissions, and sustained nitrogen (N) supply. Herein, we observed the effect of different treatments; no fertilizers (CK), chemical fertilizers (nitrogen, phosphorus, and potassium (NPK)), organic manure, and NPK + OM (NPKOM). This study was performed in a randomized complete block design (RCBD) with three replications. The results indicated that NPKOM treatment significantly decreased the nitrous oxide (N2O) emissions by 19.97% and 17.47% compared to NPK in both years. This was linked with improved soil nutrient availability, soil organic carbon, soil organic nitrogen (SON) storage (10.06% and 12.38%), SON sequestration (150% and 140%), increased soil particulate (44.11% and 44%), and mineral-associated organic N (26.98% and 26.47%) availability. Furthermore, NPKOM also enhanced nitrate reductase (NR: 130% and 112%), glutamine synthetase (GS: 93% and 88%), sucrose phosphate synthase (SPS: 79% and 98%), SSs (synthetic direction; 57% and 50%), and decreased SSs activity in the decomposition direction (18% and 21%). This, in turn, inhibited the decomposition of sucrase and enhanced starch conversion into carbohydrates, thus leading to an increase in rice yield and a decrease in N2O emissions. All fertilizations, particularly NPKOM, significantly enhanced grain protein contents by increasing N uptake and its availability. Therefore, NPKOM is an effective practice to enhance rice productivity, and SON sequestration and mitigate the N2O emissions and subsequent climate change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

35 pages, 1745 KB  
Article
Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably
by Agnieszka Andrzejewska, Katarzyna Przygocka-Cyna and Witold Grzebisz
Sustainability 2025, 17(15), 6705; https://doi.org/10.3390/su17156705 - 23 Jul 2025
Viewed by 630
Abstract
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such [...] Read more.
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such as magnesium (Mg) and sulfur (S). This hypothesis was verified in a single-factor field experiment with winter wheat (WW) carried out in the 2015/2016, 2016/2017, and 2017/2018 growing seasons. The experiment consisted of seven variants: absolute control (AC), NP, NPK-MOP (K as Muriate of Potash), NPK-MOP+Ki (Kieserite), NPK-KK (K as Korn–Kali), NPK-KK+Ki, and NPK-KK+Ki+ES (Epsom Salt). The use of K as MOP increased grain yield (GY) by 6.3% compared to NP. In the NPK-KK variant, GY was 13% (+0.84 t ha−1) higher compared to NP. Moreover, GYs in this fertilization variant (FV) were stable over the years (coefficient of variation, CV = 9.4%). In NPK-KK+Ki+ES, the yield increase was the highest and mounted to 17.2% compared to NP, but the variability over the years was also the highest (CV ≈ 20%). The amount of N in grain N (GN) increased progressively from 4% for NPK-MOP to 15% for NPK-KK and 25% for NPK-KK+Ki+ES in comparison to NP. The nitrogen harvest index was highly stable, achieving 72.6 ± 3.1%. All analyzed NUE indices showed a significant response to FVs. The PFP-Nf (partial factor productivity of Nf) indices increased on NPK-MOP by 5.8%, NPK-KK by 12.9%, and NPK-KK+Ki+ES by 17.9% compared to NP. The corresponding Nf recovery of Nf in wheat grain was 47.2%, 55.9%, and 64.4%, but its total recovery by wheat (grain + straw) was 67%, 74.5%, and 87.2%, respectively. In terms of the theoretical and practical value of the tested indexes, two indices, namely, NUP (nitrogen unit productivity) and NUA (nitrogen unit accumulation), proved to be the most useful. From the farmer’s production strategy, FV with K applied in the form of Korn–Kali proved to be the most stable option due to high and stable yield, regardless of weather conditions. The increase in the number of nutritional factors optimizing the action of nitrogen in winter wheat caused the phenomenon known as the “scissors effect”. This phenomenon manifested itself in a progressive increase in nitrogen unit productivity (NUP) combined with a regressive trend in unit nitrogen accumulation (NUA) in the grain versus the balance of soil available Mg (Mgb). The studies clearly showed that obtaining grain that met the milling requirements was recorded only for NUA above 22 kg N t−1 grain. This was possible only with the most intensive Mg treatment (NPK-KK+Ki and NPK-KK+Ki+ES). The study clearly showed that three of the six FVs fully met the three basic conditions for sustainable crop production: (i) stabilization and even an increase in grain yield; (ii) a decrease in the mass of inorganic N in the soil at harvest, potentially susceptible to leaching; and (iii) stabilization of the soil fertility of P, K, and Mg. Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

17 pages, 8540 KB  
Article
Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum
by Li Huang, Rui Wang, Fuqiang Yu, Ruilong Liu, Chenxin He, Lanlan Huang, Shimei Yang, Dong Liu and Shanping Wan
Agronomy 2025, 15(7), 1749; https://doi.org/10.3390/agronomy15071749 - 20 Jul 2025
Viewed by 470
Abstract
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot [...] Read more.
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot experiment to compare the effects of three root nutrient regulations—Aolu 318S (containing N-P2O5-K2O in a ratio of 15-9-11 (w/w%)), Aolu 328S (11-11-18), and Youguduo (19-19-19)—on the mycorrhizal synthesis of P. armandiiT. indicum. The results showed that root nutrient supplementation significantly improved the seedling crown, plant height, ground diameter, biomass dry weight, and mycorrhizal infection rate of both the control and mycorrhizal seedlings, with the slow-release fertilizers Aolu 318S and 328S outperforming the quick-release fertilizer Youguduo. The suitable substrate composition in this experiment was as follows: pH 6.53–6.86, organic matter content 43.25–43.49 g/kg, alkali-hydrolyzable nitrogen 89.25–90.3 mg/kg, available phosphorus 83.69–87.32 mg/kg, available potassium 361.5–364.65 mg/kg, exchangeable magnesium 1.17–1.57 mg/kg, and available iron 33.06–37.3 mg/kg. It is recommended to mix the Aolu 318S and 328S solid fertilizers evenly into the substrate, with a recommended dosage of 2 g per plant. These results shed light on the pivotal role of a precise N-P-K ratio regulation in fostering sustainable ectomycorrhizal symbiosis, offering a novel paradigm for integrating nutrient management with mycorrhizal biotechnology to enhance forest restoration efficiency in arid ecosystems. Full article
Show Figures

Figure 1

17 pages, 2166 KB  
Article
Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions
by Jialan Chen, Weisong Zhu, Yuanxi Liu, Gang Chen, Juncheng Han, Wenhao Zhang and Junwen Wu
Plants 2025, 14(14), 2221; https://doi.org/10.3390/plants14142221 - 18 Jul 2025
Viewed by 345
Abstract
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 [...] Read more.
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 g/plant), and F4 (1200 g/plant) of secondary macronutrient water-soluble fertilizer. Growth parameters and N-P-K stoichiometry were analyzed. Key results: (1) Height increased continuously with fertilizer dosage at both slopes, while DBH peaked and then declined. (2) At upper slopes (nutrient-poor soil), fertilization elevated leaf P but reduced branch N/K and increased root P/K. At lower slopes (nutrient-rich soil), late-stage leaf N increased significantly, with roots accumulating P/K via a “storage strategy”. Stoichiometric thresholds indicated N-K co-limitation (early-mid stage) shifting to P limitation (late stage) on upper slopes and persistent N-K co-limitation on lower slopes. (3) PCA identified F4 (1200 g/plant) and F1 (600 g/plant) as optimal for upper and lower slopes, respectively. This research provides a theoretical basis for precision fertilization in Ochroma lagopus plantations, emphasizing slope-specific nutrient status and element interactions for dosage optimization. Full article
Show Figures

Figure 1

Back to TopTop