Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Nora virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2420 KB  
Article
Diversity of Picorna-Like Viruses in the Teltow Canal, Berlin, Germany
by Roland Zell, Marco Groth, Lukas Selinka and Hans-Christoph Selinka
Viruses 2024, 16(7), 1020; https://doi.org/10.3390/v16071020 - 25 Jun 2024
Cited by 2 | Viewed by 2086
Abstract
The viromes of freshwater bodies are underexplored. The Picornavirales order, with 371 acknowledged species, is one of the most expansive and diverse groups of eukaryotic RNA viruses. In this study, we add 513 picorna-like viruses to the assemblage of more than 2000 unassigned [...] Read more.
The viromes of freshwater bodies are underexplored. The Picornavirales order, with 371 acknowledged species, is one of the most expansive and diverse groups of eukaryotic RNA viruses. In this study, we add 513 picorna-like viruses to the assemblage of more than 2000 unassigned picorna-like viruses. Our set of the aquatic Picornavirales virome of the Teltow Canal in Berlin, Germany, consists of 239 complete and 274 partial genomes. This urban freshwater body is characterized by the predominance of marna-like viruses (30.8%) and dicistro-like viruses (19.1%), whereas picornaviruses, iflaviruses, solinvi-like viruses, polycipi-like viruses, and nora-like viruses are considerably less prevalent. Caliciviruses and secoviruses were absent in our sample. Although presenting characteristic domains of Picornavirales, more than 100 viruses (20.8%) could not be assigned to any of the 9 Picornavirales families. Thirty-three viruses of the Marnaviridae—mostly locarna-like viruses—exhibit a monocistronic genome layout. Besides a wealth of novel virus sequences, viruses with peculiar features are reported. Among these is a clade of untypeable marna-like viruses with dicistronic genomes, but with the capsid protein-encoding open reading frame located at the 5′ part of their RNA. A virus with a similar genome layout but clustering with dicistroviruses was also observed. We further detected monocistronic viruses with a polymerase gene related to aparaviruses. The detection of Aichi virus and five novel posa-like viruses indicates a slight burden in municipal wastewater. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

21 pages, 3650 KB  
Article
Viruses in Laboratory Drosophila and Their Impact on Host Gene Expression
by Oumie Kuyateh and Darren J. Obbard
Viruses 2023, 15(9), 1849; https://doi.org/10.3390/v15091849 - 31 Aug 2023
Cited by 2 | Viewed by 3214
Abstract
Drosophila melanogaster has one of the best characterized antiviral immune responses among invertebrates. However, relatively few easily transmitted natural virus isolates are available, and so many Drosophila experiments have been performed using artificial infection routes and artificial host–virus combinations. These may not reflect [...] Read more.
Drosophila melanogaster has one of the best characterized antiviral immune responses among invertebrates. However, relatively few easily transmitted natural virus isolates are available, and so many Drosophila experiments have been performed using artificial infection routes and artificial host–virus combinations. These may not reflect natural infections, especially for subtle phenotypes such as gene expression. Here, to explore the laboratory virus community and to better understand how natural virus infections induce changes in gene expression, we have analysed seven publicly available D. melanogaster transcriptomic sequencing datasets that were originally sequenced for projects unrelated to virus infection. We have found ten known viruses—including five that have not been experimentally isolated—but no previously unknown viruses. Our analysis of host gene expression revealed that numerous genes were differentially expressed in flies that were naturally infected with a virus. For example, flies infected with nora virus showed patterns of gene expression consistent with intestinal vacuolization and possible host repair via the upd3 JAK/STAT pathway. We also found marked sex differences in virus-induced differential gene expression. Our results show that natural virus infection in laboratory Drosophila does indeed induce detectable changes in gene expression, suggesting that this may form an important background condition for experimental studies in the laboratory. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

9 pages, 1446 KB  
Article
Characterization of Cross-Species Transmission of Drosophila melanogaster Nora Virus
by Ella G. Buhlke, Alexis M. Hobbs, Sunanda Rajput, Blase Rokusek, Darby J. Carlson, Chelle Gillan and Kimberly A. Carlson
Life 2022, 12(11), 1913; https://doi.org/10.3390/life12111913 - 17 Nov 2022
Cited by 1 | Viewed by 2699
Abstract
Drosophila melanogaster Nora virus (DmNV) is a novel picorna-like virus first characterized in 2006. Since then, Nora virus has been detected in several non-Drosophila species, including insects in the Orders Hymenoptera, Lepidoptera, Coleoptera, and Orthoptera. The objective of this study was to [...] Read more.
Drosophila melanogaster Nora virus (DmNV) is a novel picorna-like virus first characterized in 2006. Since then, Nora virus has been detected in several non-Drosophila species, including insects in the Orders Hymenoptera, Lepidoptera, Coleoptera, and Orthoptera. The objective of this study was to determine if DmNV could infect individuals of other species of invertebrates besides D. melanogaster. The presence of DmNV in native invertebrates and commercially available stocks was determined. Laboratory-reared D. yakuba, D. mercatorum, Gryllodes sigillatus, Tenebrio molitor, Galleria mellonella, and Musca domestica were intentionally infected with DmNV. In addition, native invertebrates were collected and D. melanogaster stocks were purchased and screened for DmNV presence using reverse transcription-polymerase chain reaction (RT-PCR) before being intentionally infected for study. All Drosophila species and other invertebrates, except M. domestica, that were intentionally infected with DmNV ended up scoring positive for the virus via RT-PCR. DmNV infection was also detected in three native invertebrates (Spilosoma virginica, Diplopoda, and Odontotaenius disjunctus) and all commercially available stocks tested. These findings suggest that DmNV readily infects individuals of other species of invertebrates, while also appearing to be an endemic virus in both wild and laboratory D. melanogaster populations. The detection of DmNV in commercially available stocks presents a cautionary message for scientists using these stocks in studies of virology and immunology. Full article
(This article belongs to the Collection Feature Papers in Microbiology)
Show Figures

Figure 1

14 pages, 1780 KB  
Article
Expanding the Medfly Virome: Viral Diversity, Prevalence, and sRNA Profiling in Mass-Reared and Field-Derived Medflies
by Luis Hernández-Pelegrín, Ángel Llopis-Giménez, Cristina Maria Crava, Félix Ortego, Pedro Hernández-Crespo, Vera I. D. Ros and Salvador Herrero
Viruses 2022, 14(3), 623; https://doi.org/10.3390/v14030623 - 17 Mar 2022
Cited by 20 | Viewed by 5171
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an agricultural pest of a wide range of fruits. The advent of high-throughput sequencing has boosted the discovery of RNA viruses infecting insects. In this article, we aim to characterize the RNA virome and [...] Read more.
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an agricultural pest of a wide range of fruits. The advent of high-throughput sequencing has boosted the discovery of RNA viruses infecting insects. In this article, we aim to characterize the RNA virome and viral sRNA profile of medfly. By means of transcriptome mining, we expanded the medfly RNA virome to 13 viruses, including two novel positive ssRNA viruses and the first two novel dsRNA viruses reported for medfly. Our analysis across multiple laboratory-reared and field-collected medfly samples showed the presence of a core RNA virome comprised of Ceratitis capitata iflavirus 2 and Ceratitis capitata negev-like virus 1. Furthermore, field-collected flies showed a higher viral diversity in comparison to the laboratory-reared flies. Based on the small RNA sequencing, we detected small interfering RNAs mapping to all the viruses present in each sample, except for Ceratitis capitata nora virus. Although the identified RNA viruses do not cause obvious symptoms in medflies, the outcome of their interaction may still influence the medfly’s fitness and ecology, becoming either a risk or an opportunity for mass-rearing and SIT applications. Full article
(This article belongs to the Special Issue Viruses in Mass-Reared Invertebrates)
Show Figures

Figure 1

22 pages, 7953 KB  
Article
Heterogeneity in the Response of Different Subtypes of Drosophila melanogaster Midgut Cells to Viral Infections
by João M. F. Silva, Tatsuya Nagata, Fernando L. Melo and Santiago F. Elena
Viruses 2021, 13(11), 2284; https://doi.org/10.3390/v13112284 - 15 Nov 2021
Cited by 1 | Viewed by 2949
Abstract
Single-cell RNA sequencing (scRNA-seq) offers the possibility to monitor both host and pathogens transcriptomes at the cellular level. Here, public scRNA-seq datasets from Drosophila melanogaster midgut cells were used to compare the differences in replication strategy and cellular responses between two fly picorna-like [...] Read more.
Single-cell RNA sequencing (scRNA-seq) offers the possibility to monitor both host and pathogens transcriptomes at the cellular level. Here, public scRNA-seq datasets from Drosophila melanogaster midgut cells were used to compare the differences in replication strategy and cellular responses between two fly picorna-like viruses, Thika virus (TV) and D. melanogaster Nora virus (DMelNV). TV exhibited lower levels of viral RNA accumulation but infected a higher number of cells compared to DMelNV. In both cases, viral RNA accumulation varied according to cell subtype. The cellular heat shock response to TV and DMelNV infection was cell-subtype- and virus-specific. Disruption of bottleneck genes at later stages of infection in the systemic response, as well as of translation-related genes in the cellular response to DMelNV in two cell subtypes, may affect the virus replication. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

13 pages, 6686 KB  
Article
Nora Virus VP4b and ORF1 Circulate in Hemolymph of Infected D. melanogaster with Coordinate Expression of Vago and Vir-1
by Amanda Macke, Wilfredo Lopez, Darby J. Carlson and Kimberly A. Carlson
Vaccines 2020, 8(3), 491; https://doi.org/10.3390/vaccines8030491 - 31 Aug 2020
Cited by 6 | Viewed by 3976
Abstract
Study of the novel RNA virus, Nora virus, which is a persistent, picorna-like virus that replicates in the gut of Drosophila melanogaster offers insight into human innate immunity and other picorna-like viruses. Nora virus infection leads to a locomotor abnormality and upregulation of [...] Read more.
Study of the novel RNA virus, Nora virus, which is a persistent, picorna-like virus that replicates in the gut of Drosophila melanogaster offers insight into human innate immunity and other picorna-like viruses. Nora virus infection leads to a locomotor abnormality and upregulation of two candidate target proteins, Vago and Virus-induced RNA 1 (Vir-1). These proteins are uncharacterized in response to Nora virus. We hypothesize that Nora virus is circulating in the hemolymph of Nora virus-infected D. melanogaster, allowing for migration beyond the primary site of replication in the gut. Analysis by qRT-PCR demonstrated biphasic viral load and corresponding vago and vir-1 transcription levels, suggesting transcription of vago and vir-1 occurs in response to viral infection. However, Vir-1 is also present in virus-free D. melanogaster suggesting basal expression or alternative functions. Presence of Nora virus RNA and the Viral Protein 4b (VP4b), in hemolymph of infected D. melanogaster supports the hypothesized circulation of Nora virus in the hemolymph. The study suggests that impaired locomotor function may be due to transport of Nora virus from the gut to the brain via the hemolymph. Full article
(This article belongs to the Special Issue Host Immune Response to Infectious Diseases)
Show Figures

Figure 1

Back to TopTop