Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,990)

Search Parameters:
Keywords = PCLS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5517 KiB  
Article
Sound Absorption Properties of Waste Pomelo Peel
by Lihua Lyu, Yiping Zhao and Jinglin Li
Acoustics 2025, 7(3), 51; https://doi.org/10.3390/acoustics7030051 (registering DOI) - 24 Aug 2025
Abstract
To solve the issue of environmental noise pollution and promote the resource recycling of waste pomelo peel, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) are used to systematically characterize the microstructure and chemical composition of waste pomelo [...] Read more.
To solve the issue of environmental noise pollution and promote the resource recycling of waste pomelo peel, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) are used to systematically characterize the microstructure and chemical composition of waste pomelo peel. It was found that waste pomelo peel has a porous network structure, which is conducive to the improvement of sound absorption performance. Waste pomelo peel/polycaprolactone (PCL) sound-absorbing composites are prepared by the hot-pressing molding process, and the single-factor analysis method is adopted to explore the effects of seven factors (waste pomelo peel mass fraction, composite density, composite thickness, hot-pressing time, hot-pressing pressure, hot-pressing temperature, and thickness of rear air layer) on the sound absorption performance. Through process optimization, under the optimal conditions, the average sound absorption coefficient (SAC) of the composites reaches 0.54, the noise reduction coefficient (NRC) reaches 0.57, and the maximum SAC reaches 0.99, with the sound absorption performance reaching Grade III. This study not only provides a new idea for the preparation of porous sound-absorbing composites but also opens a new path for the high-value utilization of waste pomelo peel resources. Full article
19 pages, 654 KiB  
Review
Targeted Radiotherapy in Primary Cutaneous Lymphomas: Precision, Efficacy, and Evolving Strategies
by Piotr Sobolewski, Mateusz Koper, Piotr Ciechanowicz and Irena Walecka
Cancers 2025, 17(17), 2722; https://doi.org/10.3390/cancers17172722 - 22 Aug 2025
Viewed by 133
Abstract
Primary cutaneous lymphomas (PCLs), including cutaneous T-cell lymphomas (CTCL) and primary cutaneous B-cell lymphomas (PCBCL), are a diverse group of non-Hodgkin lymphomas that primarily affect the skin. Radiotherapy (RT) plays a pivotal role in the treatment of these lymphomas, particularly for localized disease, [...] Read more.
Primary cutaneous lymphomas (PCLs), including cutaneous T-cell lymphomas (CTCL) and primary cutaneous B-cell lymphomas (PCBCL), are a diverse group of non-Hodgkin lymphomas that primarily affect the skin. Radiotherapy (RT) plays a pivotal role in the treatment of these lymphomas, particularly for localized disease, due to its ability to deliver precise, skin-directed treatment. Mycosis fungoides (MF) and Sézary syndrome (SS), the most common subtypes of CTCL, often require skin-directed therapies such as electron beam therapy and superficial brachytherapy to manage localized lesions. Electron beam therapy, including total skin electron beam therapy (TSEBT), has been utilized for decades, offering high response rates but with the risk of cumulative skin toxicity. Recently, low-dose radiotherapy (LDRT) has gained attention as an effective alternative that reduces toxicity while maintaining durable responses. Superficial brachytherapy is another modality that delivers radiation through custom molds, allowing for homogeneous dosing over complex anatomical areas like the face. Both teleradiotherapy and brachytherapy have demonstrated high complete response rates, with low recurrence rates observed when higher doses are used. In the context of primary cutaneous B-cell lymphomas, such as primary cutaneous marginal zone lymphoma (PCMZL) and primary cutaneous follicle center lymphoma (PCFCL), radiotherapy also offers excellent local control, particularly for indolent subtypes. However, more aggressive subtypes, such as diffuse large B-cell lymphoma, leg type (PCDLBCL-LT), may require systemic therapies in addition to radiation. Overall, teleradiotherapy and brachytherapy are essential components of the therapeutic arsenal for primary cutaneous lymphomas, offering effective disease control with manageable toxicity, while ongoing research focuses on optimizing treatment strategies and exploring novel combinations with systemic therapies. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

22 pages, 1661 KiB  
Article
Biliary Injuries Repair Using Copolymeric Scaffold: A Systematic Review and In Vivo Experimental Study
by Salvatore Buscemi, Giulia Bonventre, Andrea Gottardo, Mariano Licciardi, Fabio Salvatore Palumbo, Giovanni Cassata, Luca Cicero, Giulia Lo Monte, Roberto Puleio and Attilio Ignazio Lo Monte
J. Funct. Biomater. 2025, 16(8), 297; https://doi.org/10.3390/jfb16080297 - 18 Aug 2025
Viewed by 205
Abstract
Background: Common bile duct (CBD) treatments are often associated with complications, limiting long-term efficacy. To overcome these issues, polymeric grafts have been suggested as promising alternatives, since they are highly customizable, biocompatible, and may reduce side effects frequency. Methods: A systematic review was [...] Read more.
Background: Common bile duct (CBD) treatments are often associated with complications, limiting long-term efficacy. To overcome these issues, polymeric grafts have been suggested as promising alternatives, since they are highly customizable, biocompatible, and may reduce side effects frequency. Methods: A systematic review was conducted, interrogating MEDLINE and Cochrane Library. Next, an in vivo study involved 20 pigs, which underwent a former controlled biliary injury. To repair the defect, a α,β-Poly(N-2-hydroxyethyl)-DL-Aspartamide (PHEA)–Polylactic-acid (PLA)–Polycaprolactone (PCL) scaffold was implanted. The animals were sacrificed at one and three months for gross and histological examinations, to assess tissue integration and healing outcomes. Results: The systematic review highlighted that such scaffolds have shown promising results in CBD regeneration, both in single and joined applications. These findings were confirmed by the in vivo study, where the use of such scaffolds—particularly, the planar ones—led to safe and complete bile duct regeneration. Histological analysis revealed lymphomonocytic infiltrates and neovascularization, while microscopic examination showed progressive scaffold degradation accompanied by biliary tissue regeneration. Conclusions: Experimental results are consistent with the literature, confirming the potential of such polymeric scaffolds in aiding complete CBD regeneration and being reabsorbed shortly after. Still, further studies are needed to fully validate their translational application. PROSPERO ID: CRD420251115056. Full article
(This article belongs to the Special Issue Polymers Materials Used in Biomedical Engineering)
Show Figures

Graphical abstract

18 pages, 3613 KiB  
Article
Early Biological Response to Poly(ε-caprolactone) PCL—Bioactive Glass Composites Obtained by 3D Printing as Bone Substitutes
by Alessandro Mosca Balma, Riccardo Pedraza, Ilaria Roato, Clarissa Orrico, Sara Meinardi, Stefano Bertinetti, Tullio Genova, Giovanna Gautier di Confiengo, Maria Giulia Faga, Donatella Duraccio, Giulio Malucelli, Marta Miola, Enrica Verné and Federico Mussano
Polymers 2025, 17(16), 2229; https://doi.org/10.3390/polym17162229 - 15 Aug 2025
Viewed by 516
Abstract
The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(ε-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or [...] Read more.
The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(ε-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or copper-doped (SBA3_Cu) silica-based bioactive glasses, through a solvent casting method with chloroform. Neat PCL was used as a control. Samples produced by 3D printing underwent SEM and EDX analyses, and the following were measured: tensile strength and hardness, surface roughness, ion release through ICP-OES, surface free energy, and optical contact angle. Adipose-derived mesenchymal stem cells (ASCs) and human microvascular endothelial cells (HMEC-1) were used to test the biocompatibility of the materials through cell adhesion, spreading, and viability assays. A significant improvement in tensile strength and hardness was observed especially with Cu-doped composites. Both SBA3 and SBA3_Cu added to the PCL favored the early adhesion and the proliferation of HMEC-1 after 3 and 7 days, while ASCs proliferated significantly the most on the SBA-containing composite, at all the time points. Cellular morphology analysis highlighted interesting adaptation patterns to the samples. Further biological characterizations are needed to understand thoroughly how specific bioactive glasses may interact with different cellular types. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 9916 KiB  
Article
Near-Infrared Dye-Loaded Thermosensitive Hydrogels as Novel Fluorescence Tissue Markers
by Seon Sook Lee and Yongdoo Choi
Gels 2025, 11(8), 649; https://doi.org/10.3390/gels11080649 - 15 Aug 2025
Viewed by 337
Abstract
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and [...] Read more.
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and evaluated four thermosensitive injectable hydrogel systems incorporating indocyanine green-human serum albumin (ICG-HSA) complexes: (1) hexanoyl glycol chitosan (HGC), (2) Pluronic F-127, (3) PCL–PEG–PCL, and (4) PLA–PEG–PLA. All hydrogel formulations exhibited sol–gel transitions at physiological temperatures, facilitating in situ dye entrapment and prolonged fluorescence retention. In vivo fluorescence imaging revealed that HGC and Pluronic F-127 hydrogels retained signals for up to five and two days, respectively. In contrast, polyester-based hydrogels (PCL–PEG–PCL and PLA–PEG–PLA) preserved fluorescence for up to 21–30 days. PLA–PEG–PLA showed the highest signal-to-background ratios and sustained intensity, while PCL–PEG–PCL also achieved long-term retention. These findings suggest that thermosensitive hydrogels incorporating ICG-HSA complexes represent promising tissue marker platforms for real-time, minimally invasive, and long-term fluorescence-guided lesion tracking. Full article
Show Figures

Figure 1

14 pages, 4450 KiB  
Article
Photothermally Responsive Biomimetic Composite Scaffolds Based on Polydopamine-Functionalized Nanoparticles/Polyurethane for Bone Repair
by Ruqing Bai, Jiaqi Chen, Ting Zhang, Tao Chen, Xiaoying Liu, Weihu Yang, Tuck-Whye Wong, Jianwei Zhang and Li Wang
J. Funct. Biomater. 2025, 16(8), 294; https://doi.org/10.3390/jfb16080294 - 15 Aug 2025
Viewed by 501
Abstract
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the [...] Read more.
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the native bone extracellular matrix. By incorporating polydopamine (PDA)-modified amorphous calcium phosphate (CA) into poly(propylene glycol) (PPG)- and poly(ԑ-caprolactone) (PCL)-based polyurethane (PU). The obtained scaffolds achieved osteoinductive potential for bone tissue engineering. The surface PDA modification of CA enabled efficient photothermal shape conversion under near-infrared (NIR) irradiation, facilitating non-invasive remote control of localized hyperthermia. The optimized scaffolds exhibited interconnected porosity (approximately 70%) with osteoconductive pore channels (200–500 μm), resulting in good osteoinduction in cell culture, and precise shape-memory recovery at physiological temperatures (~40 °C) under NIR for minimally invasive delivery. The synergistic effect of osteogenesis promotion and photothermal transition demonstrated this programmable scaffold as a promising solution for integrated minimally invasive bone repair and defect reconstruction. Full article
Show Figures

Figure 1

16 pages, 4399 KiB  
Article
Influence of Material Selection on the Mechanical Properties of 3D-Printed Tracheal Stents for Surgical Applications
by Aurora Pérez Jiménez, Carmen Sánchez González, Sandra Pérez Teresí, Noelia Landa, Cristina Díaz Jiménez and Mauro Malvé
Polymers 2025, 17(16), 2223; https://doi.org/10.3390/polym17162223 - 15 Aug 2025
Viewed by 433
Abstract
Endotracheal prosthesis placement is employed as a therapeutic intervention for tracheal lesions in cases where conventional surgical approaches are not feasible. The learning curve for endotracheal stent placement can vary depending on the type of stent, the training environment, and the clinician’s prior [...] Read more.
Endotracheal prosthesis placement is employed as a therapeutic intervention for tracheal lesions in cases where conventional surgical approaches are not feasible. The learning curve for endotracheal stent placement can vary depending on the type of stent, the training environment, and the clinician’s prior experience; however, it is generally considered moderately complex. Inadequate practice can have serious consequences, as the procedure involves a critical area such as the airway. The main risks and complications associated with inadequate technique or improper execution can include stent migration, formation of granulation tissue or hyperplasia, tracheal or pulmonary infection, obstruction or fracture of the stent, hemorrhage and tracheal perforation, among others. The purpose of the present study is to summarize important information and evaluate the role of different material features in the 3D printing manufacturing of an appropriate tracheobronchial medical device, which should be as appropriate as possible to facilitate placement during surgical practice. A complex stent design was fabricated using three different biodegradable materials, polycaprolactone (PCL), polydioxanone (PDO), and polymer blend of polylactic acid/polycaprolactone (PLA/PCL), through additive manufacturing, specifically fused filament fabrication (FFF)3D printing. Parameter optimization of the 3D printing process was required for each material to achieve an adequate geometric quality of the stent. Experimental analyses were conducted to characterize the mechanical properties of the printed stents. Flexural strength and radial compression resistance were evaluated, with particular emphasis on radial force due to its clinical relevance in preventing collapse after implantation in the trachea. The results provide valuable insights into how material selection could influence device behavior during placement to support surgical requirements. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

18 pages, 4336 KiB  
Article
Development of an Antibacterial Poly(Lactic Acid)/Poly(ε-Caprolactone)/Tributyl Citrate Film Loaded with Staphylococcus aureus Bacteriophages Using a Sodium Alginate Coating
by Seulgi Imm, Jaewoo Bai and Yoonjee Chang
Int. J. Mol. Sci. 2025, 26(16), 7793; https://doi.org/10.3390/ijms26167793 - 12 Aug 2025
Viewed by 344
Abstract
Biodegradable poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) composite films were prepared with a compatibilizer (tributyl citrate, TBC) using a solvent casting method. Incorporation of 5% TBC (w/v, of PCL weight) improved tensile strength and elongation at break (21.93 ± 2.33 MPa [...] Read more.
Biodegradable poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) composite films were prepared with a compatibilizer (tributyl citrate, TBC) using a solvent casting method. Incorporation of 5% TBC (w/v, of PCL weight) improved tensile strength and elongation at break (21.93 ± 2.33 MPa and 21.02 ± 1.54%, respectively) and reduced water vapor permeability (from 0.12 ± 0.01 to 0.098 ± 0.01 g·mm·m2·h·kPa), indicating improved compatibility between PLA and PCL. Staphylococcus aureus phage PBSA08 demonstrated rapid and persistent bacteriolytic activity for up to 24 h, suggesting its potential as a promising antibacterial biological agent. To impart antibacterial properties to the developed PLA/PCL/TBC film, PBSA08 was loaded into sodium alginate (SA) and coated on the film surface. The optimal composition was 3% (w/v) SA and 3% (w/v) glycerol, which exhibited suitable dynamic behavior as a coating solution and excellent adhesion to the film surface. The phage-coated antibacterial films demonstrated progressive and significant inhibition against S. aureus starting from 10 to 24 h, with controlled phage-release properties. Overall, the developed active film might exert sustained and remarkable antibacterial effects through controlled release of biological agents (phage) under realistic packaging conditions. Full article
Show Figures

Graphical abstract

16 pages, 1640 KiB  
Article
Ontogenetic and Sex-Specific Isotopic Niches of Blue Sharks (Prionace glauca) in the Northwestern Pacific
by Pengpeng Ding, Satoshi Katayama, Hiroaki Murakami and Tah Andrew Ryan
Fishes 2025, 10(8), 402; https://doi.org/10.3390/fishes10080402 - 12 Aug 2025
Viewed by 371
Abstract
The blue shark (Prionace glauca) is a pelagic species widely distributed in the northwestern Pacific Ocean. The trophic roles of blue sharks across different developmental stages and between sexes remain poorly understood. Fifty-four sharks were sampled (October 2022–March 2024) for precaudal [...] Read more.
The blue shark (Prionace glauca) is a pelagic species widely distributed in the northwestern Pacific Ocean. The trophic roles of blue sharks across different developmental stages and between sexes remain poorly understood. Fifty-four sharks were sampled (October 2022–March 2024) for precaudal length (PCL) and stable isotope levels (δ13C, δ15N) in the muscle tissue (n = 52). Mean PCL varied based on the month of sampling (p = 0.034), with the smallest individuals occurring in July (143.0 ± 4.3 cm) and the largest in October (178.0 ± 2.6 cm). Stable isotope analysis (δ13C and δ15N) indicated consistent offshore habitat use (δ13C: from −20.70 to −18.82‰) and significant nitrogen isotopic differences among life history (δ15N: from 10.23 to 15.72‰; Kruskal–Wallis test, p = 0.037). The elevated δ15N values observed in the subadult group (relative to juvenile individuals) are likely due to trophic enrichment associated with morphological development. Females exhibited markedly larger isotopic niches (SEAc = 2.42‰2) than did males (0.57‰2), and niche overlap was greater within each sex (40–52%) than between sexes (<21%). These results revealed sex-specific ecological roles and trophic strategies throughout the life history of P. glauca. Understanding these foraging differences can help with catch reduction and habitat-protection measures in the transboundary pelagic fisheries of the northwestern Pacific. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

17 pages, 4312 KiB  
Article
Precision-Cut Liver Slices: A Valuable Preclinical Tool for Translational Research in Liver Fibrosis
by Meritxell Perramón, Manuel Macías-Herranz, Rocío García-Pérez, Wladimiro Jiménez and Guillermo Fernández-Varo
Int. J. Mol. Sci. 2025, 26(16), 7780; https://doi.org/10.3390/ijms26167780 - 12 Aug 2025
Viewed by 394
Abstract
Halting liver fibrosis progression is a key goal in treating liver disease, yet effective antifibrotic drugs remain unavailable. This study explores the use of precision-cut liver slices (PCLS) as an ex vivo model to evaluate new therapies. Researchers tested how different oxygen levels [...] Read more.
Halting liver fibrosis progression is a key goal in treating liver disease, yet effective antifibrotic drugs remain unavailable. This study explores the use of precision-cut liver slices (PCLS) as an ex vivo model to evaluate new therapies. Researchers tested how different oxygen levels affect viability, tissue integrity, and inflammatory response in PCLS from healthy and fibrotic rats. Fibrotic PCLS maintained their pathological gene signature under 40% oxygen and responded to inflammatory stimuli, indicating preserved functionality. Exposure to high oxygen levels increased oxidative stress and pro-inflammatory gene expression. Cirrhotic PCLS showed early signs of reduced viability and the upregulation of fibrosis-related genes including Col1α2, Col3α1, αSMA, Timp1, Timp2, Mmp2, Pdgfrβ, Nos2, Cox2, and Il6. Lipopolysaccharide (LPS) exposure induced the marked overexpression of Nos2 and Il1β mRNA and confirmed the model’s responsiveness to external injury. Fibrotic PCLS retained fibrogenic activity for at least 48 h. Additionally, the adenoviral delivery of a dominant-negative soluble PDGFRβ effectively blocked fibrotic signaling. Human fibrotic PCLS also remained viable for 72 h and showed an increased mRNA expression of fibrosis markers such as COL1A1, αSMA, and MMP2. These results highlight the potential of PCLS as a promising platform for future therapeutic testing, pending further validation with functional interventions. Full article
(This article belongs to the Special Issue Liver Fibrosis: Molecular Pathogenesis, Diagnosis and Treatment)
Show Figures

Figure 1

10 pages, 520 KiB  
Article
Over 10% of Surgically Treated High-Energy Pelvic Fractures Are Associated with Undiagnosed Ligamentous Knee Injuries: An Epidemiologic Study in Italy’s Largest Trauma Center
by Simone Giusti, Vittorio Alfonsi, Edoardo De Fenu, Claudia Franco, Stefano Cacciatore, Francesco Liuzza and Ezio Adriani
Med. Sci. 2025, 13(3), 124; https://doi.org/10.3390/medsci13030124 - 12 Aug 2025
Viewed by 301
Abstract
Purpose: To evaluate the prevalence of undiagnosed ligamentous knee injuries in patients surgically treated for high-energy pelvic ring or acetabular fractures and propose a mechanism to diagnose these briefly post-hospital discharge. Methods: A retrospective case series (level of evidence IV) was conducted at [...] Read more.
Purpose: To evaluate the prevalence of undiagnosed ligamentous knee injuries in patients surgically treated for high-energy pelvic ring or acetabular fractures and propose a mechanism to diagnose these briefly post-hospital discharge. Methods: A retrospective case series (level of evidence IV) was conducted at Italy’s largest trauma center. Medical records from 2018 to 2023 were reviewed to identify patients who underwent surgical treatment for pelvic or acetabular fractures. Eligible patients were contacted for a structured telephone interview, which included a questionnaire on knee symptoms and the International Knee Documentation Committee (IKDC) score. Associations between demographic factors, trauma mechanism, and knee outcomes were statistically analyzed. Results: Fifty-nine patients (mean age 55 years, 72.9% male) were enrolled. Undiagnosed knee ligament injuries were present in 11.9%, with an additional 8.5% reporting persistent knee symptoms. The average time to diagnosis was 6.4 months post-discharge. Patients involved in road traffic accidents showed a significantly higher incidence of knee injuries (34.8%) compared to those who fell from a height (3.9%) (p = 0.049). Patients who had undergone ligament reconstruction had significantly lower IKDC scores (62.0 ± 8.2) than non-surgical cases (82.4 ± 12.1, p = 0.0002). No association was found with age or sex. Conclusions: Ligamentous knee injuries are frequently overlooked in the acute management of high-energy pelvic fractures, particularly in road traffic accidents. A systematic knee assessment before discharge or early outpatient imaging should be considered to improve detection and outcomes. Full article
Show Figures

Graphical abstract

12 pages, 1134 KiB  
Article
Relationship Between Personality of Parents and Pediatric Post-Intensive Care Syndrome for a Family in the PICU: A Prospective, Observational Cohort Pilot Study
by Misaki Kotani, Mitsuki Ikeda, Gen Aikawa, Hideaki Sakuramoto, Akira Ouchi, Haruhiko Hoshino, Keishun Boku, Yuki Enomoto, Nobutake Shimojo and Yoshiaki Inoue
Children 2025, 12(8), 1056; https://doi.org/10.3390/children12081056 - 12 Aug 2025
Viewed by 291
Abstract
Introduction: Post-Intensive Care Syndrome in Pediatrics (PICS-P) for families is a growing concern as receiving care in the Pediatric Intensive Care Unit (PICU) improves child survival. PICU parental stress may cause post-discharge psychiatric symptoms. Understanding personality-related distress is key for early intervention. This [...] Read more.
Introduction: Post-Intensive Care Syndrome in Pediatrics (PICS-P) for families is a growing concern as receiving care in the Pediatric Intensive Care Unit (PICU) improves child survival. PICU parental stress may cause post-discharge psychiatric symptoms. Understanding personality-related distress is key for early intervention. This study examined whether parental personality traits correlate with such symptoms for PICS-P prevention. Methods: A cohort pilot study was conducted at a Japanese university hospital PICU (eight beds, 200–300 annual admissions, mandatory critical care consultation) between January and September 2022. Participants were parents of children admitted for longer than 1 week. Personality traits were investigated using the Big-Five-based test, and psychiatric symptoms were investigated using the Generalized Anxiety Disorder-7 (GAD-7), the Patient Health Questionnaire-9 (PHQ-9), and the PTSD Checklist-5 (PCL-5). The correlation between personality traits and psychiatric symptoms was investigated. Results: Among the 53 subjects who met the inclusion criteria, 25 gave consent to participate in this study. The correlation analysis revealed distinct patterns. Agreeableness demonstrated negative correlations: a moderately significant negative correlation with PTSD symptoms (ρ = −0.612, p < 0.05) and non-significant negative correlations with anxiety (ρ = −0.238) and depression (ρ = −0.060). Conversely, neuroticism exhibited positive correlations: a moderately significant positive correlation with anxiety symptoms (ρ = 0.539, p < 0.05), alongside non-significant positive correlations with depression (ρ = 0.318) and PTSD symptoms (ρ = 0.327). Regarding other personality traits, extraversion showed negative correlations with anxiety (ρ = −0.282), depression (ρ = −0.399), and PTSD (ρ = −0.438), conscientiousness displayed positive correlations with anxiety (ρ = 0.318), depression (ρ = 0.127), and PTSD (ρ = 0.467), while openness exhibited negative correlations with anxiety (ρ = −0.333), depression (ρ = −0.312), and PTSD (ρ = −0.309), although none of these associations were statistically significant. Conclusions: Lower levels of agreeableness and higher levels of neuroticism in parents are significantly associated with increased PTSD and anxiety symptoms, respectively, in the PICU setting. These personality traits may serve as predictors of parental psychological distress, suggesting their utility in informing targeted PICS-P interventions and preventative strategies. Full article
(This article belongs to the Special Issue Nursing Management in Pediatric Intensive Care)
Show Figures

Figure 1

26 pages, 4168 KiB  
Review
Biocompatible Thermoplastics in Additive Manufacturing of Bone Defect Fillers: State-of-the-Art and Future Prospects
by Dagmara Słota, Karina Niziołek, Edyta Kosińska, Julia Sadlik and Agnieszka Sobczak-Kupiec
Materials 2025, 18(16), 3723; https://doi.org/10.3390/ma18163723 - 8 Aug 2025
Viewed by 526
Abstract
The development of materials engineering allows for the creation of new materials intended for 3D printing, which has become a key tool in tissue engineering, particularly in bone tissue engineering, enabling the production of implants, defect fillers, and scaffolds tailored to the individual [...] Read more.
The development of materials engineering allows for the creation of new materials intended for 3D printing, which has become a key tool in tissue engineering, particularly in bone tissue engineering, enabling the production of implants, defect fillers, and scaffolds tailored to the individual needs of patients. Among the wide range of available biomaterials, thermoplastic polymers such as polycaprolactone (PCL), polylactic acid (PLA), polyether ether ketone (PEEK), and polymethyl methacrylate (PMMA) are of significant interest due to their biocompatibility, processability, and variable degradation profiles. This review compiles the latest reports on the applications, advantages, limitations, and modifications in bone tissue engineering. It highlights that PCL and PLA are promising for temporary, resorbable scaffolds, while PEEK and PMMA are suitable for permanent or load-bearing implants. The inclusion of ceramic phases is frequently used to enhance bioactivity. A growing trend can be observed toward developing customized, multifunctional materials that support bone regeneration and biological integration. Despite ongoing progress, the biocompatibility and long-term safety of these materials still require further clinical validation. Full article
Show Figures

Figure 1

33 pages, 4132 KiB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Viewed by 600
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

16 pages, 10388 KiB  
Article
Highly-Oriented Polylactic Acid Fiber Reinforced Polycaprolactone Composite Produced by Infused Fiber Mat Process for 3D Printed Tissue Engineering Technology
by Zhipeng Deng, Chen Rao, Simin Han, Qungui Wei, Yichen Liang, Jialong Liu and Dazhi Jiang
Polymers 2025, 17(15), 2138; https://doi.org/10.3390/polym17152138 - 5 Aug 2025
Viewed by 524
Abstract
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced [...] Read more.
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced PCL (PLA/PCL) composite as the filament for 3D printed scaffolds to significantly enhance their mechanical performance: Special-made PLA short fiber mat was infused with PCL matrix and rolled into PLA/PCL filaments through a “Vacuum Assisted Resin Infusion” (VARI) process. The investigation revealed that the PLA fibers are highly oriented along the printing direction when using this filament for 3D printing due to the unique microstructure formed during the VARI process. At the same PLA fiber content, the percentage increase in Young’s modulus of the 3D printed strands using the filaments produced by the VARI process is 127.6% higher than the 3D printed strands using the filaments produced by the conventional melt blending process. The 3D printed tissue engineering scaffolds using the PLA/PCL composite filament with 11 wt% PLA fiber content also achieved an exceptional 84.2% and 143.3% increase in peak load and stiffness compared to the neat PCL counterpart. Full article
Show Figures

Graphical abstract

Back to TopTop