Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,231)

Search Parameters:
Keywords = PAM4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2828 KB  
Article
A Combined Theoretical and Experimental Study on Predicting the Repose Angle of Cuttings Beds in Extended-Reach Well Drilling
by Hui Zhang, Heng Wang, Yinsong Liu, Liang Tao, Jingyu Qu and Chao Liang
Processes 2025, 13(9), 2836; https://doi.org/10.3390/pr13092836 - 4 Sep 2025
Abstract
In extended-reach wells, cuttings bed formation in high-deviation sections presents a major challenge for hole cleaning and borehole stability. This study analyzes the morphological and mechanical behavior of cuttings beds, focusing on particle size distribution and repose angle as key indicators of accumulation [...] Read more.
In extended-reach wells, cuttings bed formation in high-deviation sections presents a major challenge for hole cleaning and borehole stability. This study analyzes the morphological and mechanical behavior of cuttings beds, focusing on particle size distribution and repose angle as key indicators of accumulation behavior. The modeling approach considers dominant interparticle forces, including buoyancy and cohesion, while neglecting secondary microscale forces for clarity. A theoretical model is developed to predict repose angles under both rolling and sliding regimes and is calibrated through laboratory-scale experiments using simulated drilling fluid with field-representative rheological properties. Results show that cohesive effects are negligible when cuttings are of similar size but exhibit higher densities. Laboratory measurements reveal that the repose angle of cuttings beds varies between 23.9° and 31.7°, with increasing polyacrylamide (PAM) concentration and particle size contributing to steeper repose angles. Additionally, the rolling repose angle is found to be relatively stable, ranging from 25° to 30°, regardless of fluid or particle property variations. These findings provide a predictive framework and practical guidelines for optimizing hole cleaning strategies and designing more effective models in extended-reach drilling. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

0 pages, 2570 KB  
Article
Antibody-Dependent Cellular Cytotoxicity Elicited by the Antibodies Against the E120R Protein of African Swine Fever Virus
by Shengmei Chen, Jing Lan, Zhanhao Lu, Jia Li, Caoyuan Ma, Rui Luo, Qiang Fu, Yuan Sun, Tao Wang and Hua-Ji Qiu
Vaccines 2025, 13(9), 934; https://doi.org/10.3390/vaccines13090934 - 1 Sep 2025
Viewed by 242
Abstract
Background/Objectives: African swine fever (ASF) is a disease of domestic pigs and wild boar caused by African swine fever virus (ASFV), in which infection often leads to high morbidity and mortality. Although subunit and mRNA vaccines based on protective antigens have been explored [...] Read more.
Background/Objectives: African swine fever (ASF) is a disease of domestic pigs and wild boar caused by African swine fever virus (ASFV), in which infection often leads to high morbidity and mortality. Although subunit and mRNA vaccines based on protective antigens have been explored for ASFV, their protective efficacy remains insufficient for practical ASF control, highlighting the need to identify new potential antigens capable of inducing more potent and broadly protective immune responses. Previously, we found that the antibodies against the ASFV E120R protein (pE120R) could significantly inhibit virus replication in primary porcine alveolar macrophages (PAMs). However, it is not yet known whether anti-pE120R antibodies can induce antibody-dependent cellular cytotoxicity (ADCC). Methods: In this study, we analyzed the conservation and immunogenic features of pE120R and established an HEK293T cell line with stable expression of pE120R as target cells (HEK293T-pE120R). Additionally, a co-culture system comprising target cells and peripheral blood mononuclear cells (PBMCs) was established to evaluate the ability of the anti-pE120R antibodies to induce ADCC as measured by lactate dehydrogenase (LDH) release assays. Results: The results showed that pE120R is highly conserved among different ASFV genotypes and contains multiple B-cell and T-cell epitopes. Importantly, LDH release assays demonstrated that anti-pE120R antibodies triggered NK cell-mediated ADCC. Notably, ASFV replication in HEK293T-pE120R cells was not promoted. Conclusions: In summary, pE120R was associated with antibody production in a cytotoxicity assay. The ability of this antigen to induce protective immunity, if any, requires further evaluation in vivo. Full article
(This article belongs to the Special Issue Swine Vaccines and Vaccination)
Show Figures

Figure 1

20 pages, 2277 KB  
Article
Investigation on the Concentration, Sources, and Photochemical Roles of Volatile Phenols in the Atmosphere in the North China Plain
by Ziyan Chen, Kaitao Chen, Min Cai and Xingru Li
Toxics 2025, 13(9), 744; https://doi.org/10.3390/toxics13090744 - 31 Aug 2025
Viewed by 222
Abstract
Volatile phenols in the atmosphere are important precursors of ozone and secondary organic aerosols (SOAs). Despite their importance, the lack of effective observation and analysis methods has led to less attention paid to them, leading to gaps in our understanding of their behavior [...] Read more.
Volatile phenols in the atmosphere are important precursors of ozone and secondary organic aerosols (SOAs). Despite their importance, the lack of effective observation and analysis methods has led to less attention paid to them, leading to gaps in our understanding of their behavior and effects on atmospheric chemistry. This study aimed to evaluate the concentration levels, sources, and environmental impacts of volatile phenols in ambient air, focusing on the urban area of Beijing and the suburban district of Heze in the North China Plain during winter. Samples were collected using an XAD-7 column and analyzed by high-performance liquid chromatography with ultraviolet detection (UPLC-UV). Results indicated that a higher concentration of 11 detected phenols was found in Beijing than that in Heze, with the average concentration of 23.60 ± 8.99 ppbv and 18.38 ± 2.34 ppbv. Phenol and cresol with strong photochemical activity were the predominant species, accounting for about 52% (Heze) and 66% (Beijing) of the total phenols, which indicates that more attention should be paid to volatile phenols in urban areas. Higher levels of LOH in Beijing (36.86 s−1) and Heze (22.06 s−1) compared to other studies about PAMS and carbonyls indicated that these volatile phenols play an undeniable role in atmospheric oxidation reactions. Positive Matrix Factorization (PMF) identified major sources as pesticide usage (15.6%), organic chemicals (31.9%), and combustion or secondary conversion (52.5%). These findings underscore the multifaceted impact of phenols, influencing both gaseous pollutant concentrations and particulate matter formation, with potential implications for environmental and public health. Full article
(This article belongs to the Special Issue Analysis of the Sources and Components of Aerosols in Air Pollution)
Show Figures

Graphical abstract

25 pages, 4197 KB  
Article
Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material
by Junkang Xu, Xin Chen, Guanghui Zhang, Weidong Yu, Chongfa Cai and Yujie Wei
Agronomy 2025, 15(9), 2087; https://doi.org/10.3390/agronomy15092087 - 29 Aug 2025
Viewed by 236
Abstract
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil [...] Read more.
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil Function Index (SFI) framework integrating erosion resistance (SFI1), water regulation (SFI2), and ecological function (SFI3) to evaluate the effects of PAM application (0‰, 1‰, 3‰, 5‰, 7‰) on gully-prone sandy material. Herein, SFI1 was quantified through shear strength (τ) and soil erodibility (Kr); SFI2 was assessed using soil hydraulic parameters (saturated hydraulic conductivity and water retention curves) and SFI3 was derived from the grass root system analysis. The results showed that SFI1 and SFI2 increased nonlinearly with PAM concentration, reaching maximum values of 0.983 and 0.980 at 7‰, with Kr reduced by 77.3% and non-capillary porosity (NAP) increased by 8.1%. In contrast, SFI3 peaked at 0.858 under 3‰ and declined sharply to 0.000 at 7‰, due to micropore over-compaction, reduced aeration, and limited plant-available water. The total SFI exhibited a unimodal trend, with a maximum of 0.755 at 3‰, beyond which ecological suppression offset physical improvements. These findings demonstrate that PAM modifies soil multifunctionality through pore-scale restructuring, inducing function-specific thresholds and trade-offs. A PAM concentration of 3‰ is identified as optimal, achieving a balance between erosion control, hydrological performance, and ecological viability in the management of subtropical granite-derived sandy slopes. Full article
Show Figures

Figure 1

26 pages, 389 KB  
Article
Integrating AI with Meta-Language: An Interdisciplinary Framework for Classifying Concepts in Mathematics and Computer Science
by Elena Kramer, Dan Lamberg, Mircea Georgescu and Miri Weiss Cohen
Information 2025, 16(9), 735; https://doi.org/10.3390/info16090735 - 26 Aug 2025
Viewed by 268
Abstract
Providing students with effective learning resources is essential for improving educational outcomes—especially in complex and conceptually diverse fields such as Mathematics and Computer Science. To better understand how these subjects are communicated, this study investigates the linguistic structures embedded in academic texts from [...] Read more.
Providing students with effective learning resources is essential for improving educational outcomes—especially in complex and conceptually diverse fields such as Mathematics and Computer Science. To better understand how these subjects are communicated, this study investigates the linguistic structures embedded in academic texts from selected subfields within both disciplines. In particular, we focus on meta-languages—the linguistic tools used to express definitions, axioms, intuitions, and heuristics within a discipline. The primary objective of this research is to identify which subfields of Mathematics and Computer Science share similar meta-languages. Identifying such correspondences may enable the rephrasing of content from less familiar subfields using styles that students already recognize from more familiar areas, thereby enhancing accessibility and comprehension. To pursue this aim, we compiled text corpora from multiple subfields across both disciplines. We compared their meta-languages using a combination of supervised (Neural Network) and unsupervised (clustering) learning methods. Specifically, we applied several clustering algorithms—K-means, Partitioning around Medoids (PAM), Density-Based Clustering, and Gaussian Mixture Models—to analyze inter-discipline similarities. To validate the resulting classifications, we used XLNet, a deep learning model known for its sensitivity to linguistic patterns. The model achieved an accuracy of 78% and an F1-score of 0.944. Our findings show that subfields can be meaningfully grouped based on meta-language similarity, offering valuable insights for tailoring educational content more effectively. To further verify these groupings and explore their pedagogical relevance, we conducted both quantitative and qualitative research involving student participation. This paper presents findings from the qualitative component—namely, a content analysis of semi-structured interviews with software engineering students and lecturers. Full article
(This article belongs to the Special Issue Advancing Educational Innovation with Artificial Intelligence)
Show Figures

Figure 1

18 pages, 1885 KB  
Article
Additive Manufacturing of Regorafenib Tablets: Formulation Strategies and Characterization for Colorectal Cancer
by Fatemeh Safari, Azin Goudarzi, Hossein Abolghasemi, Hussein Abdelamir Mohammad, Mohammad Akrami, Saeid Mohammadi and Ismaeil Haririan
Polymers 2025, 17(17), 2302; https://doi.org/10.3390/polym17172302 - 26 Aug 2025
Viewed by 648
Abstract
Significant efforts have been dedicated to developing controlled-release systems for the effective management of colorectal cancer. In this study, a once-daily, delayed-release regorafenib (REG) tablet was fabricated using 3D printing technology for the treatment of colorectal cancer. For this, a hydrogel containing 80 [...] Read more.
Significant efforts have been dedicated to developing controlled-release systems for the effective management of colorectal cancer. In this study, a once-daily, delayed-release regorafenib (REG) tablet was fabricated using 3D printing technology for the treatment of colorectal cancer. For this, a hydrogel containing 80 mg of the drug in a matrix of hyaluronic acid, carboxymethyl cellulose, Pluronic F127, and glycerol was prepared to incorporate into the shell cavity of tablet via a pressure-assisted microsyringe (PAM). The shell was printed from an optimized ink formulation of Soluplus®, Eudragit® RS-100, corn starch 1500, propylene glycol 4000, and talc through melt extrusion-based 3D printing. In vitro release assays showed a drug release rate of 91.1% in the phosphate buffer medium at 8 h and only 8.5% in the acidic medium. Drug release kinetics followed a first-order model. The results showed smooth and uniform layers based on scanning electron microscopy (SEM) and drug stability at 135 °C upon TGA. FTIR analysis confirmed the absence of undesired covalent interactions between the materials. Weight variation and assay results complied with USP standards. Mechanical strength testing revealed a Young’s modulus of 5.18 MPa for the tablets. Overall, these findings demonstrate that 3D printing technology enables the precise fabrication of delayed-release REG tablets, offering controlled-release kinetics and accurate dosing tailored for patients in intensive care units. Full article
(This article belongs to the Special Issue Polymeric Materials for 3D Printing)
Show Figures

Graphical abstract

16 pages, 1615 KB  
Article
Exploring the Occurrences of Beaked Whales off the West Coast of Ireland Through Passive Acoustic Monitoring (PAM)
by Beatrice Cheung and Joanne O’Brien
J. Mar. Sci. Eng. 2025, 13(9), 1618; https://doi.org/10.3390/jmse13091618 - 25 Aug 2025
Viewed by 869
Abstract
Very little is known about goose-beaked whales (Ziphius cavirostris) and Sowerby’s beaked whales (Mesoplodon bidens), especially off the western coast of Ireland, due to their elusive behaviors. This study aimed to characterize the acoustics of these beaked whales and [...] Read more.
Very little is known about goose-beaked whales (Ziphius cavirostris) and Sowerby’s beaked whales (Mesoplodon bidens), especially off the western coast of Ireland, due to their elusive behaviors. This study aimed to characterize the acoustics of these beaked whales and investigate whether temporal patterns may affect their occurrences. Using passive acoustic monitoring (PAM), beaked whale bioacoustic clicks were manually analyzed, revealing different click frequency ranges than expected. Double clicks and echoes produced by both beaked whale species were also present, which have previously been infrequently observed in these species. The occurrence of beaked whales and the presence of double clicks and echoes were further investigated, along with how the diel cycle may affect these click characteristics. Hourly presence of goose-beaked whale double clicks and echoes was found to have significance for both day and night. There was no significance found for Sowerby’s beaked whale double clicks and echoes for day and night, along with the hourly occurrences of both beaked whales and the occurrence of other beaked whales. These findings highlight the need for future research on PAM and beaked whale acoustics, which could aid in better monitoring of their presence to address the impacts of human activities. Full article
(This article belongs to the Special Issue Recent Advances in Marine Bioacoustics)
Show Figures

Figure 1

20 pages, 12508 KB  
Article
SIRT3 Acetylation Regulates Mitophagy to Alleviate Deoxynivalenol-Induced Apoptosis in Porcine Alveolar Macrophages Cells
by Peng Fan, Huidan Deng, Ya Wang, Zhihua Ren and Junliang Deng
Int. J. Mol. Sci. 2025, 26(17), 8222; https://doi.org/10.3390/ijms26178222 - 25 Aug 2025
Viewed by 525
Abstract
Deoxynivalenol (DON), a global mycotoxin contaminant, induces immunotoxicity in swine and humans by disrupting mitochondrial membrane integrity and activating mitophagy. SIRT3 plays an important role in regulating cell metabolism and various diseases. It also regulates apoptosis (caused by DON) by regulating the mitophagy [...] Read more.
Deoxynivalenol (DON), a global mycotoxin contaminant, induces immunotoxicity in swine and humans by disrupting mitochondrial membrane integrity and activating mitophagy. SIRT3 plays an important role in regulating cell metabolism and various diseases. It also regulates apoptosis (caused by DON) by regulating the mitophagy pathway, but this pathway has not been studied yet. Gene knockout and overexpression of SIRT3 were performed for proteomics and acetylation modification. Therefore, in this study, PAM cells were selected as an in vitro model of DON (1.1 μg/mL) exposure for 24 h. The results showed that the knockout impaired mitochondrial antioxidant function, whereas overexpression improves damage stimulation. DON can also affect the metabolism of immune pathways, but SIRT3 can enrich these substances’ metabolism. The results of the acetylation modification analysis showed that knockout affected the mRNA metabolism and others, while overexpression affected apoptosis and others. DON exposure caused fatty acid degradation, and altered MAPK signaling pathway. Knockout and overexpression of SIRT3 under DON exposure were enriched in PPAR, Ferroptosis pathway. Overexpression attenuated DON-induced mitophagy by reducing cellular ROS, as well as the expression of LC3, P62 and PINK1/Parkin. Finally, SIRT3 reduced cell apoptosis by reducing the expression of BAX and CASP3 and increasing the expression of BCL-2. These results indicated that SIRT3 could alleviate DON-induced cell damage by reducing apoptosis through the mitophagy pathway. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

19 pages, 842 KB  
Article
Sleep Quality and Patient Activation in Chronic Disease: A Cross-Sectional Mediation Analysis
by Christian J. Wiedermann, Verena Barbieri, Stefano Lombardo, Timon Gärtner, Klaus Eisendle, Giuliano Piccoliori, Adolf Engl and Dietmar Ausserhofer
Clocks & Sleep 2025, 7(3), 44; https://doi.org/10.3390/clockssleep7030044 - 22 Aug 2025
Viewed by 289
Abstract
Patient activation enhances self-management of chronic illnesses, and sleep quality is vital for health. The link between activation and sleep quality and the mediating role of chronic diseases remain underexplored. This study examined the association between patient activation and sleep quality, variations across [...] Read more.
Patient activation enhances self-management of chronic illnesses, and sleep quality is vital for health. The link between activation and sleep quality and the mediating role of chronic diseases remain underexplored. This study examined the association between patient activation and sleep quality, variations across chronic disease groups, and whether chronic diseases mediate this relationship. A population-based cross-sectional survey in South Tyrol (Italy) included 2090 adults (55.0% response rate). Patient activation was measured using the Patient Activation Measure (PAM-10), and sleep quality was measured using the Brief Pittsburgh Sleep Quality Index (B-PSQI). The presence and number of chronic diseases were self-reported. Bivariate analyses, multiple linear regression, and mediation analyses (PROCESS) were performed. Among the participants, 918 (44%) reported at least one chronic disease. These individuals had poorer sleep (B-PSQI mean: 5.05 ± 3.26 vs. 3.66 ± 2.65; p < 0.001) and lower patient activation (PAM-10: 54.4 ± 12.7 vs. 57.2 ± 12.5; p < 0.001) than those without. A negative correlation between PAM-10 and B-PSQI was observed (r = −0.12, p < 0.001), with stronger associations in patients with hypertension and mental illness. In adjusted regressions, chronic disease, female sex, and older age predicted poorer sleep, whereas higher PAM-10 scores predicted better sleep. Mediation analyses showed that chronic disease partially mediated the relationship between patient activation and sleep quality, accounting for 4.7% to 6.3% of the total effect. Conclusions: Higher patient activation correlates with better sleep quality, although this relationship is partly mediated by the chronic disease burden. Sleep disturbances persist across chronic conditions, despite good self-management. These findings highlight the importance of adopting strategies to manage chronic diseases and sleep disturbances, acknowledging that while patient activation is statistically associated with sleep quality, the strength of this relationship is limited. Full article
(This article belongs to the Section Disorders)
Show Figures

Figure 1

13 pages, 1653 KB  
Article
Dose-Dependent Dual Effect of the Endozepine ODN on Neuronal Spiking Activity
by Mahmoud Hazime, Marion Gasselin, Michael Alasoadura, Juliette Leclerc, Benjamin Lefranc, Magali Basille-Dugay, Celine Duparc, David Vaudry, Jérôme Leprince and Julien Chuquet
Brain Sci. 2025, 15(8), 885; https://doi.org/10.3390/brainsci15080885 - 20 Aug 2025
Viewed by 433
Abstract
Background/Objectives: Endozepines known as the endogenous ligands of benzodiazepine-binding sites, include the diazepam binding inhibitor (DBI) and its processing products, the triakontatetraneuropeptide (TTN) and the octadecaneuropeptide (ODN). Despite indisputable evidence of the binding of ODN on GABAAR-BZ-binding sites, their action on [...] Read more.
Background/Objectives: Endozepines known as the endogenous ligands of benzodiazepine-binding sites, include the diazepam binding inhibitor (DBI) and its processing products, the triakontatetraneuropeptide (TTN) and the octadecaneuropeptide (ODN). Despite indisputable evidence of the binding of ODN on GABAAR-BZ-binding sites, their action on this receptor lacks compelling electrophysiological observations, with some studies reporting that ODN acts as a negative allosteric modulator (NAM) of GABAAR while others suggest the opposite (positive allosteric modulation, PAM effect). All these studies were carried out in vitro with various neuronal cell types. To further elucidate the role of ODN in neuronal excitability, we tested its effect in vivo in the cerebral cortex of the anesthetized mouse. Methods: Spontaneous neuronal spikes were recorded by means of an extracellular pipette, in the vicinity of which ODN was micro-infused, either at a high dose (10−5 M) or low dose (10−11 M). Results: ODN at a high dose induced a significant increase in neuronal spiking. This effect could be antagonized by the GABAAR-BZ-binding site blocker flumazenil. In sharp contrast, at low concentrations, ODN reduced neuronal spiking with a magnitude similar to GABA itself. Interestingly, this decrease in neuronal activity by low dose of ODN was not flumazenil-dependent, suggesting that this effect is mediated by another receptor. Finally, we show that astrocytes in culture, known to be stimulated by picomolar doses of ODN via a GPCR, increased their export of GABA when stimulated by low dose of ODN. Conclusion: Our results confirm the versatility of ODN in the control of GABA transmission, but suggest that its PAM-like effect is, at least in part, mediated via an astrocytic non-GABAAR ODN receptor release of GABA. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Figure 1

19 pages, 1877 KB  
Article
PAM-Independent Cas12a Detection of Specific LAMP Products by Targeting Amplicon Loops
by Konstantin G. Ptitsyn, Leonid K. Kurbatov, Svetlana A. Khmeleva, Daria D. Morozova, Olga S. Timoshenko, Elena V. Suprun, Sergey P. Radko and Andrey V. Lisitsa
Int. J. Mol. Sci. 2025, 26(16), 8014; https://doi.org/10.3390/ijms26168014 - 19 Aug 2025
Viewed by 405
Abstract
A straightforward approach is suggested to selectively recognize specific products of loop-mediated isothermal amplification (LAMP) with the Cas12a nuclease without a need for a protospacer adjacent motif (PAM) in the sequence of LAMP amplicons (LAMPlicons). This strategy is based on the presence of [...] Read more.
A straightforward approach is suggested to selectively recognize specific products of loop-mediated isothermal amplification (LAMP) with the Cas12a nuclease without a need for a protospacer adjacent motif (PAM) in the sequence of LAMP amplicons (LAMPlicons). This strategy is based on the presence of single-stranded DNA loops in LAMPlicons and the ability of Cas12a to be trans-activated via the binding of guide RNA (gRNA) to single-stranded DNA in the absence of PAM. The approach feasibility is demonstrated on Clavibacter species—multiple bacterial plant pathogens that cause harmful diseases in agriculturally important plants. For Clavibacter species, the detection sensitivity of the developed PAM-independent LAMP/Cas12a system was determined by that of LAMP. The overall detection selectivity was enhanced by the Cas12a analysis of LAMPlicons. It was shown that the LAMP/Cas12a detection system can be fine-tuned by carefully designing gRNA to selectively distinguish C. sepedonicus from other Clavibacter species based on single nucleotide substitutions in the targeted LAMPlicon loop. The suggested loop-based Cas12a analysis of LAMPlicons was compatible with the format of a single test tube assay with the option of naked-eye detection. The findings broaden the palette of approaches to designing PAM-independent LAMP/Cas12a detection systems with potential for on-site testing. Full article
(This article belongs to the Special Issue CRISPR/Cas Systems and Genome Editing—3rd Edition)
Show Figures

Figure 1

24 pages, 7031 KB  
Article
Precision Blank Development for Hydro-Formed Aerospace Components via Inverse Finite Element Analysis
by Vladimir V. Mironenko, Roman V. Kononenko, Alexey S. Govorkov, Evgeniy Y. Remshev, Viktor V. Kondratiev, Yulia I. Karlina, Vitaliy A. Gladkikh and Antonina I. Karlina
Appl. Sci. 2025, 15(16), 9028; https://doi.org/10.3390/app15169028 - 15 Aug 2025
Viewed by 389
Abstract
The present article provides an abstract overview of the issue of optimal blank searching for integral parts utilized in complex engineering projects, including those pertaining to the fabrication of machine, ship, and aircraft components. The manufacturing process for these components is intricate and [...] Read more.
The present article provides an abstract overview of the issue of optimal blank searching for integral parts utilized in complex engineering projects, including those pertaining to the fabrication of machine, ship, and aircraft components. The manufacturing process for these components is intricate and necessitates meticulous precision and strict adherence to the design model. Conventional blank calculation techniques are marred by substantial inaccuracies. The present research proposes and verifies an effective method based on the reverse solution of a mathematical problem. The focal point of this study is the aerodynamic curvature of aluminum alloys belonging to the Al–Mg–Mn family. The formation of the object is achieved through the employment of a hydroelastomer press of the QFC (Quintus Technologies) type. The forming process is simulated using PAM-STAMP software, developed by the French company ESI Group. The objective of the present study is to ascertain the optimal configuration of the blank by optimizing the discrepancy between the dynamic calculations and the design model using sweep contours. The resulting new shape of the part allows for the formation of parts with minimal deviation from their design contours. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

12 pages, 1465 KB  
Article
Development and Application of Mouse-Derived CD2v Monoclonal Antibodies Against African Swine Fever Virus from Single B Cells
by Litao Yu, Fangtao Li, Xingqi Zou, Lu Xu, Junjie Zhao, Yan Li, Guorui Peng, Yingju Xia, Qizu Zhao and Yuanyuan Zhu
Viruses 2025, 17(8), 1123; https://doi.org/10.3390/v17081123 - 15 Aug 2025
Viewed by 571
Abstract
African swine fever (ASF) is a highly pathogenic and hemorrhagic swine infectious disease caused by the African swine fever virus (ASFV). It encodes over 150 proteins, among which the CD2v protein plays multiple roles throughout the infection process. Single B-cell antibody technology is [...] Read more.
African swine fever (ASF) is a highly pathogenic and hemorrhagic swine infectious disease caused by the African swine fever virus (ASFV). It encodes over 150 proteins, among which the CD2v protein plays multiple roles throughout the infection process. Single B-cell antibody technology is a cutting-edge method for preparing monoclonal antibodies (mAbs), which has the advantages of rapid, efficient, and high yield in antibody production, while possessing natural conformations. In this study, by cloning and expressing antibody genes in vitro, 14 murine-derived mAbs were prepared using recombinant CD2v proteins as immunogenic sources, which brings sufficient enrichment and selectivity for the development of antibodies based on the single B-cell antibody technique. All 14 mAbs demonstrated reactivity with CD2v protein by indirect ELISA, whereas 8 mAbs successfully detected CD2v in ASFV-infected PAM cells by IFA, indicating the tested mAbs can effectively recognize and bind to ASFV CD2v. Finally, a blocking ELISA method for detecting CD2v antibodies using CD2v mAb C89 was established, which holds significant potential for broad application in the serological diagnosis of ASFV with determination of the CD2v-blocking ELISA specificity, sensitivity, reproducibility, and compliance rate. It could be used for the rapid clinical detection of ASFV CD2v protein to provide a powerful tool for the monitoring of epidemics. Full article
(This article belongs to the Special Issue Swine Viruses: Immunology and Vaccinology)
Show Figures

Figure 1

33 pages, 2003 KB  
Review
Polyacrylamide-Based Solutions: A Comprehensive Review on Nanomaterial Integration, Supramolecular Design, and Sustainable Approaches for Integrated Reservoir Management
by Moamen Hassan Mohamed and Mysara Eissa Mohyaldinn
Polymers 2025, 17(16), 2202; https://doi.org/10.3390/polym17162202 - 12 Aug 2025
Viewed by 968
Abstract
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically [...] Read more.
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically analyzes advancements in PAM-based materials for enhanced oil recovery (EOR), conformance control, and sand management. We show that nanomaterial integration (e.g., magnetic NPs, nanoclays) significantly augments PAM’s rheological control, thermal and salinity stability, interfacial properties, and wettability alteration. Furthermore, the emergence of supramolecular chemistry has endowed PAM systems with unprecedented resilience, enabling self-healing and adaptive performance under extreme subsurface conditions. The review highlights a crucial paradigm shift towards integrated reservoir management, synergizing these advanced chemical designs with mechanical strategies and leveraging sophisticated monitoring and predictive analytics. Critically, innovations in sustainable and bio-inspired PAM materials offer environmentally responsible solutions with enhanced biodegradability. This synthesis provides a holistic understanding of the state of the art. Despite persistent challenges in scalability and predictability, continually re-engineered PAM systems are positioned as an indispensable and increasingly sustainable cornerstone for future hydrocarbon recovery in the complex energy landscape. Full article
Show Figures

Figure 1

21 pages, 2970 KB  
Article
Pig Liver Esterase Hydrolysis of 2-Arachidonoglycerol Exacerbates PRRSV-Induced Inflammation via PI3K-Akt-NF-κB Pathway
by Yuelin Fu, Huiwen Zhu, Qiling Xiao, Qi Chen, Qiongqiong Zhou, Xiliang Wang and Deshi Shi
Cells 2025, 14(16), 1227; https://doi.org/10.3390/cells14161227 - 8 Aug 2025
Viewed by 721
Abstract
Inflammation is essential for host defense but requires strict regulation to prevent immunopathology. This study reveals how pig liver esterase (PLE) in alveolar macrophages (PAMs) modulates PRRSV-induced inflammation through endocannabinoid metabolism. We identified PLE6 as the dominant hydrolytically active subtype in PAMs. Functional [...] Read more.
Inflammation is essential for host defense but requires strict regulation to prevent immunopathology. This study reveals how pig liver esterase (PLE) in alveolar macrophages (PAMs) modulates PRRSV-induced inflammation through endocannabinoid metabolism. We identified PLE6 as the dominant hydrolytically active subtype in PAMs. Functional studies demonstrated that PLE promotes pro-inflammatory cytokine expression during PRRSV infection, while its substrate 2-arachidonoylglycerol (2-AG) exerts anti-inflammatory effects. Animal experiments confirmed that PLE inhibition reduces pulmonary inflammation and tissue damage in PRRSV-infected piglets. Transcriptomic and mechanistic analyses revealed that PLE hydrolyzes 2-AG to activate the PI3K-Akt-NF-κB pathway, particularly through enhanced phosphorylation of Akt and p65. These findings establish a novel pathological mechanism where PLE-mediated 2-AG degradation disrupts endocannabinoid homeostasis, amplifying PRRSV-induced inflammation. The study provides therapeutic insights for targeting endocannabinoid hydrolysis to control inflammatory diseases. Full article
Show Figures

Figure 1

Back to TopTop