Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,611)

Search Parameters:
Keywords = Nb2O5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2911 KB  
Review
Selective Deoxygenation of Biomass Polyols into Diols
by Juan Carlos Serrano-Ruiz
Molecules 2025, 30(17), 3559; https://doi.org/10.3390/molecules30173559 - 30 Aug 2025
Viewed by 229
Abstract
The transition to a sustainable chemical industry necessitates efficient valorization of biomass, with polyols serving as versatile, renewable feedstocks. This comprehensive review, focusing on advancements within the last five years, critically analyzes the selective hydrogenolysis of key biomass-derived polyols—including glycerol, erythritol, xylitol, and [...] Read more.
The transition to a sustainable chemical industry necessitates efficient valorization of biomass, with polyols serving as versatile, renewable feedstocks. This comprehensive review, focusing on advancements within the last five years, critically analyzes the selective hydrogenolysis of key biomass-derived polyols—including glycerol, erythritol, xylitol, and sorbitol—into valuable diols. Emphasis is placed on the intricate catalytic strategies developed to control C–O bond cleavage, preventing undesired C–C scission and cyclization. The review highlights the design of bifunctional catalysts, often integrating noble metals (e.g., Pt, Ru, Ir) with oxophilic promoters (e.g., Re, W, Sn) on tailored supports (e.g., TiO2, Nb2O5, N-doped carbon), which have led to significant improvements in selectivity towards specific diols such as 1,2-propanediol (1,2-PD), 1,3-propanediol (1,3-PD), and ethylene glycol (EG). While substantial progress in mechanistic understanding and catalyst performance has been achieved, challenges persist regarding catalyst stability under harsh hydrothermal conditions, the economic viability of noble metal systems, and the processing of complex polyol mixtures from lignocellulosic hydrolysates. Future directions for this field underscore the imperative for more robust, cost-effective catalysts, advanced computational tools, and intensified process designs to facilitate industrial-scale production of bio-based diols. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 1060 KB  
Article
Optimization of Nitrogen Injection via Top-Blown O2–N2 Mixed Gas in BOF Steelmaking for Enhanced Rebar Performance
by Mingwei Tu, Chao Feng, Tao Lin, Rong Zhu, Huapeng Yang, Guangsheng Wei and Jie Zhang
Metals 2025, 15(9), 960; https://doi.org/10.3390/met15090960 - 29 Aug 2025
Viewed by 216
Abstract
Rebar is a critical material in concrete constructions like high-rise buildings and seismic-resistant structures. To enhance its properties, microalloying with nitrogen is employed, but traditional methods using micro alloy additives such as vanadium (FeV), niobium (FeNb), titanium (FeTi), and vanadium nitride (VN) face [...] Read more.
Rebar is a critical material in concrete constructions like high-rise buildings and seismic-resistant structures. To enhance its properties, microalloying with nitrogen is employed, but traditional methods using micro alloy additives such as vanadium (FeV), niobium (FeNb), titanium (FeTi), and vanadium nitride (VN) face issues of high costs, reduced purity, and difficulty in controlling molten steel composition. This article presents a novel approach of injecting top-blown O2–N2 mixed gas to increase nitrogen content efficiently. Experiments simulated HRB400 steel samples, varying N2 ratios (10%, 20%, 30%, 40%), temperatures (1500 °C, 1550 °C, 1600 °C), and blowing times (1, 2, 3 min). Results show that optimized parameters enable nitrogen content adjustment from 50 to 104 ppm, with nitrogen utilization improved to 5.4%. This method utilizes inexpensive N2 gas, reduces impurities, and provides precise control, offering a cost-effective and sustainable solution for high-performance steel production by replacing costly alloys and meeting nitrogen requirements. Full article
(This article belongs to the Special Issue Smelting Process of Metals)
Show Figures

Figure 1

13 pages, 2080 KB  
Article
First-Principles Study on the Photocatalytic Performance of K(Ta0.5Nb0.5)O3 Doped with Metals (Cd, Sn, Hf)
by Can Zhao, Qiao-Yue Chen, Xin-Yuan Zhou, Xu-Cai Zhao, Bo-Cheng Lei, Li-Li Zhang, Jing Zhao and Yi-Neng Huang
Nanomaterials 2025, 15(17), 1322; https://doi.org/10.3390/nano15171322 - 28 Aug 2025
Viewed by 268
Abstract
Based on the excellent performance of the K(Ta0.5Nb0.5)O3 (KTN) system, this study systematically investigated the mechanism of the influence of metal element (Cd, Sn, Hf) doping on the photocatalytic performance of KTN ferroelectric materials using the density functional [...] Read more.
Based on the excellent performance of the K(Ta0.5Nb0.5)O3 (KTN) system, this study systematically investigated the mechanism of the influence of metal element (Cd, Sn, Hf) doping on the photocatalytic performance of KTN ferroelectric materials using the density functional theory (DFT) based on first principles. The findings indicate that after metal atom doping, the tolerance factor of doping systems is similar to that of pure KTN crystals, confirming that doping does not compromise its structural stability. However, the ion radius differences caused by doping lead to lattice distortion, significantly reducing the bandgap width. Because the impurity element substituting the Ta site exhibits a lower valence state compared to Ta, holes become the majority carriers, thereby endowing the semiconductor with p-type characteristics. These characteristics effectively suppress electron–hole recombination while enhancing electron transitions. Furthermore, the increase in the dielectric constant of the doped system indicates an enhancement in its polarization capability, which is accompanied by a significant improvement in carrier mobility. The peak of the imaginary part of the dielectric function and the peak of the absorption spectrum both shift towards the low-energy region, indicating that doping has expanded the light response range of the system. Moreover, the effective mass of the holes in all doped systems is significantly higher than that of the electrons, further demonstrating that the introduction of impurities is conducive to hindering the separation of photogenerated electron–hole pairs. These modifications significantly enhance the photocatalytic performance of the systems. Full article
Show Figures

Figure 1

22 pages, 4916 KB  
Article
The Genesis and Geological Significance of the Chaluo Granite in Yidun Magmatic Arc, Western Sichuan, China: Constraints from the Zircon U-Pb Chronology, Elemental Geochemistry and S-Pb-Hf Isotope
by Wenjing Yang, Tianshe Cheng, Xuebin Zhang, Lijun Guo, Xujiang Cheng, Xingfang Duo, Hangyu Fan, Hongsheng Gao, Lipeng Tu, Meng Zhao and Weihong Dong
Minerals 2025, 15(9), 916; https://doi.org/10.3390/min15090916 - 28 Aug 2025
Viewed by 262
Abstract
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, [...] Read more.
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, quartz, and biotite, with a small amount of apatite. LA-ICP-MS zircon U-Pb dating yielded crystallization ages of (87 ± 3) Ma for the Chaluo granite, indicating its formation in the Late Cretaceous. Elemental geochemical testing results showed that the Chaluo granite exhibits I-type granite characteristics. It has undergone significant fractional crystallization processes, with high SiO2 contents (72.83–76.63 wt%), K (K2O/Na2O = 1.33–1.53), Al2O3 (Al2O3 = 12.24–13.56 wt%, A/CNK = 0.91–1.08), and a high differentiation index (DI = 88.91–92.49). Notably, the MgO contents were low (0.10–0.26 wt%), and there were significant depletions of Nb, Sr, Ti, and Eu, while Rb, Pb, Th, U, Zr, and Hf were significantly enriched. The total rare earth element (REE) contents were relatively low (211–383 ppm), showing significant light REE (LREE) enrichment (LREE/HREE = 4.46–5.57) and a pronounced negative Eu anomaly (δEu = 0.09–0.17). In situ zircon Hf analyses, combined with 206Pb/238U ages, gave εHf(t) values ranging from −3.8 to 1.72 and two-stage Hf ages (tDM2) of 875–1160 Ma. Together with the S and Pb isotope compositions of the Chaluo granite, its magma likely originated from the partial melting of Middle–Neoproterozoic sedimentary rocks enriched in biogenic S. The tectonic-setting analysis indicates that the Chaluo granite formed in a post-orogenic intracontinental extensional environment. This environment was triggered by the northward subduction-collision of the Lhasa block, followed by slab break-off and the upwelling of the asthenosphere in the Neo-Tethys orogenic belt. We propose that the Paleo-Tethys tectonic belt was influenced by the Neo-Tethys tectonic activity, at least in the Yidun magmatic arc region during the Late Cretaceous. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

11 pages, 3094 KB  
Article
Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition
by Shaoqing Song, Tianqi Xiao, Jiashun Song, Hongde Liu, Dahuai Zheng, Yongfa Kong and Jingjun Xu
Crystals 2025, 15(9), 756; https://doi.org/10.3390/cryst15090756 - 27 Aug 2025
Viewed by 302
Abstract
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication [...] Read more.
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication techniques available, pulsed laser deposition (PLD) presents a cost-effective and versatile alternative to crystalline ion slicing (CIS), particularly advantageous for achieving high doping concentrations. However, a persistent challenge in PLD-grown lithium niobate film is cracking, primarily induced by the substantial thermal stress resulting from the mismatch in thermal expansion coefficients between LN and the substrate. In this study, we implemented a series of process modifications to address the cracking issue and successfully achieved crack-free LN films by introducing a lithium-deficient phase. This approach enabled the successful fabrication of highly Fe3+-doped LN films with a high electrical conductivity of 9.95 × 10−5 S/m while also exhibiting characteristic polarization switching behavior. These results demonstrate that PLD enables the fabrication of highly doped, structurally robust LN films and holds significant potential for the development of advanced electronic and optoelectronic devices. Full article
Show Figures

Figure 1

22 pages, 7924 KB  
Article
Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit
by Wencheng Liu, Fanqi Kong, Haibo Ding, Jing Zhang and Mingtian Zhu
Minerals 2025, 15(9), 905; https://doi.org/10.3390/min15090905 - 26 Aug 2025
Viewed by 311
Abstract
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the [...] Read more.
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the largest and most representative, characterized by typical banded iron–silica layers. Detailed fieldwork identified a tuff layer conformably contacting the IFs at the roof rocks of IFs and a ferruginous mudstone layer at the floor rocks of IFs in drill core ZK4312. Geochemical and zircon U-Pb-Hf isotopic analyses were performed. The tuff has a typical tuff structure, mostly made of quartz, and contains a significant amount of natural sulfur. It also has high SiO2 content (77.90%–80.49%) and sulfur content (0.78%–3.06%). The ferruginous mudstone has a volcanic clastic structure and is mainly composed of quartz and chlorite, with abundant coeval pyrite. It shows lower SiO2 content (53.83%–60.32%) and higher TFe2O3 content (10.29%–16.24%). Both layers share similar rare earth element (REE) distribution patterns and trace element compositions, with light REE enrichment and negative Eu, Nb, and Ti anomalies, consistent with arc volcanic geochemistry. Zircon U-Pb ages indicate crystallization of the tuff at 1102 ± 13 Ma and maximum deposition of the mudstone at 1110 ± 41 Ma. These data suggest formation during different stages of the same volcanic–sedimentary process. The εHf(t) values (3.60–12.35 for tuff, 2.92–8.19 for mudstone) resemble those of Algoma-type IF host rocks, implying derivation from re-melted new crust. The Dimunalike IFs likely formed in a submarine volcanic–sedimentary environment. In conclusion, although the Mesoproterozoic ocean was generally in a low-oxygen state, which was not conducive to large-scale IF deposition, localized submarine volcanic–hydrothermal activity could still lead to IF formation. Full article
(This article belongs to the Special Issue Geochemical, Isotopic, and Biotic Records of Banded Iron Formations)
Show Figures

Graphical abstract

18 pages, 2589 KB  
Article
Synthesis of Nb-Doped TiO2 Nanoparticles for Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and DFT Approach
by Bouthaina Shili, Othmen Khaldi, Cristian Mendes-Felipe, Maibelin Rosales, Dinis C. Alves, Pedro M. Martins, Rached Ben Younes and Senentxu Lanceros-Mendez
Nanomaterials 2025, 15(17), 1307; https://doi.org/10.3390/nano15171307 - 25 Aug 2025
Viewed by 467
Abstract
The persistence of pharmaceutical pollutants such as ciprofloxacin (CIP) in aquatic environments represents a critical environmental threat due to their potential to induce antimicrobial resistance. Photocatalysis using TiO2-based materials offers a promising solution for their mineralization; however, the limited visible-light response [...] Read more.
The persistence of pharmaceutical pollutants such as ciprofloxacin (CIP) in aquatic environments represents a critical environmental threat due to their potential to induce antimicrobial resistance. Photocatalysis using TiO2-based materials offers a promising solution for their mineralization; however, the limited visible-light response of TiO2 and charge carrier recombination restricts its overall efficiency. In this study, Nb-doped TiO2 nanoparticles were synthesized via the sol–gel method, incorporating Nb5+, ions into the TiO2 lattice to modulate the structural and electronic properties of TiO2 to enhance its photocatalytic performance for CIP degradation under UV and visible irradiation. Comprehensive structural, morphological, and optical analyses revealed that Nb incorporation stabilizes the anatase phase, reduces particle size (from 21.42 nm to 10.29 nm), and induces a slight band gap widening (from 2.85 to 2.87 eV) due to the Burstein–Moss effect. Despite this blue shift, Nb-TiO2 exhibited significantly improved photocatalytic activity under visible light, achieving 86% CIP degradation with a reaction rate 16 times higher than that of undoped TiO2. This enhancement was attributed to improved charge separation and higher hydroxyl radical (OH) generation, driven by excess conduction band electrons introduced by Nb doping. Density Functional Theory (DFT) calculations further elucidated the electronic structure modifications responsible for this behavior, offering molecular-level insights into Nb dopant-induced property tuning. These findings demonstrate how targeted doping strategies can engineer multifunctional nanomaterials with superior photocatalytic efficiencies, especially under visible light, highlighting the synergy between experimental design and theoretical modeling for environmental applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

25 pages, 3030 KB  
Review
Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices
by Yan Zhang, Xuefeng Xiao, Jiayi Chen, Han Zhang, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang and Xuefeng Zhang
Inorganics 2025, 13(9), 278; https://doi.org/10.3390/inorganics13090278 - 22 Aug 2025
Viewed by 304
Abstract
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have [...] Read more.
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have a lithium to niobium ratio ([Li]/[Nb]) close to 1:1,demonstrate superior performance characteristics compared to composition lithium niobate (Congruent Lithium Niobate (CLN), [Li]/[Nb] = 48.5:51.5) crystals. NSLN crystals have a lower coercive field (~4 kV/mm), higher electro-optic coefficient (γ33 = 38.3 pm/V), and better nonlinear optical properties. This paper systematically reviews the research progress on preparation methods, the physical properties of LN and NSLN crystals, and their applications in devices such as electro-optical modulators, optical micro-ring resonators, and holographic storage. Finally, the future development direction of NSLN crystals in the preparation process (large-size single-crystal growth and defect control) and new electro-optical devices (low voltage deflectors based on domain engineering) is envisioned. Full article
Show Figures

Figure 1

13 pages, 3824 KB  
Article
Enhanced Piezoelectric Properties and Conduction Mechanism in Na0.5Bi2.5Nb2O9 Piezoelectric Ceramics
by Jianming Deng, Kaijie Chen, Caijin Chen, Chenyang Zheng, Biao Zhang, Lanpeng Guo, Ting Wang, Kai Chen, Laijun Liu and Weiping Gong
Nanomaterials 2025, 15(17), 1293; https://doi.org/10.3390/nano15171293 - 22 Aug 2025
Viewed by 493
Abstract
In this work, (NaBi)0.5−x(LiSm)xBi2Nb2O9 (NBN-xLS, x = 0.00–0.06) ceramics were fabricated by co-doping of LiSm into Na0.5Bi2.5Nb2O9. The traditional solid-phase technique was employed [...] Read more.
In this work, (NaBi)0.5−x(LiSm)xBi2Nb2O9 (NBN-xLS, x = 0.00–0.06) ceramics were fabricated by co-doping of LiSm into Na0.5Bi2.5Nb2O9. The traditional solid-phase technique was employed for the entire synthesis process. The impact of LiSm doping on the crystal structure, dielectric, ferroelectric, and piezoelectric properties, as well as the underlying conduction mechanisms in the NBN-xLS ceramics, was analyzed systematically. The XRD patterns and the Rietveld refinement revealed that lattice distortion reduced with an increase in the LiSm doping amount. The decrease in lattice distortion significantly contributed to its improved ferroelectric and piezoelectric characteristics. The results showed that the NBN-xLS ceramics were primarily p-type materials due to their bulk-limited conduction, with oxygen holes and vacancies acting as the conducting species, and the appearance of weak ion conduction at high temperatures. The NBN-0.04LS ceramic, in particular, displayed the highest performance, with Pr, Tc, and d33 values of 9.05 μC/cm2, 777 °C, and 25.2 pC/N, respectively. Additionally, the ceramic displayed remarkable thermal stability, with its d33 retaining 95.0% of its original value after annealing at 760 °C. These results demonstrate that LiSm co-doped Na0.5Bi2.5Nb2O9 ceramics have potential for use in high-temperature sensors. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

16 pages, 1307 KB  
Article
Kinetic Analysis of SARS-CoV-2 S1–Integrin Binding Using Live-Cell, Label-Free Optical Biosensing
by Nicolett Kanyo, Krisztina Borbely, Beatrix Peter, Kinga Dora Kovacs, Anna Balogh, Beatrix Magyaródi, Sandor Kurunczi, Inna Szekacs and Robert Horvath
Biosensors 2025, 15(8), 534; https://doi.org/10.3390/bios15080534 - 14 Aug 2025
Viewed by 726
Abstract
The SARS-CoV-2 spike (S1) protein facilitates viral entry through binding to angiotensin-converting enzyme 2 (ACE2), but it also contains an Arg–Gly–Asp (RGD) motif that may enable interactions with RGD-binding integrins on ACE2-negative cells. Here, we provide quantitative evidence for this alternative binding pathway [...] Read more.
The SARS-CoV-2 spike (S1) protein facilitates viral entry through binding to angiotensin-converting enzyme 2 (ACE2), but it also contains an Arg–Gly–Asp (RGD) motif that may enable interactions with RGD-binding integrins on ACE2-negative cells. Here, we provide quantitative evidence for this alternative binding pathway using a live-cell, label-free resonant waveguide grating (RWG) biosensor. RWG technology allowed us to monitor real-time adhesion kinetics of live cells to RGD-displaying substrates, as well as cell adhesion to S1-coated surfaces. To characterize the strength of the integrin–S1 interaction, we determined the dissociation constant using two complementary approaches. First, we performed a live-cell competitive binding assay on RGD-displaying surfaces, where varying concentrations of soluble S1 were added to cell suspensions. Second, we recorded the adhesion kinetics of cells on S1-coated surfaces and fitted the data using a kinetic model based on coupled ordinary differential equations. By comparing the results from both methods, we estimate that approximately 33% of the S1 molecules immobilized on the Nb2O5 biosensor surface are capable of initiating integrin-mediated adhesion. These findings support the existence of an alternative integrin-dependent entry route for SARS-CoV-2 and highlight the effectiveness of label-free RWG biosensing for quantitatively probing virus–host interactions under physiologically relevant conditions without the need of the isolation of the interaction partners from the cells. Full article
(This article belongs to the Special Issue In Honor of Prof. Evgeny Katz: Biosensors: Science and Technology)
Show Figures

Figure 1

12 pages, 1331 KB  
Proceeding Paper
Tailoring the Optical and Sensing Properties of Sol–Gel Niobia Coatings via Doping with Silica and Noble Metal Nanoparticles
by Tsvetanka Babeva, Venelin Pavlov, Georgi Zlatinov, Biliana Georgieva, Penka Terziyska, Gergana Alexieva, Katerina Lazarova and Rosen Georgiev
Eng. Proc. 2025, 105(1), 4; https://doi.org/10.3390/engproc2025105004 - 14 Aug 2025
Viewed by 279
Abstract
Nb2O5 (niobia) coatings were prepared by spin coating of niobium sol, synthesized using niobium chloride as the precursor and ethanol and water as solvents, followed by high-temperature annealing. Doping of the films was achieved by incorporating commercially available SiO2 [...] Read more.
Nb2O5 (niobia) coatings were prepared by spin coating of niobium sol, synthesized using niobium chloride as the precursor and ethanol and water as solvents, followed by high-temperature annealing. Doping of the films was achieved by incorporating commercially available SiO2 (Ludox) and noble metal nanoparticles (NPs) into the sol prior to its deposition. Various sizes of Pt (5 and 30 nm), Ag (10, 20, and 40 nm), and Au (5, 10, and 20 nm) NPs were used to enhance sensing behavior of coatings. After annealing, films were subjected to chemical etching to remove the silica phase. This process generated porosity within the films, which in turn enabled the tailoring of both their optical and sensing properties. It was demonstrated that both the type and size of the incorporated nanoparticles significantly influenced the sensing behavior. The most effective enhancement was observed with the addition of 10 nm AuNPs. Optical characterization indicated that 10 nm AuNPs had a minimal effect on the optical properties. In contrast, doping with 20 nm AuNPs led to a reduction in the refractive index and an increase in Urbach energy. No significant alteration in the optical band gap due to doping was observed. Full article
Show Figures

Figure 1

17 pages, 3740 KB  
Article
Micro Orthogonal Fluxgate Sensor Fabricated with Amorphous CoZrNb Film
by Kyung-Won Kim, Sung-Min Hong, Daesung Lee, Kwang-Ho Shin and Sang Ho Lim
Sensors 2025, 25(16), 5022; https://doi.org/10.3390/s25165022 - 13 Aug 2025
Viewed by 256
Abstract
We successfully fabricated micro orthogonal fluxgate sensors using amorphous CoZrNb films. The sensor, measuring 1.5 mm × 0.5 mm, consists of three main parts: the conductor for excitation current flow, the magnetic layer sensitive to an external magnetic field, and the detection coil [...] Read more.
We successfully fabricated micro orthogonal fluxgate sensors using amorphous CoZrNb films. The sensor, measuring 1.5 mm × 0.5 mm, consists of three main parts: the conductor for excitation current flow, the magnetic layer sensitive to an external magnetic field, and the detection coil for measuring output voltage dependent on an external magnetic field. The magnetic layer forms a magnetically closed-circuit in the cross-section, which reduces reluctance and power consumption. Key fabrication challenges, such as poor step coverage and delamination, were effectively addressed by adjusting the sputtering angle, rotating the substrate during deposition, incorporating a Ta adhesion layer, and applying O2 plasma surface treatment. Optimal sensor performance was achieved by vacuum annealing the CoZrNb films at 300 °C under an applied magnetic field of 500 Oe. This process effectively enhanced magnetic softness and induced magnetic anisotropy, resulting in both very low coercivity (0.1 Oe) and a stable amorphous structure. The effects of operation frequency and the conductor width on the output characteristics of the fabricated sensors were quantitatively investigated. The sensor exhibited a maximum sensitivity of 0.98 mV/Oe (=9.8 V/T). Our results demonstrate that miniaturized orthogonal fluxgate sensors suitable for multi-chip packaging can be applied to measure the Earth’s magnetic field. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 3005 KB  
Article
Temperature-Dependent Performance of Thermally Oxidized Zr2.5Nb Alloy for Orthopedic Implants: Mechanical Properties, Wear Resistance, and Biocompatibility
by Yunpeng Xiao, Hanke Song, Tangqing Hu, Yong Luo, Hao Xu and Xiaolei Sun
Coatings 2025, 15(8), 940; https://doi.org/10.3390/coatings15080940 - 11 Aug 2025
Viewed by 375
Abstract
This study investigates the critical influence of oxidation temperature on the intrinsic characteristics and surface properties of thermally oxidized Zr2.5Nb alloy. The resulting oxide layers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), surface hardness, and nanoindentation. [...] Read more.
This study investigates the critical influence of oxidation temperature on the intrinsic characteristics and surface properties of thermally oxidized Zr2.5Nb alloy. The resulting oxide layers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), surface hardness, and nanoindentation. The tribological behavior of the untreated and thermally oxidized Zr2.5Nb alloy was evaluated via reciprocating ball-on-disc wear tests under a load of 29.4 N. MC3T3-E1 cells were employed to assess the biocompatibility. The results show that oxide layers primarily composed of m-ZrO2 formed on the alloy surface, with thickness increasing from 2.43 µm to 13.59 µm as the oxidation temperature rose from 500 °C to 700 °C. However, this thickness increase was accompanied by elevated defect density. Compared to the untreated alloy, thermally oxidized samples exhibited significantly enhanced hardness and wear resistance. Notably, oxidation at 600 °C produced a dense 5.31 µm oxide layer with optimal structural integrity, achieving an 85% reduction in wear rate and a superior MC3T3-E1 cell relative activity of 123.07 ± 6.02%. These findings provide foundational data for developing zirconium-based implants with improved stability. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

17 pages, 5039 KB  
Article
Enhancement of Self-Collimation via Nonlinear Symmetry Breaking in Hexagonal Photonic Crystals
by Ozgur Onder Karakilinc
Photonics 2025, 12(8), 798; https://doi.org/10.3390/photonics12080798 - 8 Aug 2025
Viewed by 284
Abstract
This study proposes the use of a low-symmetry hexagonal photonic crystal (LSHPC) incorporating Kerr-type nonlinearity to enhance self-collimation. The equifrequency contours (EFCs) of a C2-symmetric LSHPC composed of nonlinear LiNbO3 rods are analyzed as a function of the nonlinear refractive [...] Read more.
This study proposes the use of a low-symmetry hexagonal photonic crystal (LSHPC) incorporating Kerr-type nonlinearity to enhance self-collimation. The equifrequency contours (EFCs) of a C2-symmetric LSHPC composed of nonlinear LiNbO3 rods are analyzed as a function of the nonlinear refractive index. The self-collimation characteristics, transmission spectrum, group velocity dispersion (GVD), and third-order dispersion (TOD) are investigated using the Plane Wave Expansion (PWE) and Finite Difference Time Domain (FDTD) methods. The results demonstrate that increasing the nonlinear index leads to a significant flattening of the EFCs, which enhances self-collimation performance. Furthermore, symmetry-lowering perturbations improve beam confinement and enable all-angle self-collimation. These findings highlight the potential of Kerr-type nonlinear photonic crystals for integrated photonic circuits requiring precise control over light propagation. Full article
Show Figures

Figure 1

19 pages, 6094 KB  
Article
TiO2 Supported on Kaolinite via Sol–Gel Method for Thermal Stability of Photoactivity in Ceramic Tile Produced by Single-Firing Process
by Eloise de Sousa Cordeiro, Jucilene de Souza Feltrin, Melissa Gurgel Adeodato Vieira and Agenor De Noni Junior
Minerals 2025, 15(8), 845; https://doi.org/10.3390/min15080845 - 8 Aug 2025
Viewed by 447
Abstract
Anatase is well known for its photocatalytic properties. However, it can be irreversibly transformed into rutile at temperatures above 600–850 °C. This is a major limitation for ceramic tiles with self-cleaning properties, which are usually single-fired at 1100–1250 °C. To avoid this issue, [...] Read more.
Anatase is well known for its photocatalytic properties. However, it can be irreversibly transformed into rutile at temperatures above 600–850 °C. This is a major limitation for ceramic tiles with self-cleaning properties, which are usually single-fired at 1100–1250 °C. To avoid this issue, functionalized tiles are often produced by double firing, where the second firing stays below 850 °C. Supporting TiO2 on kaolinite helps to stabilize the anatase phase even at temperatures above 850 °C. In this study, a photocatalytic coating was specially developed to be suitable for the single-firing ceramic tile process. TiO2 and TiO2 with Nb2O5 (from 0 to 12 wt.%) were supported on kaolinite. This material was mixed with a glass frit to create a surface texture typical of ceramic tiles. The coated tiles were single-fired at 1185 °C. The self-cleaning performance was evaluated using contact angle (CA) measurements and methylene blue (MB) degradation under UV-A light, on both unpolished and polished surfaces. The polished sample containing 12 wt.% TiO2 showed the best photocatalytic activity: it degraded 57% of MB and the contact angle decreased from 64° to 30° after UV-A exposure. XPS, FTIR, and FEG-SEM analyses confirmed the effective presence of TiO2. The results demonstrate that kaolinite-supported TiO2 is a promising approach for producing self-cleaning ceramic tiles using a single-firing process. Full article
(This article belongs to the Special Issue From Clay Minerals to Ceramics: Progress and Challenges)
Show Figures

Graphical abstract

Back to TopTop