Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = NanoBEO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3283 KB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Viewed by 339
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

22 pages, 3862 KB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Cited by 1 | Viewed by 343
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

22 pages, 2800 KB  
Article
Clinical and Market Analysis of NanoBEO: A Public-Worth, Innovative Therapy for Behavioral and Psychological Symptoms of Dementia (BPSD)—Emerging Evidence and Its Implications for a Health Technology Assessment (HTA) and Decision-Making in National Health Systems
by Damiana Scuteri, Daniele Pierobon, Martina Pagliaro, Kengo Hamamura, Takafumi Hayashi, Loris Pignolo, Pierluigi Nicotera, Giacinto Bagetta and Maria Tiziana Corasaniti
Pharmaceutics 2024, 16(10), 1253; https://doi.org/10.3390/pharmaceutics16101253 - 27 Sep 2024
Cited by 1 | Viewed by 2382
Abstract
Background: According to scientific literature, some 99% of patients affected by Alzheimer’s disease (AD) suffer from behavioral and psychological symptoms of dementia (BPSD), also known as neuropsychiatric symptoms (NPSs). In particular, agitation is one of the most difficult disorders to treat. States of [...] Read more.
Background: According to scientific literature, some 99% of patients affected by Alzheimer’s disease (AD) suffer from behavioral and psychological symptoms of dementia (BPSD), also known as neuropsychiatric symptoms (NPSs). In particular, agitation is one of the most difficult disorders to treat. States of agitation represent a very serious problem as they make these subjects dangerous for themselves and others and worsen as the disease advances. To date, there are no specific solutions for treating agitation. The only authorized drug is risperidone (as well as brexpiprazole, approved by the FDA on 11 May 2023), which can be used for no longer than 6–12 weeks because it increases the risk of death—owing to cardiocerebrovascular accidents—by 1.6–1.7 times. Methods: In order to address the latter noteworthy unmet medical need, NanoBEO was produced. The aim of the present work is to generate the health technology assessment (HTA) of this nanotechnological device. The latter consists of a controlled release system, based on solid lipid nanoparticles loaded with bergamot essential oil (BEO). Results: The results of the present research assessed the current evidence in the field of non-pharmacological treatments for this condition, including relevant primary preclinical and clinical data studies supporting the use of this device and the production of the operative plan for its launch on the market. The findings offer recommendations for decision-making on its implementation in dementia. Conclusions: NanoBEO represents a public-worth innovation in this neglected area, marking a significant advancement in the history of dementia, moving from academic research to product development. Full article
Show Figures

Figure 1

14 pages, 4948 KB  
Article
An Investigation on the Most Likely Failure Locations in the BEoL Stack of a 20 nm Chip Due to Chip Package Interaction with the Use of Novel Semi-Elliptical Cracks
by Ganglong Li, Yidian Shi, Andrew A. O. Tay and Zhilin Long
Micromachines 2023, 14(10), 1953; https://doi.org/10.3390/mi14101953 - 19 Oct 2023
Cited by 3 | Viewed by 2160
Abstract
The era of 20 nm integrated circuits has arrived. There exist abundant heterogeneous micro/nano structures, with thicknesses ranging from hundreds of nanometers to sub-microns in the IC back end of the line stack, which put stringent demands on the reliability of the device. [...] Read more.
The era of 20 nm integrated circuits has arrived. There exist abundant heterogeneous micro/nano structures, with thicknesses ranging from hundreds of nanometers to sub-microns in the IC back end of the line stack, which put stringent demands on the reliability of the device. In this paper, the reliability issues of a 20 nm chip due to chip–package interaction during the reflow process is studied. A representative volume element of the detailed complex BEoL structure has been analyzed to obtain mechanical properties of the BEoL stack by adopting a sub-model analysis. For the first time, semi-elliptical cracks were used in conjunction with J-integral techniques to analyze the failure caused by Chip-to-Package Interaction for a 20 nm chip. The Energy Release Rate(ERR)for cracks at various interfaces and locations in the BEoL stack were calculated to predict the most likely mode and location of failure. We found that the ERR of interfacial cracks at the bottom surface of the interconnects are, on average, more than double those at the sidewalls, which are in turn more than double the number of cracks in the low-k inter-layer dielectric. A total of 500 cycles of thermal shock were conducted, which verified the predictions of the finite element simulations. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

17 pages, 2782 KB  
Article
Exploring the Synergistic Effect of Bergamot Essential Oil with Spironolactone Loaded Nano-Phytosomes for Treatment of Acne Vulgaris: In Vitro Optimization, In Silico Studies, and Clinical Evaluation
by Rofida Albash, Noha M. Badawi, Mohammed I. A. Hamed, Maha H. Ragaie, Sahar S. Mohammed, Rovan M. Elbesh, Khaled M. Darwish, Manar O. Lashkar, Sameh S. Elhady and Shaimaa Mosallam
Pharmaceuticals 2023, 16(1), 128; https://doi.org/10.3390/ph16010128 - 15 Jan 2023
Cited by 21 | Viewed by 4059
Abstract
The foremost target of the current work was to formulate and optimize a novel bergamot essential oil (BEO) loaded nano-phytosomes (NPs) and then combine it with spironolactone (SP) in order to clinically compare the efficiency of both formulations against acne vulgaris. The BEO-loaded [...] Read more.
The foremost target of the current work was to formulate and optimize a novel bergamot essential oil (BEO) loaded nano-phytosomes (NPs) and then combine it with spironolactone (SP) in order to clinically compare the efficiency of both formulations against acne vulgaris. The BEO-loaded NPs formulations were fabricated by the thin-film hydration and optimized by 32 factorial design. NPs’ assessments were conducted by measuring entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). In addition, the selected BEO-NPs formulation was further combined with SP and then examined for morphology employing transmission electron microscopy and three months storage stability. Both BEO-loaded NPs selected formula and its combination with SP (BEO-NPs-SP) were investigated clinically for their effect against acne vulgaris after an appropriate in silico study. The optimum BEO-NPs-SP showed PS of 300.40 ± 22.56 nm, PDI of 0.571 ± 0.16, EE% of 87.89 ± 4.14%, and an acceptable ZP value of −29.7 ± 1.54 mV. Molecular modeling simulations showed the beneficial role of BEO constituents as supportive/connecting platforms for favored anchoring of SP on the Phosphatidylcholine (PC) interface. Clinical studies revealed significant improvement in the therapeutic response of BEO-loaded NPs that were combined with SP over BEO-NPs alone. In conclusion, the results proved the ability to utilize NPs as a successful nanovesicle for topical BEO delivery as well as the superior synergistic effect when combined with SP in combating acne vulgaris. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 611 KB  
Article
Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis
by Ei Ei Khine and George Kaptay
Materials 2023, 16(2), 776; https://doi.org/10.3390/ma16020776 - 12 Jan 2023
Cited by 2 | Viewed by 2616
Abstract
Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash—dry—calcine the latter. However, the complete list of metal oxide NPs is missing with which this [...] Read more.
Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash—dry—calcine the latter. However, the complete list of metal oxide NPs is missing with which this technology works well. The aim of this study was to fill this knowledge gap and to provide a full list of possible metals for which this technology probably works well. Our methodology was chemical thermodynamics, analyzing solubilities of metal chlorides, metal oxides and metal hydroxides in water and also standard molar Gibbs energy changes accompanying the following: (i) the reaction between metal chlorides and NaOH; (ii) the dissociation reaction of metal hydroxides into metal oxide and water vapor and (iii) the reaction between metal oxides and gaseous carbon dioxide to form metal carbonates. The major result of this paper is that the following metal-oxide NPs can be produced by the above technology from the corresponding metal chlorides: Al2O3, BeO, CaO, CdO, CoO, CuO, FeO, Fe2O3, In2O3, La2O3, MgO, MnO, Nd2O3, NiO, Pr2O3, Sb2O3, Sm2O3, SnO, Y2O3 and ZnO. From the analysis of the literature, the following nine nano-oxides have been already obtained experimentally with this technology: CaO, CdO, Co3O4, CuO, Fe2O3, NiO, MgO, SnO2 and ZnO (note: Co3O4 and SnO2 were obtained under oxidizing conditions during calcination in air). Thus, it is predicted here that the following nano-oxides can be potentially synthesized with this technology in the future: Al2O3, BeO, In2O3, La2O3, MnO, Nd2O3, Pr2O3, Sb2O3, Sm2O3 and Y2O3. The secondary result is that among the above 20 nano-oxides, the following five nano-oxides are able to capture carbon dioxide from air at least down to 42 ppm residual CO2-content, i.e., decreasing the current level of 420 ppm of CO2 in the Earth’s atmosphere at least tenfold: CaO, MnO, MgO, CdO, CoO. The tertiary result is that by mixing the AuCl3 solution with NaOH solution, Au nano-particles will precipitate without forming Au-oxide NPs. The results are significant for the synthesis of metal nano-oxide particles and for capturing carbon dioxide from air. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

11 pages, 2394 KB  
Article
Analgesic Characteristics of NanoBEO Released by an Airless Dispenser for the Control of Agitation in Severe Dementia
by Damiana Scuteri, Laura Rombolà, Takafumi Hayashi, Chizuko Watanabe, Shinobu Sakurada, Kengo Hamamura, Tsukasa Sakurada, Paolo Tonin, Giacinto Bagetta, Luigi A. Morrone and Maria Tiziana Corasaniti
Molecules 2022, 27(15), 4987; https://doi.org/10.3390/molecules27154987 - 5 Aug 2022
Cited by 6 | Viewed by 2857
Abstract
Chronic pain is one of the most common causes of the need for clinical evaluation, acquiring more importance in the elderly with cognitive impairment. Reduced self-reporting capabilities cause unrelieved pain contributing to the development of agitation. Safe and effective pain treatment can afford [...] Read more.
Chronic pain is one of the most common causes of the need for clinical evaluation, acquiring more importance in the elderly with cognitive impairment. Reduced self-reporting capabilities cause unrelieved pain contributing to the development of agitation. Safe and effective pain treatment can afford the management of agitation without the serious increase in death risk associated with neuroleptics. To this aim, the essential oil of bergamot (BEO), proven by rigorous evidence to have strong preclinical anti-nociceptive and anti-allodynic properties, has been engineered (NanoBEO, patent EP 4003294) to allow randomized, double-blind, placebo-controlled trials (BRAINAID, NCT04321889). The present study: (1) assesses the analgesic effects of a single therapeutic dose of NanoBEO, as supplied by an airless dispenser for clinical translation, in models of inflammatory, neuropathic, and sensitization types of pain relevant to clinic; (2) provides a dose–response analysis of the efficacy of NanoBEO on scratching behavior, a typical behavioral disturbance occurring in dementia. A single therapeutic dose of NanoBEO confirms efficacy following thirty minutes pre-treatment with capsaicin and on the central sensitization phase induced by formalin. Moreover, it has an ID50 of 0.6312 mg and it is efficacious on static and dynamic mechanical allodynia. Altogether, the gathered results strengthen the potential of NanoBEO for clinical management of pain and agitation. Full article
(This article belongs to the Special Issue Delivery Systems of Bioactive Compounds)
Show Figures

Figure 1

10 pages, 942 KB  
Review
Pharmacotechnological Advances for Clinical Translation of Essential Oils for the Treatment of Pain and Agitation in Severe Dementia
by Damiana Scuteri, Chizuko Watanabe, Shinobu Sakurada, Kengo Hamamura, Tsukasa Sakurada, Paolo Tonin, Giacinto Bagetta and Maria Tiziana Corasaniti
Processes 2022, 10(7), 1340; https://doi.org/10.3390/pr10071340 - 9 Jul 2022
Cited by 4 | Viewed by 3249
Abstract
The demand for natural products is steadily increasing, and pharmacotechnological engineering is needed to allow rigorous investigation of their efficacy and safety in clinical conditions representing still unmet needs. Among aged patients affected by dementia, up to 80% of residents in nursing homes [...] Read more.
The demand for natural products is steadily increasing, and pharmacotechnological engineering is needed to allow rigorous investigation of their efficacy and safety in clinical conditions representing still unmet needs. Among aged patients affected by dementia, up to 80% of residents in nursing homes suffer from chronic pain and 97% from fluctuant neuropsychiatric symptoms (NPS), of which the most challenging is agitation. It is, at least in part, due to undertreated pain and treated with antipsychotics almost doubling the risk of death. In the frame of a scoping review assessing the existence of essential oils undergoing engineering pharmacotechnological processes using solid lipid nanoparticle delivery systems for clinical translation in pain and/or neuropsychiatric symptoms of dementia following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR), here we identified that the sole essential oil engineered to overcome the criticisms of aromatherapy clinical trials in pain and dementia is the essential oil of bergamot (BEO). Therefore, we present the process leading to the actually ongoing randomized, double-blind, placebo-controlled NCT04321889 clinical trial to assess the efficacy and safety of intervention with bergamot in the management of agitation and pain in severe dementia to be followed also for the proof of concept of efficacy and safety of other essential oils. Full article
(This article belongs to the Special Issue Natural Products for Drug Discovery and Development)
Show Figures

Figure 1

24 pages, 6492 KB  
Article
Mg12O12 and Be12O12 Nanocages as Sorbents and Sensors for H2S and SO2 Gases: A Theoretical Approach
by H. M. Badran, Kh. M. Eid, Sotirios Baskoutas and H. Y. Ammar
Nanomaterials 2022, 12(10), 1757; https://doi.org/10.3390/nano12101757 - 21 May 2022
Cited by 37 | Viewed by 2967
Abstract
Theoretical calculations based on the Density Functional Theory (DFT) have been performed to investigate the interaction of H2S as well SO2 gaseous molecules at the surfaces of Be12O12 and Mg12O12 nano-cages. The results show [...] Read more.
Theoretical calculations based on the Density Functional Theory (DFT) have been performed to investigate the interaction of H2S as well SO2 gaseous molecules at the surfaces of Be12O12 and Mg12O12 nano-cages. The results show that a Mg12O12 nano-cage is a better sorbent than a Be12O12 nano-cage for the considered gases. Moreover, the ability of SO2 gas to be adsorbed is higher than that of H2S gas. The HOMO–LUMO gap (Eg) of Be12O12 nano-cage is more sensitive to SO2 than H2S adsorption, while the Eg value of Mg12O12 nano-cage reveals higher sensitivity to H2S than SO2 adsorption. The molecular dynamic calculations show that the H2S molecule cannot be retained at the surface of a Be12O12 nano-cage within 300–700 K and cannot be retained on a Mg12O12 nano-cage at 700 K, while the SO2 molecule can be retained at the surfaces of Be12O12 and Mg12O12 nano-cages up to 700 K. Moreover, the thermodynamic calculations indicate that the reactions between H2S as well SO2 with Be12O12 and Mg12O12 nano-cages are exothermic. Our results suggest that we can use Be12O12 and Mg12O12 nano-cages as sorbents as well as sensors for H2S and SO2 gases. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

17 pages, 1969 KB  
Article
Ammonium Glycyrrhizinate and Bergamot Essential Oil Co-Loaded Ultradeformable Nanocarriers: An Effective Natural Nanomedicine for In Vivo Anti-Inflammatory Topical Therapies
by Maria Chiara Cristiano, Nicola d’Avanzo, Antonia Mancuso, Martine Tarsitano, Antonella Barone, Daniele Torella, Donatella Paolino and Massimo Fresta
Biomedicines 2022, 10(5), 1039; https://doi.org/10.3390/biomedicines10051039 - 30 Apr 2022
Cited by 20 | Viewed by 3160
Abstract
Bergamot essential oil (BEO) and Ammonium glycyrrhizinate (AG), naturally derived compounds, have remarkable anti-inflammatory properties, thus making them suitable candidates for the treatment of skin disorders. Despite this, their inadequate physicochemical properties strongly compromise their topical application. Ultradeformable nanocarriers containing both BEO and [...] Read more.
Bergamot essential oil (BEO) and Ammonium glycyrrhizinate (AG), naturally derived compounds, have remarkable anti-inflammatory properties, thus making them suitable candidates for the treatment of skin disorders. Despite this, their inadequate physicochemical properties strongly compromise their topical application. Ultradeformable nanocarriers containing both BEO and AG were used to allow their passage through the skin, thus maximizing their therapeutic activity. Physicochemical characterization studies were performed using Zetasizer Nano ZS and Turbiscan Lab®. The dialysis method was used to investigate the release profile of the active compounds. In vivo studies were performed on human healthy volunteers through the X-Rite spectrophotometer. The nanosystems showed suitable features for topical cutaneous administration in terms of mean size, surface charge, size distribution, and long-term stability/storability. The co-delivery of BEO and AG in the deformable systems improved both the release profile kinetic of ammonium glycyrrhizinate and deformability properties of the resulting nanosystems. The topical cutaneous administration on human volunteers confirmed the efficacy of the nanosystems. In detail, BEO and AG-co-loaded ultradeformable vesicles showed a superior activity compared to that recorded from the ones containing AG as a single agent. These results are promising and strongly encourage a potential topical application of AG/BEO co-loaded nanocarriers for anti-inflammatory therapies. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Drug Delivery)
Show Figures

Graphical abstract

13 pages, 1036 KB  
Article
Development and Translation of NanoBEO, a Nanotechnology-Based Delivery System of Bergamot Essential Oil Deprived of Furocumarins, in the Control of Agitation in Severe Dementia
by Damiana Scuteri, Roberta Cassano, Sonia Trombino, Rossella Russo, Hirokazu Mizoguchi, Chizuko Watanabe, Kengo Hamamura, Soh Katsuyama, Takaaki Komatsu, Luigi Antonio Morrone, Laura Rombolà, Annagrazia Adornetto, Annarita S. Laganà, Maria Tiziana Corasaniti, Paolo Tonin, Shinobu Sakurada, Tsukasa Sakurada, Pierluigi Nicotera and Giacinto Bagetta
Pharmaceutics 2021, 13(3), 379; https://doi.org/10.3390/pharmaceutics13030379 - 12 Mar 2021
Cited by 39 | Viewed by 5290
Abstract
Dementia is one of the most common causes of disability worldwide characterized by memory loss, cognitive impairment, and behavioral and psychological symptoms (BPSD), including agitation. Treatment of the latter consists of the off-label use of harmful atypical antipsychotics, though a significant reduction is [...] Read more.
Dementia is one of the most common causes of disability worldwide characterized by memory loss, cognitive impairment, and behavioral and psychological symptoms (BPSD), including agitation. Treatment of the latter consists of the off-label use of harmful atypical antipsychotics, though a significant reduction is afforded by pain control. The use of an essential oil endowed with analgesic properties and devoid of toxicity would represent an important option for the management of agitation in dementia. Therefore, the aim of this study was to engineer a nanotechnology delivery system based on solid lipid nanoparticles loaded with bergamot essential oil (BEO) and devised in the pharmaceutical form of an odorless cream (NanoBEO) to confirm its analgesic efficacy for further development and application to control agitation in dementia. BEO has proven strong antinociceptive and anti-allodynic properties and, in its bergapten-free form, it is completely devoid of phototoxicity. NanoBEO has been studied in vivo confirming the previously reported analgesic activity of BEO to which is now added its anti-itching properties. Due to the nanotechnology delivery system, the stability of titrated BEO components is guaranteed. Finally, the latter invention, currently under patent consideration, is smell-devoid allowing efficacy and safety to be established in double-blind clinical trials; until now the latter studies have been impeded in aromatherapy by the strong odor of essential oils. A clinical trial NCT04321889 has been designed to provide information about the efficacy and safety of NanoBEO on agitation and pain in patients suffering from severe dementia. Full article
Show Figures

Figure 1

15 pages, 3987 KB  
Article
Study on the Synergetic Fire-Retardant Effect of Nano-Sb2O3 in PBT Matrix
by Lei Niu, Jianlin Xu, Wenlong Yang, Jiqiang Ma, Jinqiang Zhao, Chenghu Kang and Jiaqiang Su
Materials 2018, 11(7), 1060; https://doi.org/10.3390/ma11071060 - 22 Jun 2018
Cited by 23 | Viewed by 3970
Abstract
Nano-Sb2O3 has excellent synergistic flame-retardant effects. It can effectively improve the comprehensive physical and mechanical properties of composites, reduce the use of flame retardants, save resources, and protect the environment. In this work, nanocomposites specimens were prepared by the melt-blending [...] Read more.
Nano-Sb2O3 has excellent synergistic flame-retardant effects. It can effectively improve the comprehensive physical and mechanical properties of composites, reduce the use of flame retardants, save resources, and protect the environment. In this work, nanocomposites specimens were prepared by the melt-blending method. The thermal stability, mechanical properties, and flame retardancy of a nano-Sb2O3–brominated epoxy resin (BEO)–poly(butylene terephthalate) (PBT) composite were analyzed, using TGA and differential scanning calorimetry (DSC), coupled with EDX analysis, tensile testing, cone calorimeter tests, as well as scanning electron microscopy (SEM) and flammability tests (limiting oxygen index (LOI), UL94). SEM observations showed that the nano-Sb2O3 particles were homogeneously distributed within the PBT matrix, and the thermal stability of PBT was improved. Moreover, the degree of crystallinity and the tensile strength were improved, as a result of the superior dispersion and interfacial interactions between nano-Sb2O3 and PBT. At the same time, the limiting oxygen index and flame-retardant grade were increased as the nano-Sb2O3 content increased. The results from the cone calorimeter test showed that the peak heat release rate (PHRR), total heat release rate (THR), peak carbon dioxide production (PCO2P), and peak carbon monoxide production (PCOP) of the nanocomposites were obviously reduced, compared to those of the neat PBT matrix. Meanwhile, the SEM–energy dispersive spectrometry (EDX) analysis of the residues indicated that a higher amount of C element was left, thus the charring layer of the nanocomposites was compact. This showed that nano-Sb2O3 could promote the degradation and charring of the PBT matrix, improving thermal stability and flame retardation. Full article
Show Figures

Figure 1

Back to TopTop