Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = ORB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4721 KB  
Article
Performance Analysis of Keypoints Detection and Description Algorithms for Stereo Vision Based Odometry
by Sebastian Budzan, Roman Wyżgolik and Michał Lysko
Sensors 2025, 25(19), 6129; https://doi.org/10.3390/s25196129 - 3 Oct 2025
Abstract
This paper presents a comprehensive evaluation of keypoint detection and description algorithms for stereo vision-based odometry in dynamic environments. Five widely used methods—FAST, GFTT, ORB, BRISK, and KAZE—were analyzed in terms of detection accuracy, robustness to image distortions, computational efficiency, and suitability for [...] Read more.
This paper presents a comprehensive evaluation of keypoint detection and description algorithms for stereo vision-based odometry in dynamic environments. Five widely used methods—FAST, GFTT, ORB, BRISK, and KAZE—were analyzed in terms of detection accuracy, robustness to image distortions, computational efficiency, and suitability for embedded systems. Using the KITTI dataset, the study assessed the influence of image resolution, noise, blur, and contrast variations on keypoint performance. The matching quality between stereo image pairs and across consecutive frames was also examined, with particular attention to drift—cumulative trajectory error—during motion estimation. The results show that while FAST and ORB detect the highest number of keypoints, GFTT offers the best balance between matching quality and processing time. KAZE provides high robustness but at the cost of computational load. The findings highlight the trade-offs between speed, accuracy, and resilience to environmental changes, offering practical guidance for selecting keypoint algorithms in real-time stereo visual odometry systems. The study concludes that GFTT is the most suitable method for trajectory estimation in dynamic, real-world conditions. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 1569 KB  
Article
A Summary of Pain Locations and Neuropathic Patterns Extracted Automatically from Patient Self-Reported Sensation Drawings
by Andrew Bishara, Elisabetta de Rinaldis, Trisha F. Hue, Thomas Peterson, Jennifer Cummings, Abel Torres-Espin, Jeannie F. Bailey, Jeffrey C. Lotz and REACH Investigators
Int. J. Environ. Res. Public Health 2025, 22(9), 1456; https://doi.org/10.3390/ijerph22091456 - 19 Sep 2025
Viewed by 319
Abstract
Background Chronic low-back pain (LBP) is the largest contributor to disability worldwide, yet many assessments still reduce a complex, spatially distributed condition to a single 0–10 score. Body-map drawings capture location and extent of pain, but manual digitization is too slow and inconsistent [...] Read more.
Background Chronic low-back pain (LBP) is the largest contributor to disability worldwide, yet many assessments still reduce a complex, spatially distributed condition to a single 0–10 score. Body-map drawings capture location and extent of pain, but manual digitization is too slow and inconsistent for large studies or real-time telehealth. Methods Paper pain drawings from 332 adults in the multicenter COMEBACK study (four University of California sites, March 2021–June 2023) were scanned to PDFs. A Python pipeline automatically (i) rasterized PDF pages with pdf2image v1.17.0; (ii) resized each scan and delineated anterior/posterior regions of interest; (iii) registered patient silhouettes to a canonical high-resolution template using ORB key-points, Brute-Force Hamming matching, RANSAC inlier selection, and 3 × 3 projective homography implemented in OpenCV; (iv) removed template outlines via adaptive Gaussian thresholding, Canny edge detection, and 3 × 3 dilation, leaving only patient-drawn strokes; (v) produced binary masks for pain, numbness, and pins-and-needles, then stacked these across subjects to create pixel-frequency matrices; and (vi) normalized matrices with min–max scaling and rendered heat maps. RGB composites assigned distinct channels to each sensation, enabling intuitive visualization of overlapping symptom distributions and for future data analyses. Results Cohort-level maps replicated classic low-back pain hotspots over lumbar paraspinals, gluteal fold, and posterior thighs, while exposing less-recognized clusters along the lateral hip and lower abdomen. Neuropathic-leaning drawings displayed broader leg involvement than purely nociceptive patterns. Conclusions Our automated workflow converts pen-on-paper pain drawings into machine-readable digitized images and heat maps at the population scale, laying practical groundwork for spatially informed, precision management of chronic LBP. Full article
Show Figures

Figure 1

17 pages, 5134 KB  
Article
Monocular Camera Pose Estimation and Calibration System Based on Raspberry Pi
by Chung-Wen Hung, Ting-An Chang, Xuan-Ni Chen and Chun-Chieh Wang
Electronics 2025, 14(18), 3694; https://doi.org/10.3390/electronics14183694 - 18 Sep 2025
Viewed by 231
Abstract
Numerous imaging-based methods have been proposed for artifact monitoring and preservation, yet most rely on fixed-angle cameras or robotic platforms, leading to high cost and complexity. In this study, a portable monocular camera pose estimation and calibration framework is presented to capture artifact [...] Read more.
Numerous imaging-based methods have been proposed for artifact monitoring and preservation, yet most rely on fixed-angle cameras or robotic platforms, leading to high cost and complexity. In this study, a portable monocular camera pose estimation and calibration framework is presented to capture artifact images from consistent viewpoints over time. The system is implemented on a Raspberry Pi integrated with a controllable three-axis gimbal, enabling untethered operation. Three methodological innovations are proposed. First, ORB feature extraction combined with a quadtree-based distribution strategy is employed to ensure uniform keypoint coverage and robustness under varying illumination conditions. Second, on-device processing is achieved using a Raspberry Pi, eliminating dependence on external power or high-performance hardware. Third, unlike traditional fixed setups or multi-degree-of-freedom robotic arms, real-time, low-cost calibration is provided, maintaining pose alignment accuracy consistently within three pixels. Through these innovations, a technically robust, computationally efficient, and highly portable solution for artifact preservation has been demonstrated, making it suitable for deployment in museums, exhibition halls, and other resource-constrained environments. Full article
Show Figures

Figure 1

20 pages, 4833 KB  
Article
High-Precision Visual SLAM for Dynamic Scenes Using Semantic–Geometric Feature Filtering and NeRF Maps
by Yanjun Ma, Jiahao Lv and Jie Wei
Electronics 2025, 14(18), 3657; https://doi.org/10.3390/electronics14183657 - 15 Sep 2025
Viewed by 379
Abstract
Dynamic environments pose significant challenges for visual SLAM, including feature ambiguity, weak textures, and map inconsistencies caused by moving objects. We present a robust SLAM framework integrating image enhancement, a mixed-precision quantized feature detection network, semantic-driven dynamic feature filtering, and NeRF-based static scene [...] Read more.
Dynamic environments pose significant challenges for visual SLAM, including feature ambiguity, weak textures, and map inconsistencies caused by moving objects. We present a robust SLAM framework integrating image enhancement, a mixed-precision quantized feature detection network, semantic-driven dynamic feature filtering, and NeRF-based static scene reconstruction. The system reliably extracts features under challenging conditions, removes dynamic points using instance segmentation combined with polar geometric constraints, and reconstructs static scenes with enhanced structural fidelity. Extensive experiments on TUM RGB-D, BONN RGB-D, and a custom dataset demonstrate notable improvements in the RMSE, mean, median, and standard deviation. Compared with ORB-SLAM3, our method achieves an average RMSE reduction of 93.4%, demonstrating substantial improvement, and relative to other state-of-the-art dynamic SLAM systems, it improves the average RMSE by 49.6% on TUM and 23.1% on BONN, highlighting its high accuracy, robustness, and adaptability in complex and highly dynamic environments. Full article
(This article belongs to the Special Issue 3D Computer Vision and 3D Reconstruction)
Show Figures

Figure 1

16 pages, 7958 KB  
Article
Development and Evaluation of a Keypoint-Based Video Stabilization Pipeline for Oral Capillaroscopy
by Vito Gentile, Vincenzo Taormina, Luana Conte, Giorgio De Nunzio, Giuseppe Raso and Donato Cascio
Sensors 2025, 25(18), 5738; https://doi.org/10.3390/s25185738 - 15 Sep 2025
Viewed by 316
Abstract
Capillaroscopy imaging is a non-invasive technique used to examine the microcirculation of the oral mucosa. However, the acquired video sequences are often affected by motion noise and shaking, which can compromise diagnostic accuracy and hinder the development of automated systems for capillary identification [...] Read more.
Capillaroscopy imaging is a non-invasive technique used to examine the microcirculation of the oral mucosa. However, the acquired video sequences are often affected by motion noise and shaking, which can compromise diagnostic accuracy and hinder the development of automated systems for capillary identification and segmentation. To address these challenges, we implemented a comprehensive video stabilization model, structured as a multi-phase pipeline and visually represented through a flow-chart. The proposed method integrates keypoint extraction, optical flow estimation, and affine transformation-based frame alignment to enhance video stability. Within this framework, we evaluated the performance of three keypoint extraction algorithms—Scale-Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF (ORB) and Good Features to Track (GFTT)—on a curated dataset of oral capillaroscopy videos. To simulate real-world acquisition conditions, synthetic tremors were introduced via Gaussian affine transformations. Experimental results demonstrate that all three algorithms yield comparable stabilization performance, with GFTT offering slightly higher structural fidelity and ORB excelling in computational efficiency. These findings validate the effectiveness of the proposed model and highlight its potential for improving the quality and reliability of oral videocapillaroscopy imaging. Experimental evaluation showed that the proposed pipeline achieved an average SSIM of 0.789 and reduced jitter to 25.8, compared to the perturbed input sequences. In addition, path smoothness and RMS errors (translation and rotation) consistently indicated improved stabilization across all tested feature extractors. Compared to previous stabilization approaches in nailfold capillaroscopy, our method achieved comparable or superior structural fidelity while maintaining computational efficiency. Full article
(This article belongs to the Special Issue Biomedical Signals, Images and Healthcare Data Analysis: 2nd Edition)
Show Figures

Figure 1

25 pages, 20160 KB  
Article
A Robust Framework Fusing Visual SLAM and 3D Gaussian Splatting with a Coarse-Fine Method for Dynamic Region Segmentation
by Zhian Chen, Yaqi Hu and Yong Liu
Sensors 2025, 25(17), 5539; https://doi.org/10.3390/s25175539 - 5 Sep 2025
Viewed by 1242
Abstract
Existing visual SLAM systems with neural representations excel in static scenes but fail in dynamic environments where moving objects degrade performance. To address this, we propose a robust dynamic SLAM framework combining classic geometric features for localization with learned photometric features for dense [...] Read more.
Existing visual SLAM systems with neural representations excel in static scenes but fail in dynamic environments where moving objects degrade performance. To address this, we propose a robust dynamic SLAM framework combining classic geometric features for localization with learned photometric features for dense mapping. Our method first tracks objects using instance segmentation and a Kalman filter. We then introduce a cascaded, coarse-to-fine strategy for efficient motion analysis: a lightweight sparse optical flow method performs a coarse screening, while a fine-grained dense optical flow clustering is selectively invoked for ambiguous targets. By filtering features on dynamic regions, our system drastically improves camera pose estimation, reducing Absolute Trajectory Error by up to 95% on dynamic TUM RGB-D sequences compared to ORB-SLAM3, and generates clean dense maps. The 3D Gaussian Splatting backend, optimized with a Gaussian pyramid strategy, ensures high-quality reconstruction. Validations on diverse datasets confirm our system’s robustness, achieving accurate localization and high-fidelity mapping in dynamic scenarios while reducing motion analysis computation by 91.7% over a dense-only approach. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Graphical abstract

23 pages, 4627 KB  
Article
Dynamic SLAM Dense Point Cloud Map by Fusion of Semantic Information and Bayesian Moving Probability
by Qing An, Shao Li, Yanglu Wan, Wei Xuan, Chao Chen, Bufan Zhao and Xijiang Chen
Sensors 2025, 25(17), 5304; https://doi.org/10.3390/s25175304 - 26 Aug 2025
Viewed by 742
Abstract
Most existing Simultaneous Localization and Mapping (SLAM) systems rely on the assumption of static environments to achieve reliable and efficient mapping. However, such methods often suffer from degraded localization accuracy and mapping consistency in dynamic settings, as they lack explicit mechanisms to distinguish [...] Read more.
Most existing Simultaneous Localization and Mapping (SLAM) systems rely on the assumption of static environments to achieve reliable and efficient mapping. However, such methods often suffer from degraded localization accuracy and mapping consistency in dynamic settings, as they lack explicit mechanisms to distinguish between static and dynamic elements. To overcome this limitation, we present BMP-SLAM, a vision-based SLAM approach that integrates semantic segmentation and Bayesian motion estimation to robustly handle dynamic indoor scenes. To enable real-time dynamic object detection, we integrate YOLOv5, a semantic segmentation network that identifies and localizes dynamic regions within the environment, into a dedicated dynamic target detection thread. Simultaneously, the data association Bayesian mobile probability proposed in this paper effectively eliminates dynamic feature points and successfully reduces the impact of dynamic targets in the environment on the SLAM system. To enhance complex indoor robotic navigation, the proposed system integrates semantic keyframe information with dynamic object detection outputs to reconstruct high-fidelity 3D point cloud maps of indoor environments. The evaluation conducted on the TUM RGB-D dataset indicates that the performance of BMP-SLAM is superior to that of ORB-SLAM3, with the trajectory tracking accuracy improved by 96.35%. Comparative evaluations demonstrate that the proposed system achieves superior performance in dynamic environments, exhibiting both lower trajectory drift and enhanced positioning precision relative to state-of-the-art dynamic SLAM methods. Full article
(This article belongs to the Special Issue Indoor Localization Technologies and Applications)
Show Figures

Figure 1

27 pages, 7285 KB  
Article
Towards Biologically-Inspired Visual SLAM in Dynamic Environments: IPL-SLAM with Instance Segmentation and Point-Line Feature Fusion
by Jian Liu, Donghao Yao, Na Liu and Ye Yuan
Biomimetics 2025, 10(9), 558; https://doi.org/10.3390/biomimetics10090558 - 22 Aug 2025
Viewed by 668
Abstract
Simultaneous Localization and Mapping (SLAM) is a fundamental technique in mobile robotics, enabling autonomous navigation and environmental reconstruction. However, dynamic elements in real-world scenes—such as walking pedestrians, moving vehicles, and swinging doors—often degrade SLAM performance by introducing unreliable features that cause localization errors. [...] Read more.
Simultaneous Localization and Mapping (SLAM) is a fundamental technique in mobile robotics, enabling autonomous navigation and environmental reconstruction. However, dynamic elements in real-world scenes—such as walking pedestrians, moving vehicles, and swinging doors—often degrade SLAM performance by introducing unreliable features that cause localization errors. In this paper, we define dynamic regions as areas in the scene containing moving objects, and dynamic features as the visual features extracted from these regions that may adversely affect localization accuracy. Inspired by biological perception strategies that integrate semantic awareness and geometric cues, we propose Instance-level Point-Line SLAM (IPL-SLAM), a robust visual SLAM framework for dynamic environments. The system employs YOLOv8-based instance segmentation to detect potential dynamic regions and construct semantic priors, while simultaneously extracting point and line features using Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features), collectively known as ORB, and Line Segment Detector (LSD) algorithms. Motion consistency checks and angular deviation analysis are applied to filter dynamic features, and pose optimization is conducted using an adaptive-weight error function. A static semantic point cloud map is further constructed to enhance scene understanding. Experimental results on the TUM RGB-D dataset demonstrate that IPL-SLAM significantly outperforms existing dynamic SLAM systems—including DS-SLAM and ORB-SLAM2—in terms of trajectory accuracy and robustness in complex indoor environments. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

35 pages, 9639 KB  
Review
Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards
by Jean-Paul Deroin
Remote Sens. 2025, 17(16), 2814; https://doi.org/10.3390/rs17162814 - 14 Aug 2025
Viewed by 1385
Abstract
The Aral Sea Basin (ASB), situated in Central Asia, serves as a prime example of a man-made environmental disaster. The practice of irrigation can be traced back to ancient times. However, the substantial water withdrawals that have occurred since the second half of [...] Read more.
The Aral Sea Basin (ASB), situated in Central Asia, serves as a prime example of a man-made environmental disaster. The practice of irrigation can be traced back to ancient times. However, the substantial water withdrawals that have occurred since the second half of the 20th century appear to have led to the irreversible drying up of the Aral Sea and the disruption of the flow of the Amu Darya and Syr Darya rivers. This study conducts a comprehensive review of satellite data from the past sixty years, drawing upon a selection of peer-reviewed papers available on Scopus. The selection of papers is conducted in accordance with a methodology that is predicated on the combination of keywords. The study focuses on geoscientific aspects, including the atmosphere, water resources, geology, and geological hazards. The primary sensors employed in this study were Terra-MODIS, NOAA-AVHRR, and the Landsat series. It is evident that certain data types, including radar data, US or Soviet archives, and very-high-resolution data such as OrbView-3, have seen minimal utilisation. Despite the restricted application of remote sensing data in publications addressing the ASB, remote sensing data offer a substantial repository for monitoring the desiccation of the Aral Sea, once the fourth largest continental body of water, and for the estimation of its water surface and volume. Nevertheless, the utilisation of remote sensing in publications concerning the Aral region remains limited, with less than 10% of publications employing this method. Sentinel-2 data has been utilised to illustrate the construction of the Qosh Tepa Canal in Afghanistan, a project which has been the subject of significant controversy, with a particular focus on the issue of water leakage. This predicament is indicative of the broader challenges confronting the region with regard to water management in the context of climate change. A comparison of the Aral Sea’s case history is drawn with analogous examples worldwide, including Lake Urmia, the Great Salt Lake, and, arguably more problematically, the Caspian Sea. Full article
Show Figures

Figure 1

23 pages, 3199 KB  
Article
A Motion Segmentation Dynamic SLAM for Indoor GNSS-Denied Environments
by Yunhao Wu, Ziyao Zhang, Haifeng Chen and Jian Li
Sensors 2025, 25(16), 4952; https://doi.org/10.3390/s25164952 - 10 Aug 2025
Viewed by 762
Abstract
In GNSS-deprived settings, such as indoor and underground environments, research on simultaneous localization and mapping (SLAM) technology remains a focal point. Addressing the influence of dynamic variables on positional precision and constructing a persistent map comprising solely static elements are pivotal objectives in [...] Read more.
In GNSS-deprived settings, such as indoor and underground environments, research on simultaneous localization and mapping (SLAM) technology remains a focal point. Addressing the influence of dynamic variables on positional precision and constructing a persistent map comprising solely static elements are pivotal objectives in visual SLAM for dynamic scenes. This paper introduces optical flow motion segmentation-based SLAM(OS-SLAM), a dynamic environment SLAM system that incorporates optical flow motion segmentation for enhanced robustness. Initially, a lightweight multi-scale optical flow network is developed and optimized using multi-scale feature extraction and update modules to enhance motion segmentation accuracy with rigid masks while maintaining real-time performance. Subsequently, a novel fusion approach combining the YOLO-fastest method and Rigidmask fusion is proposed to mitigate mis-segmentation errors of static backgrounds caused by non-rigid moving objects. Finally, a static dense point cloud map is generated by filtering out abnormal point clouds. OS-SLAM integrates optical flow estimation with motion segmentation to effectively reduce the impact of dynamic objects. Experimental findings from the Technical University of Munich (TUM) dataset demonstrate that the proposed method significantly outperforms ORB-SLAM3 in handling high dynamic sequences, achieving a reduction of 91.2% in absolute position error (APE) and 45.1% in relative position error (RPE) on average. Full article
(This article belongs to the Collection Navigation Systems and Sensors)
Show Figures

Figure 1

23 pages, 5155 KB  
Article
Enhancing Early Detection of Diabetic Foot Ulcers Using Deep Neural Networks
by A. Sharaf Eldin, Asmaa S. Ahmoud, Hanaa M. Hamza and Hanin Ardah
Diagnostics 2025, 15(16), 1996; https://doi.org/10.3390/diagnostics15161996 - 9 Aug 2025
Viewed by 776
Abstract
Background/Objectives: Diabetic foot ulcers (DFUs) remain a critical complication of diabetes, with high rates of amputation when not diagnosed early. Despite advancements in medical imaging, current DFU detection methods are often limited by their computational complexity, poor generalizability, and delayed diagnostic performance. [...] Read more.
Background/Objectives: Diabetic foot ulcers (DFUs) remain a critical complication of diabetes, with high rates of amputation when not diagnosed early. Despite advancements in medical imaging, current DFU detection methods are often limited by their computational complexity, poor generalizability, and delayed diagnostic performance. This study presents a novel hybrid diagnostic framework that integrates traditional feature extraction methods with deep learning (DL) to improve the early real-time computer-aided detection (CAD) of DFUs. Methods: The proposed model leverages plantar thermograms to detect early thermal asymmetries associated with DFUs. It uniquely combines the oriented FAST and rotated BRIEF (ORB) algorithm with the Bag of Features (BOF) method to extract robust handcrafted features while also incorporating deep features from pretrained convolutional neural networks (ResNet50, AlexNet, and EfficientNet). These features were fused and input into a lightweight deep neural network (DNN) classifier designed for binary classification. Results: Our model demonstrated an accuracy of 98.51%, precision of 100%, sensitivity of 98.98%, and AUC of 1.00 in a publicly available plantar thermogram dataset (n = 1670 images). An ablation study confirmed the superiority of ORB + DL fusion over standalone approaches. Unlike previous DFU detection models that rely solely on either handcrafted or deep features, our study presents the first lightweight hybrid framework that integrates ORB-based descriptors with deep CNN representations (e.g., ResNet50 and EfficientNet). Compared with recent state-of-the-art models, such as DFU_VIRNet and DFU_QUTNet, our approach achieved a higher diagnostic performance (accuracy = 98.51%, AUC = 1.00) while maintaining real-time capability and a lower computational overhead, making it highly suitable for clinical deployment. Conclusions: This study proposes the first integration of ORB-based handcrafted features with deep neural representations for DFU detection from thermal images. The model delivers high accuracy, robustness to noise, and real-time capabilities, outperforming existing state-of-the-art approaches and demonstrating strong potential for clinical deployment. Full article
(This article belongs to the Topic Machine Learning and Deep Learning in Medical Imaging)
Show Figures

Figure 1

17 pages, 8252 KB  
Article
Probing Augmented Intelligent Human–Robot Collaborative Assembly Methods Toward Industry 5.0
by Qingwei Nie, Yiping Shen, Ye Ma, Shuqi Zhang, Lujie Zong, Ze Zheng, Yunbo Zhangwa and Yu Chen
Electronics 2025, 14(15), 3125; https://doi.org/10.3390/electronics14153125 - 5 Aug 2025
Viewed by 470
Abstract
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge [...] Read more.
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge acquisition, and strong decision dependency in the assembly of complex aerospace products within confined spaces, an assembly task model and structured process information are constructed. Combined with a retrieval-augmented generation mechanism, the method realizes knowledge reasoning and optimization suggestion generation. An improved ORB-SLAM2 algorithm is applied to achieve virtual–real mapping and component tracking, further supporting the development of an enhanced visual interaction system. The proposed approach is validated through a typical aerospace electronic cabin assembly task, demonstrating significant improvements in assembly efficiency, quality, and human–robot interaction experience, thus providing effective support for intelligent HRC assembly. Full article
(This article belongs to the Special Issue Human–Robot Interaction and Communication Towards Industry 5.0)
Show Figures

Figure 1

25 pages, 6462 KB  
Article
Phenotypic Trait Acquisition Method for Tomato Plants Based on RGB-D SLAM
by Penggang Wang, Yuejun He, Jiguang Zhang, Jiandong Liu, Ran Chen and Xiang Zhuang
Agriculture 2025, 15(15), 1574; https://doi.org/10.3390/agriculture15151574 - 22 Jul 2025
Viewed by 413
Abstract
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive [...] Read more.
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive and inefficient. In contrast, combining 3D reconstruction technologies with autonomous vehicles enables more intuitive and efficient trait acquisition. This study proposes a 3D semantic reconstruction system based on an improved ORB-SLAM3 framework, which is mounted on an unmanned vehicle to acquire phenotypic traits in tomato cultivation scenarios. The vehicle is also equipped with the A * algorithm for autonomous navigation. To enhance the semantic representation of the point cloud map, we integrate the BiSeNetV2 network into the ORB-SLAM3 system as a semantic segmentation module. Furthermore, a two-stage filtering strategy is employed to remove outliers and improve the map accuracy, and OctoMap is adopted to store the point cloud data, significantly reducing the memory consumption. A spherical fitting method is applied to estimate the number of tomato fruits. The experimental results demonstrate that BiSeNetV2 achieves a mean intersection over union (mIoU) of 95.37% and a frame rate of 61.98 FPS on the tomato dataset, enabling real-time segmentation. The use of OctoMap reduces the memory consumption by an average of 96.70%. The relative errors when predicting the plant height, canopy width, and volume are 3.86%, 14.34%, and 27.14%, respectively, while the errors concerning the fruit count and fruit volume are 14.36% and 14.25%. Localization experiments on a field dataset show that the proposed system achieves a mean absolute trajectory error (mATE) of 0.16 m and a root mean square error (RMSE) of 0.21 m, indicating high localization accuracy. Therefore, the proposed system can accurately acquire the phenotypic traits of tomato plants, providing data support for precision agriculture and agricultural decision-making. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 4682 KB  
Article
Visual Active SLAM Method Considering Measurement and State Uncertainty for Space Exploration
by Yao Zhao, Zhi Xiong, Jingqi Wang, Lin Zhang and Pascual Campoy
Aerospace 2025, 12(7), 642; https://doi.org/10.3390/aerospace12070642 - 20 Jul 2025
Viewed by 617
Abstract
This paper presents a visual active SLAM method considering measurement and state uncertainty for space exploration in urban search and rescue environments. An uncertainty evaluation method based on the Fisher Information Matrix (FIM) is studied from the perspective of evaluating the localization uncertainty [...] Read more.
This paper presents a visual active SLAM method considering measurement and state uncertainty for space exploration in urban search and rescue environments. An uncertainty evaluation method based on the Fisher Information Matrix (FIM) is studied from the perspective of evaluating the localization uncertainty of SLAM systems. With the aid of the Fisher Information Matrix, the Cramér–Rao Lower Bound (CRLB) of the pose uncertainty in the stereo visual SLAM system is derived to describe the boundary of the pose uncertainty. Optimality criteria are introduced to quantitatively evaluate the localization uncertainty. The odometry information selection method and the local bundle adjustment information selection method based on Fisher Information are proposed to find out the measurements with low uncertainty for localization and mapping in the search and rescue process. By adopting the method above, the computing efficiency of the system is improved while the localization accuracy is equivalent to the classical ORB-SLAM2. Moreover, by the quantified uncertainty of local poses and map points, the generalized unary node and generalized unary edge are defined to improve the computational efficiency in computing local state uncertainty. In addition, an active loop closing planner considering local state uncertainty is proposed to make use of uncertainty in assisting the space exploration and decision-making of MAV, which is beneficial to the improvement of MAV localization performance in search and rescue environments. Simulations and field tests in different challenging scenarios are conducted to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 4044 KB  
Article
DK-SLAM: Monocular Visual SLAM with Deep Keypoint Learning, Tracking, and Loop Closing
by Hao Qu, Lilian Zhang, Jun Mao, Junbo Tie, Xiaofeng He, Xiaoping Hu, Yifei Shi and Changhao Chen
Appl. Sci. 2025, 15(14), 7838; https://doi.org/10.3390/app15147838 - 13 Jul 2025
Viewed by 785
Abstract
The performance of visual SLAM in complex, real-world scenarios is often compromised by unreliable feature extraction and matching when using handcrafted features. Although deep learning-based local features excel at capturing high-level information and perform well on matching benchmarks, they struggle with generalization in [...] Read more.
The performance of visual SLAM in complex, real-world scenarios is often compromised by unreliable feature extraction and matching when using handcrafted features. Although deep learning-based local features excel at capturing high-level information and perform well on matching benchmarks, they struggle with generalization in continuous motion scenes, adversely affecting loop detection accuracy. Our system employs a Model-Agnostic Meta-Learning (MAML) strategy to optimize the training of keypoint extraction networks, enhancing their adaptability to diverse environments. Additionally, we introduce a coarse-to-fine feature tracking mechanism for learned keypoints. It begins with a direct method to approximate the relative pose between consecutive frames, followed by a feature matching method for refined pose estimation. To mitigate cumulative positioning errors, DK-SLAM incorporates a novel online learning module that utilizes binary features for loop closure detection. This module dynamically identifies loop nodes within a sequence, ensuring accurate and efficient localization. Experimental evaluations on publicly available datasets demonstrate that DK-SLAM outperforms leading traditional and learning-based SLAM systems, such as ORB-SLAM3 and LIFT-SLAM. DK-SLAM achieves 17.7% better translation accuracy and 24.2% better rotation accuracy than ORB-SLAM3 on KITTI and 34.2% better translation accuracy on EuRoC. These results underscore the efficacy and robustness of our DK-SLAM in varied and challenging real-world environments. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

Back to TopTop