Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices
Abstract
1. Introduction
2. Physical Properties
2.1. Crystal Structure
2.2. Defects
2.3. Physical Properties
3. Crystal Preparation Methods
3.1. Lithium Niobate Crystal Preparation Method
3.1.1. Czochralski Method
3.1.2. The Bridgman Method
3.2. Preparation of Lithium Niobate Crystals with a Close Stoichiometric Ratio
3.2.1. Czochralski Method
Double Crucible Czochralski (DCCZ) Method
Melt Supply Dual Crucible Method
Hanging Crucible Czochralski (HCCZ) Method
Zone-Leveling Czochralski (ZLCZ) Method
3.2.2. K2O Cosolvent Method
3.2.3. Vapor Transfer Equilibrium (VTE) Method
4. Applications of Electro-Optical Devices
4.1. Electro-Optical Modulators
4.2. Optical Micro-Ring Resonators
4.3. Electro-Optical Deflector
4.4. Holographic Storage
4.5. Lasers
5. Summary and Outlook
- (1)
- Domain structure design: Explore the influence of domain patterns, such as periodic polarization, on electro-optical performance and develop efficient and low-power beam deflectors and modulators.
- (2)
- Heterogeneous integration technology: Combine NSLN thin films with silicon-based photonic platforms to develop hybrid integrated electro-optical devices and promote the development of compact photonic chips.
- (3)
- Quantum light source: Tap the potential of NSLN crystals in quantum light sources, such as the generation of entangled photon pairs and holographic storage, to meet the needs of next-generation optoelectronic integration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, Y.; Li, Y. Integrated lithium niobate photonics. Nanophotonics 2020, 9, 1287–1320. [Google Scholar] [CrossRef]
- Gao, B.; Ren, M.X.; Zheng, D.H.; Wu, W.; Cai, W.; Sun, J.; Kong, Y.; Xu, J. Long-lived lithium niobate: History and progress. J. Synth. Cryst. 2021, 50, 1183–1199. [Google Scholar]
- Xie, Z.; Zhu, S. LiNbO3 crystals: From bulk to film. Adv. Photonics 2022, 4, 030502. [Google Scholar] [CrossRef]
- Weis, R.S.; Gaylord, T.K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191–203. [Google Scholar] [CrossRef]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics 2018, 12, 596–600. [Google Scholar] [CrossRef]
- Wang, F.; Sun, D.; Liu, Q.; Song, Y.; Zhang, F.; Zhou, W.; Sang, Y.; Wang, D.; Liu, H. Growth of large size near-stoichiometric lithium niobate single crystals with low coercive field for manufacturing high quality periodically poled lithium niobate. Opt. Mater. 2022, 125, 112058. [Google Scholar] [CrossRef]
- Yang, J.; Lai, M.; Shang, J.; Li, Q.; Zhang, L.; Sun, J. Defect structure of near-stoichiometric Mg-doped LiNbO3 crystals prepared by different method. J. Cryst. Growth 2022, 580, 126478. [Google Scholar] [CrossRef]
- Lu, H.; Xiong, H.; Huang, Z.; Li, Y.; Dong, H.; He, D.; Dong, J.; Guan, H.; Qiu, W.; Zhang, X.; et al. Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation. Opt. Express 2019, 27, 19852–19863. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Liu, J.; Tan, S.; Lu, Q.; Guo, W. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express 2021, 29, 6320–6329. [Google Scholar] [CrossRef]
- Ahmed, A.N.R.; Shi, S.; Mercante, A.J.; Prather, D.W. High-performance racetrack resonator in silicon nitride-thin film lithium niobate hybrid platform. Opt. Express 2019, 27, 30741–30751. [Google Scholar] [CrossRef]
- Brinkmann, R.; Sohler, W.; Suche, H. Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 1991, 27, 415–417. [Google Scholar] [CrossRef]
- Fan, T.Y.; Cordova-Plaza, A.; Digonnet, M.J.F.; Byer, R.L.; Shaw, H.J. Nd: MgO: LiNbO3 spectroscopy and laser devices. J. Opt. Soc. Am. B 1986, 3, 140–148. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhou, Z.; Guo, R.; Bhalla, A.S. Low-frequency–dependent electro-optic properties of potassium lithium tantalate niobate single crystals. Europhys. Lett. 2013, 102, 37004. [Google Scholar] [CrossRef]
- Wu, C.C.; Hsu, W.T.; Chen, Z.B.; Choubey, R.K.; Lan, C.W. Crystal growth, VTE treatment, and characterizations of Nd-doped LiTaO3. J. Cryst. Growth 2011, 318, 649–652. [Google Scholar] [CrossRef]
- Kitamura, K.; Yamamoto, J.K.; Iyi, N.; Kirnura, S.; Hayashi, T. Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J. Cryst. Growth 1992, 116, 327–332. [Google Scholar] [CrossRef]
- Wang, F.; Kang, X.; Liang, L.; Song, W.; Sun, D.; Wang, J.; Liu, H.; Sang, Y. Yb sensitized near-stoichiometric Er: LiNbO3 single crystal: A matrix for optical communication and upconversion emission. Cryst. Growth Des. 2018, 18, 1495–1500. [Google Scholar] [CrossRef]
- Malovichko, G.; Cerclier, O.; Estienne, J.; Grachev, V.; Kokanyan, E.; Boulesteix, C. Lattice constants of K-and Mg-doped LiNbO3. Comparison with nonstoichiometric lithium niobate. J. Phys. Chem. Solids 1995, 56, 1285–1289. [Google Scholar] [CrossRef]
- Carruthers, J.R.; Peterson, G.E.; Grasso, M.; Bridenbaugh, P.M. Nonstoichiometry and crystal growth of lithium niobate. J. Appl. Phys. 1971, 42, 1846–1851. [Google Scholar] [CrossRef]
- Bo, H.; Meng, Q.; Hu, H.; Zhao, H.; Zhang, Z.; Zhang, Q.; Zhang, C. Temperature-dependent ferroelectric properties of near stoichiometric lithium niobate single crystal. Appl. Phys. A 2018, 124, 691. [Google Scholar] [CrossRef]
- Tan, S.F.; Li, J.T.; Zhang, L. Progress in the preparation of near stoichiometric ratio lithium niobate crystals. Sci. Technol. Inf. 2009, 11, 6–8. [Google Scholar]
- Xue, D.; Kitamura, K. Compositional dependence of cationic displacements in lithium niobate and lithium tantalate crystals. J. Phys. Chem. Solids 2005, 66, 585–588. [Google Scholar] [CrossRef]
- Polgar, K.; Jeszenszky, L.; Raksanyi, K.; Hartmann, E. Growth, stoichiometry and properties of LiNbO3 single crystals. Acta Phys. Acad. Sci. Hung. 1979, 47, 125–132. [Google Scholar] [CrossRef]
- Tian, F.; Lu, H.; Sui, Z.; Tao, J.; Dong, J.; Zhang, X.; Qiu, W.; Guan, H.; Yu, J.; Zhu, W.; et al. Electro-optic deflection in a lithium niobate quasi-single mode waveguide with microstructured electrodes. Opt. Express 2018, 26, 30100–30107. [Google Scholar] [CrossRef]
- Hossain, A.; Rashid, M.H. Pyroelectric detectors and their applications. IEEE Trans. Ind. Appl. 2002, 27, 824–829. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Villalobos-Mendoza, S.D.; Farías, R.; Fierro-Ruiz, C.D. Lithium niobate single crystals and powders reviewed—Part II. Crystals 2020, 10, 990. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Reddy, J.M.; Bernstein, J.L. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 °C. J. Phys. Chem. Solids 1966, 27, 997–1012. [Google Scholar] [CrossRef]
- Gopalan, V.; Dierolf, V.; Scrymgeour, D.A. Defect–domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 2007, 37, 449–489. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Wu, Y.; Li, S.; Zhu, G.; Liao, W.; Zou, Y.; Chu, T.; Fu, Q.; Dong, W. Advancing inorganic electro-optical materials for 5 G communications: From fundamental mechanisms to future perspectives. Light Sci. Appl. 2025, 14, 190. [Google Scholar] [CrossRef]
- Diéguez, E.; Plaza, J.L.; Aggarwal, M.D.; Batra, A.K. Czochralski Growth of Oxide Photorefractive Crystals. In Springer Handbook of Crystal Growth; Springer: Berlin/Heidelberg, Germany, 2010; pp. 245–280. [Google Scholar]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Struct. Sci. 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Schirmer, O.F.; Thiemann, O.; Wöhlecke, M. Defects in LiNbO3—I. experimental aspects. J. Phys. Chem. Solids 1991, 52, 185–200. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Marsh, P. Defect structure dependence on composition in lithium niobate. Struct. Sci. 1986, 42, 61–68. [Google Scholar] [CrossRef]
- Lerner, P.; Legras, C.; Dumas, J.P. Stoechiométrie des monocristaux de métaniobate de lithium. J. Cryst. Growth 1968, 3–4, 231–235. [Google Scholar] [CrossRef]
- Zotov, N.; Boysen, H.; Frey, F.; Metzger, T.; Born, E. Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction. J. Phys. Chem. Solids 1994, 55, 145–152. [Google Scholar] [CrossRef]
- Zotov, N.; Frey, F.; Boysen, H.; Lehnert, H.; Hornsteiner, A.; Strauss, B.; Sonntag, S.; Mayer, H.M.; Güthoff, F.; Hohlwein, D. X-ray and neutron diffuse scattering in LiNbO3 from 38 to 1200 K. Struct. Sci. 1995, 51, 961–972. [Google Scholar] [CrossRef]
- Peterson, G.E.; Carnevale, A. 93Nb NMR linewidths in nonstoichiometric lithium niobate. J. Chem. Phys. 1972, 56, 4848–4851. [Google Scholar] [CrossRef]
- Prokhorov, A.M.; Kuz’minov, I.; Pyankova, T.M.; Zilbert, O.A. Physics and Chemistry of Crystalline Lithium Niobate; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Iyi, N.; Kitamura, K.; Izumi, F.; Yamamoto, J.K.; Hayashi, T.; Asano, H.; Kimura, S. Comparative study of defect structures in lithium niobate with different compositions. J. Solid State Chem. 1992, 101, 340–352. [Google Scholar] [CrossRef]
- DeLeo, G.G.; Dobson, J.L.; Masters, M.F.; Bonjack, L.H. Electronic structure of an oxygen vacancy in lithium niobate. Phys. Rev. B 1988, 37, 8394. [Google Scholar] [CrossRef]
- Xu, H.; Lee, D.; He, J.; Sinnott, S.B.; Gopalan, V.; Dierolf, V.; Phillpot, S.R. Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 78, 174103. [Google Scholar] [CrossRef]
- Xu, H.; Lee, D.; Sinnott, S.B.; Dierolf, V.; Gopalan, V.; Phillpot, S.R. Structure and diffusion of intrinsic defect complexes in LiNbO3 from density functional theory calculations. J. Phys. Condens. Matter 2010, 22, 135002. [Google Scholar] [CrossRef]
- Li, Y.; Schmidt, W.G.; Sanna, S. Defect complexes in congruent LiNbO3 and their optical signatures. Phys. Rev. B 2015, 91, 174106. [Google Scholar] [CrossRef]
- Vyalikh, A.; Zschornak, M.; Köhler, T.; Nentwich, M.; Weigel, T.; Hanzig, J.; Zaripov, R.; Vavilova, E.; Gemming, S.; Brendler, E.; et al. Analysis of the defect clusters in congruent lithium tantalate. Phys. Rev. Mater. 2018, 2, 013804. [Google Scholar] [CrossRef]
- Nalwa, H.S. (Ed.) Handbook of Advanced Electronic and Photonic Materials and Devices; Ten-volume Set (Vol. 1); Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Jin, L. The Calculation of Structrue and Optical Properties of LiNbO3 with Density Function Theory. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2006. [Google Scholar]
- Li, L. Theoretical Studies on Defect Structures and Properties of LiNbO3 Crystals. Ph.D. Thesis, Shandong University, Jinan, China, 2020. [Google Scholar]
- Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Murauskas, T.; Boulet, P.; Margueron, S.; Gleize, J.; Robert, S.; Kubilius, V.; Saltyte, Z. Residual stresses and clamped thermal expansion in LiNbO3 and LiTaO3 thin films. Appl. Phys. Lett. 2012, 101, 122902. [Google Scholar] [CrossRef]
- Yao, S.; Wang, J.; Liu, H.; Hu, X.; Zhang, H.; Cheng, X.; Ling, Z. Growth, optical and thermal properties of near-stoichiometric LiNbO3 single crystal. J. Alloys Compd. 2008, 455, 501–505. [Google Scholar] [CrossRef]
- Furukawa, Y.; Sato, M.; Kitamura, K.; Nitanda, F. Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method. J. Cryst. Growth 1993, 128, 909–914. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wen, J.P.; Kong, Y.F.; Chen, S.L.; Zhang, W.L.; Xu, J.J.; Zhang, G.Y. Effect of Li diffusion on the composition of LiNbO3 at high temperature. J. Cryst. Growth 2002, 242, 400–404. [Google Scholar] [CrossRef]
- Kaneshiro, J.; Uesu, Y.; Fukui, T. Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope. Jpn. J. Appl. Phys. 2009, 48, 09KF09. [Google Scholar] [CrossRef]
- Stefszky, M.; Mow-Lowry, C.M.; McKenzie, K.; Chua, S.; Buchler, B.C.; Symul, T.; McClelland, D.E.; Lam, P.K. An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing. J. Phys. B At. Mol. Opt. Phys. 2010, 44, 015502. [Google Scholar] [CrossRef]
- Buchler, B.C.; McKenzie, K.; Stefszky, M.; Chua, S.; Gray, M.B.; McClelland, D.E.; Lam, P.K. Development of Strong and Low Frequency Squeezing. In Quantum-Atom Optics Downunder; Optica Publishing Group: Washington, DC, USA, 2007. [Google Scholar]
- Liu, X.; Terabe, K.; Kitamura, K. Ferroelectric nanodomain properties in near-stoichiometric and congruent LiNbO3 crystals investigated by scanning force microscopy. Jpn. J. Appl. Phys. 2005, 44, 7012. [Google Scholar] [CrossRef]
- Batchko, R.G.; Shur, V.Y.; Fejer, M.M.; Byer, R.L. Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Appl. Phys. Lett. 1999, 75, 1673–1675. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, D.; Liu, X.; Kitamura, K. Ferroelectric nanodomain engineering at the—Z face of lithium niobate single crystals. Phys. B Condens. Matter 2007, 387, 147–150. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, D.; Kitamura, K. Domain characteristics and chemical bonds of lithium niobate. Mater. Sci. Eng. B 2005, 120, 21–26. [Google Scholar] [CrossRef]
- Malovichko, G.I.; Grachev, V.G.; Kokanyan, E.P.; Schirmer, O.F.; Betzler, K.; Gather, B.; Jermann, F.; Klauer, S.; Schlarb, U.; Wöhlecke, M. Characterization of stoichiometric LiNbO3 grown from melts containing K2O. Appl. Phys. A 1993, 56, 103–108. [Google Scholar] [CrossRef]
- Sun, J.; Kong, Y.; Zhang, L.; Yan, W.; Wang, X.; Xu, J.; Zhang, G. Growth of large-diameter nearly stoichiometric lithium niobate crystals by continuous melt supplying system. J. Cryst. Growth 2006, 292, 351–354. [Google Scholar] [CrossRef]
- Ballman, A.A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique. J. Am. Ceram. Soc. 1965, 48, 112–113. [Google Scholar] [CrossRef]
- Fukuda, T.; Hirano, H. Growth and characteristics of LiNbO3 plate crystals. Mater. Res. Bull. 1975, 10, 801–806. [Google Scholar] [CrossRef]
- Chow, K.; McKnight, H.G.; Rothrock, L.R. The congruently melting composition of LiNbO3. Mater. Res. Bull. 1974, 9, 1067–1072. [Google Scholar] [CrossRef]
- Shigematsu, K.; Anzai, Y.; Morita, S.; Yamada, M.; Yokoyama, H. Growth conditions of subgrain-free LiNbO3 single crystals by the Czochralski method. Jpn. J. Appl. Phys. 1987, 26, 1988. [Google Scholar] [CrossRef]
- Thirumavalavan, M.; Sitharaman, S.; Ravi, S.; Durai, L.; Jagota, N.L.; Narula, R.C.; Thyagarajan, R. Growth of large diameter lithium niobate single crystals by czochralski method. Ferroelectrics 1990, 102, 15–22. [Google Scholar] [CrossRef]
- Bhagavannarayana, G.; Budakoti, G.C.; Maurya, K.K.; Kumar, B. Enhancement of crystalline, piezoelectric and optical quality of LiNbO3 single crystals by post-growth annealing and poling. J. Cryst. Growth 2005, 282, 394–401. [Google Scholar] [CrossRef]
- Murthy, R.V.A.; Bartwal, K.S.; Lal, K. Growth of nearly perfect LiNbO3 single crystals. Mater. Sci. Eng. B 1993, 18, L4–L6. [Google Scholar] [CrossRef]
- Zhang, D.L.; Chen, B.; Yu, D.Y.; Pun, E.Y.B. Influence of factors on growth of off-congruent LiNbO3 single-crystal by li-rich/li-poor chemical vapor transport equilibration. Cryst. Growth Des. 2013, 13, 1793–1798. [Google Scholar] [CrossRef]
- Kan, S.J.; Sakamoto, M.; Okano, Y.; Hoshikawa, K.; Fukuda, T. LiNbO3 single crystal growth by the continuous charging Czochralski method with Li/Nb ratio control. J. Cryst. Growth 1992, 119, 215–220. [Google Scholar] [CrossRef]
- Wang, S.; Ji, C.; Dai, P.; Shen, L.; Bao, N. The growth and characterization of six inch lithium niobate crystals with high homogeneity. CrystEngComm 2020, 22, 794–801. [Google Scholar] [CrossRef]
- Chen, K.; Tang, G.; Hu, H. Lithium Niobate Crystals, Single-crystal Thin Films, and Their Applications in Photonic Chips and Quantum Optical Devices. Sci. Technol. Foresight 2025, 4, 49–57. [Google Scholar]
- O’BRYAN, H.M.; Gallagher, P.K.; Brandle, C.D. Congruent composition and Li-rich phase boundary of LiNbO3. J. Am. Ceram. Soc. 1985, 68, 493–496. [Google Scholar] [CrossRef]
- Chen, H.; Xia, H.; Wang, J.; Zhang, J.; Xu, J.; Fan, S. Growth of LiNbO3 crystals by the Bridgman method. J. Cryst. Growth 2003, 256, 219–222. [Google Scholar] [CrossRef]
- Xia, H.; Zeng, X.; Wang, J.; Zhang, J.; Xu, J.; Zhang, Y. Growth of Fe-doped LiNbO3 single crystal by Bridgman method. Mater. Lett. 2004, 58, 2476–2480. [Google Scholar] [CrossRef]
- Xia, H.; Song, H.; Wang, J.; Zhang, J.; Wang, T.; Zhang, J.; Zhang, Y.; Nie, Q. Cr3+-doped LiNbO3 crystals grown by the Bridgman method. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2005, 40, 199–203. [Google Scholar] [CrossRef]
- Yan, X.; Tian, T.; Wang, M.; Shen, H.; Zhou, D.; Zhang, Y.; Xu, J. High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method. Crystals 2020, 10, 71. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Xiang, D.; Xu, J. Growth and mechanical properties of near-stoichiometric LiNbO3 crystal. Optik 2018, 164, 385–389. [Google Scholar] [CrossRef]
- Yan, T.; Leng, Y.; Yu, Y.; Sun, D.; Zhan, J.; Kamaruddin, W.H.A.; Qin, X.; Shi, X.; Chang, L.; Chou, M.M.C.; et al. Growth of MgO doped near stoichiometric LiNbO3 single crystals by a hanging crucible Czochralski method using a ship lockage type powder feeding system assisted by numerical simulation. CrystEngComm 2014, 16, 6593–6602. [Google Scholar] [CrossRef]
- Tsai, C.B.; Hsia, Y.T.; Shih, M.D.; Tai, C.Y.; Hsieh, C.K.; Hsu, W.C.; Lan, C.W. Zone-levelling Czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals. J. Cryst. Growth 2005, 275, 504–511. [Google Scholar] [CrossRef]
- Lan, C.W.; Chen, H.J.; Tsai, C.B. Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals. J. Cryst. Growth 2002, 245, 56–62. [Google Scholar] [CrossRef]
- Yatsenko, A.; Yevdokimov, S.; Palatnikov, M.; Sidorov, N. NMR Spectra Particularities in LiNbO3 Crystals with a Near-Stoichiometric Composition. Ceramics 2023, 6, 432–446. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kitamura, K.; Ji, Y.; Montemezzani, G.; Zgonik, M.; Medrano, C.; Günter, P. Photorefractive properties of iron-doped stoichiometric lithium niobate. Opt. Lett. 1997, 22, 501–503. [Google Scholar] [CrossRef]
- Holman, R.L.; Cressman, P.J.; Revelli, J.F. Chemical control of optical damage in lithium niobate. Appl. Phys. Lett. 1978, 32, 280–283. [Google Scholar] [CrossRef]
- Jundt, D.H.; Fejer, M.M.; Byer, R.L. Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration. IEEE J. Quantum Electron. 1990, 26, 135–138. [Google Scholar] [CrossRef]
- Bordui, P.F.; Norwood, R.G.; Jundt, D.H.; Fejer, M.M. Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys. 1992, 71, 875–879. [Google Scholar] [CrossRef]
- Liang, X.; Xuewu, X.; Tow-Chong, C.; Shaoning, Y.; Fengliang, Y.; Soon, T.Y. Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method. J. Cryst. Growth 2004, 260, 143–147. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhaumik, I.; Ganesamoorthy, S.; Karnal, A.K.; Gupta, P.K.; Swami, M.K.; Patel, H.S.; Sinha, A.K.; Upadhyay, A. Study of structural defects and crystalline perfection of near stoichiometric LiNbO3 crystals grown from flux and prepared by VTE technique. J. Mol. Struct. 2014, 1075, 377–383. [Google Scholar] [CrossRef]
- Kar, S.; Bhatt, R.; Shukla, V.; Choubey, R.K.; Sen, P.; Bartwal, K.S. Optical behaviour of VTE treated near stoichiometric LiNbO3 crystals. Solid State Commun. 2006, 137, 283–287. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, Q.; Liang, S.; Si, J.; Wang, M.; Zhang, X.; He, J. Research on the Fabrication of X-Cut Near Stoichiometric Lithium Niobate Wafers. Crystals 2025, 15, 282. [Google Scholar] [CrossRef]
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Oikawa, S.; Yamamoto, F.; Ichikawa, J.; Kurimura, S.; Kitamura, K. Zero-chirp broadband Z-cut Ti: LiNbO3 optical modulator using polarization reversal and branch electrode. J. Light. Technol. 2005, 23, 2756–2760. [Google Scholar] [CrossRef]
- Ohmae, N.; Takeno, K.; Moriwaki, S.; Mio, N. Development of electrooptic modulator for advanced ground-based gravitational wave telescopes using stoichiometric MgO-doped LiNbO3 crystals. Appl. Phys. Express 2008, 1, 012005. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q.; Wood, M.G.; Reano, R.M. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 2014, 1, 112–118. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 2018, 26, 1547–1555. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Kong, Y.; Bo, F.; Wang, W.; Zheng, D.; Liu, H.; Zhang, G.; Rupp, R.; Xu, J. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices. Adv. Mater. 2020, 32, 1806452. [Google Scholar] [CrossRef]
- Janner, D.; Tulli, D.; García-Granda, M.; Belmonte, M.; Pruneri, V. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev. 2009, 3, 301–313. [Google Scholar] [CrossRef]
- Hu, J.; Li, C.; Guo, C.; Lu, C.; Lau, A.P.T.; Chen, P.; Liu, L. Folded thin-film lithium niobate modulator based on a poled Mach-Zehnder interferometer structure. Opt. Lett. 2021, 46, 2940–2943. [Google Scholar] [CrossRef]
- Wooten, E.L.; Kissa, K.M.; Yi-Yan, A.; Murphy, E.J.; Lafaw, D.A.; Hallemeier, P.F.; Maack, D.; Attanasio, D.V.; Fritz, D.J.; McBrien, G.J.; et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82. [Google Scholar] [CrossRef]
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Günter, P. Electro–optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Wang, J.; Bo, F.; Wan, S.; Li, W.; Gao, F.; Li, J.; Zhang, G.; Xu, J. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 2015, 23, 23072–23078. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Bhave, S.A. Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators. arXiv 2014, arXiv:1409.6351. [Google Scholar]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Tremblay, E.J.; Pulikkaseril, C.; Shoukry, E.; Bahamin, B.; Zuo, Y.; Mony, M.; Langlois, P.; Aimez, V.; Plant, D.V. A 1 × 2 fast fiberoptic switch based on electro-optic beam scanning. In Proceedings of the Conference on Lasers and Electro Optics (CLEO), San Francisco, CA, USA, 16–21 May 2004. [Google Scholar]
- Chen, Q.; Chiu, Y.; Lambeth, D.N.; Schlesinger, T.E.; Stancil, D.D. Guided-wave electro-optic beam deflector using domain reversal in LiTaO3. J. Light. Technol. 1994, 12, 1401–1404. [Google Scholar] [CrossRef]
- Chiu, Y.; Burton, R.S.; Stancil, D.D.; Schlesinger, T.E. Design and simulation of waveguide electrooptic beam deflectors. J. Light. Technol. 2002, 13, 2049–2052. [Google Scholar] [CrossRef]
- Li, J.; Cheng, H.C.; Kawas, M.J.; Lambeth, D.N.; Schlesinger, T.E.; Stancil, D.D. Electro-optic wafer beam deflector in LiTaO3. IEEE Photonics Technol. Lett. 1996, 8, 1486–1488. [Google Scholar] [CrossRef]
- Yamada, M.; Saitoh, M.; Ooki, H. Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals. Appl. Phys. Lett. 1996, 69, 3659–3661. [Google Scholar] [CrossRef]
- Bo, H.F.; Zhang, Z.X.; Hu, H.K.; Wang, R.Z. Ferroelectric Domain Engineering in Stoichiometric LiNbO3 by Scanning Probe Microscopy. Adv. Mater. Res. 2012, 485, 510–513. [Google Scholar] [CrossRef]
- Fang, J.C.; Kawas, M.J.; Zou, J.; Gopalan, V.; Schlesinger, T.E.; Stancil, D.D. Shape-optimized electrooptic beam scanners: Experiment. IEEE Photonics Technol. Lett. 2002, 11, 66–68. [Google Scholar] [CrossRef]
- Scrymegeour, D.A.; Gopalan, V.; Haynes, T.E. Crystal ion slicing of domain microengineered electro-optic devices on lithium niobate. Integr. Ferroelectr. 2001, 41, 35–42. [Google Scholar] [CrossRef]
- Djukic, D.; Roth, R.; Yardley, J.T.; Osgood, R.M., Jr.; Bakhru, S.; Bakhru, H. Low-voltage planar-waveguide electrooptic prism scanner in Crystal-Ion-Sliced thin-film LiNbO3. Opt. Express 2004, 12, 6159–6164. [Google Scholar] [CrossRef]
- Levy, M.; Osgood, R.M., Jr.; Liu, R.; Cross, L.E.; Cargill, G.S.; Kumar, A.; Bakhru, H. Fabrication of singlecrystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 1998, 73, 2293–2295. [Google Scholar] [CrossRef]
- Radojevic, A.M.; Levy, M.; Osgood, R.M.; Jundt, D., Jr.; Bakhru, H. Second-order optical nonlinearity of 10 µm-thick periodically poled lithium niobate films. Opt. Lett. 2000, 25, 1034–1036. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; He, D.; Hu, Y.; Chen, H.; Liang, W.; Yu, J.; Guan, H.; Luo, Y.; Zhang, J.; et al. Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes. Opt. Lett. 2016, 41, 4739–4742. [Google Scholar] [CrossRef]
- Cai, L.; Cheng, H.; Yu, J.; Zheng, H.; Zhong, Y.; Zhu, W.; Chen, Z. Lithium niobate optical beam deflectors operating at both electro-optic and thermo-optic modes. Opt. Commun. 2023, 529, 129093. [Google Scholar] [CrossRef]
- Nakamura, K.; Miyazu, J.; Sasaki, Y.; Imai, T.; Sasaura, M.; Fujiura, K. Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction. J. Appl. Phys. 2008, 104, 013105. [Google Scholar] [CrossRef]
- Korneev, N.; Mayorga, D.; Stepanov, S.; Veenhuis, H.; Buse, K.; Kuper, C.; Hesse, H.; Krätzig, E. Holographic and non-steady-state photocurrent characterization of photorefractive barium–calcium titanate. Opt. Commun. 1999, 160, 98–102. [Google Scholar] [CrossRef]
- Tan, X.; Matoba, O.; Shimura, T.; Kuroda, K. Improvement in holographic storage capacity by use of double-random phase encryption. Appl. Opt. 2001, 40, 4721–4727. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Xia, S.; Xu, C.; Xu, Y.; Guan, C.; Cao, L. Red Holographic Storage Properties in Highly Fe-Doped Near Stoichiometric LiNbO3 Crystals. J. Chin. Ceram. Soc. 2010, 38, 820–824. [Google Scholar]
- Kong, Y.; Liu, S.; Xu, J. Recent advances in the photorefraction of doped lithium niobate crystals. Materials 2012, 5, 1954–1971. [Google Scholar] [CrossRef]
- Becker, C.; Oesselke, T.; Pandavenes, J.; Ricken, R.; Rochhausen, K.; Schreiber, G.; Sohler, W.; Suche, H.; Wessel, R.; Balsamo, S.; et al. Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 101–113. [Google Scholar] [CrossRef]
- Hinz, S.; Sandel, D.; Yoshida-Dierolf, M.; Mirvoda, V.; Noé, R.; Feise, G.; Herrmann, H.; Ricken, R.; Sohler, W.; Suche, H.; et al. Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3. Electron. Lett. 1999, 35, 1185–1186. [Google Scholar] [CrossRef]
- Suche, H.; Wessel, R.; Westenhöfer, S.; Sohler, W.; Bosso, S.; Carmannini, C.; Corsini, R. Harmonically mode-locked Ti: Er: LiNbO3 waveguide laser. Opt. Lett. 1995, 20, 596–598. [Google Scholar] [CrossRef]
- Suche, H.; Greiner, A.; Qiu, W.; Wessel, R.; Sohler, W. Integrated optical Ti: Er: LiNbO3 soliton source. IEEE J. Quantum Electron. 1997, 33, 1642–1646. [Google Scholar] [CrossRef]
- Mkhitaryan, N.; Zaraket, J.; Kokanyan, N.; Kokanyan, E.; Aillerie, M. Electro-optic properties of singly and doubly doped lithium niobate crystal by rare earth elements for optoelectronic and laser applications. Eur. Phys. J. Appl. Phys. 2019, 85, 30502. [Google Scholar] [CrossRef]
- Veasey, D.L.; Gary, J.M.; Amin, J.; Aust, J.A. Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm. IEEE J. Quantum Electron. 1997, 33, 1647–1662. [Google Scholar] [CrossRef]
- Lallier, E.; Papillon, D.; Pocholle, J.P.; Papuchon, M.; De Micheli, M.; Ostrowsky, D.B. Short pulse, high power Q-switched Nd: MgO: LiNbO3 waveguide laser. Electron. Lett. 1993, 29, 175–176. [Google Scholar] [CrossRef]
- Becker, C.; Greiner, A.; Oesselke, T.; Pape, A.; Sohler, W.; Suche, H. Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating. Opt. Lett. 1998, 23, 1194–1196. [Google Scholar] [CrossRef]
- Schreiber, G.; Rochhausen, K.; Ricken, R.; Sohler, W. Self-frequency doubling waveguide laser. In Novel Lasers and Devices-Basic Aspects; Optica Publishing Group: Washington, DC, USA, 1999. [Google Scholar]
CLN | SLN | |
---|---|---|
Tc (°C) | ~1140 | ~1190 |
A | 5.1499 | 5.1482 |
C | 13.864 | 13.857 |
d31 | 6.1 | 6.3 |
d33 | 34.1 | 44.3 |
Ec (KV/mm) | ~22 | <4 |
(pm/V) | 31.5 | 38.3 |
Thermal expansion coefficient (×10−6 | c = 2.7 a = 19.2 [48] | c = 2.8769 a = 17.1807 [49] |
Typology | Bandwidths | Drive Voltage | Scenario |
---|---|---|---|
Traditional LN | 10 GHz | 4.1 V | General communications |
MgO:SLN | High power systems | ||
Si-LN hybrid | 100 GHz | <1V | High-speed integrated systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xiao, X.; Chen, J.; Zhang, H.; Huang, Y.; Si, J.; Liang, S.; Xu, Q.; Zhang, H.; Ma, L.; et al. Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices. Inorganics 2025, 13, 278. https://doi.org/10.3390/inorganics13090278
Zhang Y, Xiao X, Chen J, Zhang H, Huang Y, Si J, Liang S, Xu Q, Zhang H, Ma L, et al. Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices. Inorganics. 2025; 13(9):278. https://doi.org/10.3390/inorganics13090278
Chicago/Turabian StyleZhang, Yan, Xuefeng Xiao, Jiayi Chen, Han Zhang, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, and et al. 2025. "Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices" Inorganics 13, no. 9: 278. https://doi.org/10.3390/inorganics13090278
APA StyleZhang, Y., Xiao, X., Chen, J., Zhang, H., Huang, Y., Si, J., Liang, S., Xu, Q., Zhang, H., Ma, L., Yang, C., & Zhang, X. (2025). Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices. Inorganics, 13(9), 278. https://doi.org/10.3390/inorganics13090278