Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = PET-RAFT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4125 KB  
Article
Highly Entangled, Mechanically Robust Hydrogel Thin Films for Passive Cooling Materials via Open-Vessel Fabrication
by Lihan Rong, Jiajiang Xie, Shigao Zhou, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li, Yuyan Liu, Tingting Tang, Xiang Chen and Liyuan Zhang
Gels 2025, 11(9), 734; https://doi.org/10.3390/gels11090734 - 12 Sep 2025
Viewed by 359
Abstract
The scalable fabrication of hydrogels with high toughness and low hysteresis is critically hindered by oxygen inhibition, which typically produces brittle, highly crosslinked (HC) networks. This study presents an oxygen-tolerant photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET-RAFT) strategy for synthesizing highly entangled (HE) [...] Read more.
The scalable fabrication of hydrogels with high toughness and low hysteresis is critically hindered by oxygen inhibition, which typically produces brittle, highly crosslinked (HC) networks. This study presents an oxygen-tolerant photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET-RAFT) strategy for synthesizing highly entangled (HE) polyacrylamide hydrogels under open-vessel conditions. By optimizing the water-to-monomer ratio (W = 3.9) and introducing lithium chloride (LiCl) for spatial confinement, we achieved a fundamental shift in mechanical performance. The optimized HE hydrogel exhibited a fracture energy of 1.39 MJ/m3 and a fracture strain of ~900%, starkly contrasting the brittle failure of the HC control (W = 20, C = 10−2) at ~50% strain. This represents an order-of-magnitude improvement in deformability. Furthermore, the incorporation of 15 wt% LiCl amplified the HE hydrogel’s fracture energy to 2.17 MJ/m3 while maintaining its low hysteresis. This method enables the rapid, scalable production of robust, transparent thin films that exhibit dual passive cooling via radiative emission (>89% emissivity) and evaporation, rapid self-healing, and reliable strain sensing at temperatures as low as −20 °C. The synergy of entanglement design and confinement engineering establishes a versatile platform for manufacturing multifunctional hydrogels that vastly outperform their crosslink-dominated predecessors. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

20 pages, 4874 KB  
Article
Preparation of pH-Responsive PET TeMs by Controlled Graft Block Copolymerisation of Styrene and Methacrylic Acid for the Separation of Water–Oil Emulsions
by Indira B. Muslimova, Dias D. Omertassov, Nurdaulet Zhumanazar, Nazerke Assan, Zhanna K. Zhatkanbayeva and Ilya V. Korolkov
Polymers 2025, 17(16), 2221; https://doi.org/10.3390/polym17162221 - 14 Aug 2025
Viewed by 599
Abstract
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, [...] Read more.
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, followed by the grafting of poly(methacrylic acid) (PMAA) to introduce pH-responsive carboxyl groups. Optimized conditions (117 mM MAA, RAFT:initiator 1:10, 60 min UV exposure at 10 cm) resulted in PET TeMs-g-PS-g-PMAA surfaces exhibiting tunable wettability, with contact angles shifting from 90° at pH 2 to 65° at pH 9. Successful grafting was confirmed by FTIR, AFM, SEM, TGA, and TB dye sorption. The membranes showed high degree of rejection (up to 98%) for both direct and reverse emulsions. In direct emulsions, stable flux values (70 ± 2.8 to 60 ± 2.9 L m−2 h−1 for cetane-in-water and 195 ± 8.2 to 120 ± 6.9 L m−2 h−1 for o-xylene-in-water) were maintained over five cycles at 900 mbar, indicating excellent antifouling performance. Reverse emulsions initially exhibited higher flux, but stronger fouling; however, flux recovery reached 91% after cleaning. These findings demonstrate the potential of PET TeMs-g-PS-g-PMAA as switchable, pH-responsive membranes for robust emulsion separation. Full article
Show Figures

Figure 1

12 pages, 1939 KB  
Article
Fe3+-Modulated In Situ Formation of Hydrogels with Tunable Mechanical Properties
by Lihan Rong, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li and Yuyan Liu
Gels 2025, 11(8), 586; https://doi.org/10.3390/gels11080586 - 30 Jul 2025
Viewed by 487
Abstract
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report [...] Read more.
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report a novel one-pot strategy where controlled amounts of Fe3+ are directly added to polyacrylamide-sodium acrylate (PAM-SA) precursor solutions, ensuring homogeneous ion distribution. Combining this with Photoinduced Electron/Energy Transfer Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) polymerization enables efficient hydrogel fabrication under open-vessel conditions, improving its scalability. Fe3+ concentration achieves unprecedented modulation of mechanical properties: Young’s modulus (10 to 150 kPa), toughness (0.26 to 2.3 MJ/m3), and strain at break (800% to 2500%). The hydrogels also exhibit excellent compressibility (90% strain recovery), energy dissipation (>90% dissipation efficiency at optimal Fe3+ levels), and universal adhesion to diverse surfaces (plastic, metal, PTFE, and cardboard). Finally, these Fe3+-incorporated hydrogels demonstrated high effectiveness as strain sensors for monitoring finger/elbow movements, with gauge factors dependent on composition. This work provides a scalable, oxygen-tolerant route to tunable hydrogels for advanced wearable devices. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

15 pages, 1140 KB  
Article
Serum Proteomic Changes in Pet Rabbits with Subclinical and Clinical Encephalitozoonosis in Thailand
by Taksaon Duangurai, Onrapak Reamtong, Tipparat Thiangtrongjit, Siriluk Jala, Peerut Chienwichai and Naris Thengchaisri
Animals 2025, 15(13), 1962; https://doi.org/10.3390/ani15131962 - 3 Jul 2025
Viewed by 674
Abstract
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits [...] Read more.
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits (30 per group) was pooled (10 samples per pool, 3 pools per group) and analyzed using one-dimensional gel electrophoresis and mass spectrometry. The proteomic analysis revealed 109, 98, and 74 proteins expressed in healthy, subclinical, and clinical groups, respectively. Of these, 50, 40, and 33 proteins were unique to the healthy, subclinical, and clinical groups, respectively, with only 10 proteins shared across all. A total of 88 proteins were differentially expressed in infected groups compared to healthy controls. Importantly, 12 proteins were consistently upregulated in both subclinical and clinical infections. These include markers related to the immune response (beta-2-microglobulin, alpha-2-HS-glycoprotein), coagulation (antithrombin-III, alpha-1-antiproteinase S-1), vitamin A transport (retinol-binding proteins), lipid metabolism (apolipoprotein C-III), cytoskeletal regulation (actin-depolymerizing factor), extracellular matrix integrity (fibrillin 2), and oxidative stress (monooxygenase DBH-like 1). Additionally, Gc-globulin and ER lipid-raft-associated 1 were linked to immune modulation and signaling. These findings identify specific serum proteins as promising biomarkers for distinguishing subclinical from clinical encephalitozoonosis in rabbits, enabling an early diagnosis and effective disease monitoring. Full article
(This article belongs to the Special Issue Advances in Exotic Pet Medicine)
Show Figures

Figure 1

16 pages, 4340 KB  
Article
“Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties
by Pauline Skigin, Perrine Robin, Alireza Kavand, Mounir Mensi and Sandrine Gerber-Lemaire
Polymers 2024, 16(20), 2873; https://doi.org/10.3390/polym16202873 - 11 Oct 2024
Cited by 1 | Viewed by 1542
Abstract
Surface-based biosensors have proven to be of particular interest in the monitoring of human pathogens by means of their distinct nucleic acid sequences. Genosensors rely on targeted gene/DNA probe hybridization at the surface of a physical transducer and have been exploited for their [...] Read more.
Surface-based biosensors have proven to be of particular interest in the monitoring of human pathogens by means of their distinct nucleic acid sequences. Genosensors rely on targeted gene/DNA probe hybridization at the surface of a physical transducer and have been exploited for their high specificity and physicochemical stability. Unfortunately, these sensing materials still face limitations impeding their use in current diagnostic techniques. Most of their shortcomings arise from their suboptimal surface properties, including low hybridization density, inadequate probe orientation, and biofouling. Herein, we describe and compare two functionalization methodologies to immobilize DNA probes on a glass substrate via a thermoresponsive polymer in order to produce genosensors with improved properties. The first methodology relies on the use of a silanization step, followed by PET-RAFT of NIPAM monomers on the coated surface, while the second relies on vinyl sulfone modifications of the substrate, to which the pre-synthetized PNIPAM was grafted to. The functionalized substrates were fully characterized by means of X-ray photoelectron spectroscopy for their surface atomic content, fluorescence assay for their DNA hybridization density, and water contact angle measurements for their thermoresponsive behavior. The antifouling properties were evaluated by fluorescence microscopy. Both immobilization methodologies hold the potential to be applied to the engineering of DNA biosensors with a variety of polymers and other metal oxide surfaces. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2271 KB  
Article
Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects
by Zhilei Wang, Zipeng Zhang, Chenyu Wu, Zikuan Wang and Wenjian Liu
Molecules 2024, 29(10), 2377; https://doi.org/10.3390/molecules29102377 - 18 May 2024
Cited by 2 | Viewed by 1731
Abstract
The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 [...] Read more.
The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 nm, at which molar extinction coefficient εmax = 1.0×104 L/(mol·cm)), hindering photo-curing applications that entail long light penetration paths. Over the past decade, there has not been any competing candidate in terms of efficiency, despite a myriad of efforts in PC design. By theoretical evaluation, here we rationally introduce a peripheral benzo moiety on each of the pyrrole rings of ZnTPP, giving zinc tetraphenyl tetrabenzoporphyrin (ZnTPTBP). This modification not only enlarges the conjugation length of the system, but also alters the a1u occupied π molecular orbital energy level and breaks the accidental degeneracy between the a1u and a2u orbitals, which is responsible for the low absorption intensity of the Q-band. As a consequence, not only is there a pronounced hyperchromic and bathochromic effect (λmax = 655 nm and εmax = 5.2×104 L/(mol·cm)) of the Q-band, but the hyperchromic effect is achieved without increasing the intensity of the less useful, low wavelength absorption peaks of the PC. Remarkably, this strong 655 nm absorption takes advantage of deep-red (650–700 nm) light, a major component of solar light exhibiting good atmosphere penetration, exploited by the natural PC chlorophyll a as well. Compared with ZnTPP, ZnTPTBP displayed a 49% increase in PET-RAFT polymerization rate with good control, marking a significant leap in the area of photo-controlled polymerization. Full article
(This article belongs to the Special Issue Themed Issue Dedicated to Prof. Bernard Boutevin)
Show Figures

Figure 1

29 pages, 9352 KB  
Article
Preparation of a Molecularly Imprinted Polymer on Polyethylene Terephthalate Platform Using Reversible Addition-Fragmentation Chain Transfer Polymerization for Tartrazine Analysis via Smartphone
by Christian Jacinto Hernández, Raúl Medina, Ily Maza Mejía, Mario Hurtado, Sabir Khan, Gino Picasso, Rosario López and María D. P. T. Sotomayor
Polymers 2024, 16(10), 1325; https://doi.org/10.3390/polym16101325 - 8 May 2024
Cited by 1 | Viewed by 1897
Abstract
This work describes the preparation of a molecularly imprinted polymer (MIP) platform on polyethylene terephthalate (MIP-PET) via RAFT polymerization for analyzing tartrazine using a smartphone. The MIP-PET platform was characterized using Fourier transform infrared (FTIR) techniques, Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS), and [...] Read more.
This work describes the preparation of a molecularly imprinted polymer (MIP) platform on polyethylene terephthalate (MIP-PET) via RAFT polymerization for analyzing tartrazine using a smartphone. The MIP-PET platform was characterized using Fourier transform infrared (FTIR) techniques, Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS), and confocal microscopy. The optimal pH and adsorption time conditions were determined. The adsorption capacity of the MIP-PET plates with RAFT treatment (0.057 mg cm−2) was higher than that of the untreated plates (0.028 mg cm−2). The kinetic study revealed a pseudo-first-order model with intraparticle diffusion, while the isotherm study indicated a fit for the Freundlich model. Additionally, the MIP-PET demonstrated durability by maintaining its adsorption capacity over five cycles of reuse without significant loss. To quantify tartrazine, images were captured using a smartphone, and the RGB values were obtained using the ImageJ® free program. A partial least squares regression (PLS) was performed, obtaining a linear range of 0 to 7 mg L−1 of tartrazine. The accuracy of the method was 99.4% (4.97 ± 0.74 mg L−1) for 10 samples of 5 mg L−1. The concentration of tartrazine was determined in two local soft drinks (14.1 mg L−1 and 16.5 mg L−1), with results comparable to the UV–visible spectrophotometric method. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Figure 1

19 pages, 2984 KB  
Article
Development of Biocompatible Digital Light Processing Resins for Additive Manufacturing Using Visible Light-Induced RAFT Polymerization
by Mauricio A. Sarabia-Vallejos, Scarleth Romero De la Fuente, Pamela Tapia, Nicolás A. Cohn-Inostroza, Manuel Estrada, David Ortiz-Puerta, Juan Rodríguez-Hernández and Carmen M. González-Henríquez
Polymers 2024, 16(4), 472; https://doi.org/10.3390/polym16040472 - 8 Feb 2024
Cited by 8 | Viewed by 2924
Abstract
Patients with bone diseases often experience increased bone fragility. When bone injuries exceed the body’s natural healing capacity, they become significant obstacles. The global rise in the aging population and the escalating obesity pandemic are anticipated to lead to a notable increase in [...] Read more.
Patients with bone diseases often experience increased bone fragility. When bone injuries exceed the body’s natural healing capacity, they become significant obstacles. The global rise in the aging population and the escalating obesity pandemic are anticipated to lead to a notable increase in acute bone injuries in the coming years. Our research developed a novel DLP resin for 3D printing, utilizing poly(ethylene glycol diacrylate) (PEGDA) and various monomers through the PET-RAFT polymerization method. To enhance the performance of bone scaffolds, triply periodic minimal surfaces (TPMS) were incorporated into the printed structure, promoting porosity and pore interconnectivity without reducing the mechanical resistance of the printed piece. The gyroid TPMS structure was the one that showed the highest mechanical resistance (0.94 ± 0.117 and 1.66 ± 0.240 MPa) for both variants of resin composition. Additionally, bioactive particles were introduced to enhance the material’s biocompatibility, showcasing the potential for incorporating active compounds for specific applications. The inclusion of bioceramic particles produces an increase of 13% in bioactivity signal for osteogenic differentiation (alkaline phosphatase essay) compared to that of control resins. Our findings highlight the substantial improvement in printing precision and resolution achieved by including the photoabsorber, Rose Bengal, in the synthesized resin. This enhancement allows for creating intricately detailed and accurately defined 3D-printed parts. Furthermore, the TPMS gyroid structure significantly enhances the material’s mechanical resistance, while including bioactive compounds significantly boosts the polymeric resin’s biocompatibility and bioactivity (osteogenic differentiation). Full article
(This article belongs to the Special Issue Polymer Scaffolds for Tissue Engineering II)
Show Figures

Figure 1

18 pages, 4374 KB  
Article
Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions
by Indira B. Muslimova, Zh K. Zhatkanbayeva, Dias D. Omertasov, Galina B. Melnikova, Arman B. Yeszhanov, Olgun Güven, Sergei A. Chizhik, Maxim V. Zdorovets and Ilya V. Korolkov
Membranes 2023, 13(5), 523; https://doi.org/10.3390/membranes13050523 - 17 May 2023
Cited by 9 | Viewed by 2208
Abstract
In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 μm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to [...] Read more.
In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 μm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to be used in the separation of water–oil emulsions. The influence of the monomer concentration (1–4 vol%), the molar ratio of RAFT agent: initiator (1:2–1:100) and the grafting time (30–120 min) on the contact angle (CA) was studied. The optimal conditions for ST and 4-VP grafting were found. The obtained membranes showed pH-responsive properties: at pH 7–9, the membrane was hydrophobic with a CA of 95°; at pH 2, the CA decreased to 52°, which was due to the protonated grafted layer of poly-4-vinylpyridine (P4VP), which had an isoelectric point of pI = 3.2. The obtained membranes with controlled hydrophobic-hydrophilic properties were tested by separating the direct and reverse “oil–water” emulsions. The stability of the hydrophobic membrane was studied for 8 cycles. The degree of purification was in the range of 95–100%. Full article
(This article belongs to the Special Issue Membrane Materials and Processes for Liquid and Gas Separation)
Show Figures

Figure 1

25 pages, 4602 KB  
Article
Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(dimethylamino)ethyl methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III)
by Nursanat Parmanbek, Duygu S. Sütekin, Murat Barsbay, Anastassiya A. Mashentseva, Dmitriy A. Zheltov, Nurgulim A. Aimanova, Zhanar Ye. Jakupova and Maxim V. Zdorovets
Polymers 2022, 14(19), 4026; https://doi.org/10.3390/polym14194026 - 26 Sep 2022
Cited by 30 | Viewed by 3077
Abstract
Nanoporous track-etched membranes (TeM) are promising materials as adsorbents to remove toxic pollutants, but control over the pore diameter and density in addition to precise functionalization of nanochannels is crucial for controlling the surface area and efficiency of TeMs. This study reported the [...] Read more.
Nanoporous track-etched membranes (TeM) are promising materials as adsorbents to remove toxic pollutants, but control over the pore diameter and density in addition to precise functionalization of nanochannels is crucial for controlling the surface area and efficiency of TeMs. This study reported the synthesis of functionalized PET TeMs as high-capacity sorbents for the removal of trivalent arsenic, As(III), which is more mobile and about 60 times more toxic than As(V). Nanochannels of PET-TeMs were functionalized by UV-initiated reversible addition fragmentation chain transfer (RAFT)-mediated grafting of 2-(dimethyamino)ethyl methacrylate (DMAEMA), allowing precise control of the degree of grafting and graft lengths within the nanochannels. Ag NPs were then loaded onto PDMAEMA-g-PET to provide a hybrid sorbent for As(III) removal. The As(III) removal efficiency of Ag@PDMAEMA-g-PET, PDMAEMA-g-PET, and pristine PET TeM was compared by adsorption kinetics studies at various pH and sorption times. The adsorption of As(III) by Ag@DMAEMA-g-PET and DMAEMA-g-PET TeMs was found to follow the Freundlich mechanism and a pseudo-second-order kinetic model. After 10 h, As(III) removal efficiencies were 85.6% and 56% for Ag@PDMAEMA-g-PET and PDMAEMA-g-PET, respectively, while PET template had a very low arsenic sorption capacity of 17.5% at optimal pH of 4.0, indicating that both PDMAEMA grafting and Ag-NPs loading significantly increased the As(III) removal capacity of PET-TeMs. Full article
(This article belongs to the Special Issue Functional Membranes: From Synthesis To Applications)
Show Figures

Graphical abstract

16 pages, 5002 KB  
Article
Concussion/Mild Traumatic Brain Injury (TBI) Induces Brain Insulin Resistance: A Positron Emission Tomography (PET) Scanning Study
by Sathiya Sekar, Raja Solomon Viswas, Hajar Miranzadeh Mahabadi, Elahe Alizadeh, Humphrey Fonge and Changiz Taghibiglou
Int. J. Mol. Sci. 2021, 22(16), 9005; https://doi.org/10.3390/ijms22169005 - 20 Aug 2021
Cited by 13 | Viewed by 3844
Abstract
Brain injury/concussion is a growing epidemic throughout the world. Although evidence supports association between traumatic brain injury (TBI) and disturbance in brain glucose metabolism, the underlying molecular mechanisms are not well established. Previously, we reported the release of cellular prion protein (PrPc) from [...] Read more.
Brain injury/concussion is a growing epidemic throughout the world. Although evidence supports association between traumatic brain injury (TBI) and disturbance in brain glucose metabolism, the underlying molecular mechanisms are not well established. Previously, we reported the release of cellular prion protein (PrPc) from the brain to circulation following TBI. The PrPc level was also found to be decreased in insulin-resistant rat brains. In the present study, we investigated the molecular link between PrPc and brain insulin resistance in a single and repeated mild TBI-induced mouse model. Mild TBI was induced in mice by dropping a weight (~95 g at 1 m high) on the right side of the head. The procedure was performed once and thrice (once daily) for single (SI) and repeated induction (RI), respectively. Micro PET/CT imaging revealed that RI mice showed significant reduction in cortical, hippocampal and cerebellum glucose uptake compared to SI and control. Mice that received RI also showed significant motor and cognitive deficits. In co-immunoprecipitation, the interaction between PrPc, flotillin and Cbl-associated protein (CAP) observed in the control mice brains was disrupted by RI. Lipid raft isolation showed decreased levels of PrPc, flotillin and CAP in the RI mice brains. Based on observation, it is clear that PrPc has an interaction with CAP and the dislodgment of PrPc from cell membranes may lead to brain insulin resistance in a mild TBI mouse model. The present study generated a new insight into the pathogenesis of brain injury, which may result in the development of novel therapy. Full article
Show Figures

Figure 1

31 pages, 7820 KB  
Review
New Light in Polymer Science: Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials
by Valentina Bellotti and Roberto Simonutti
Polymers 2021, 13(7), 1119; https://doi.org/10.3390/polym13071119 - 1 Apr 2021
Cited by 42 | Viewed by 10701
Abstract
Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These [...] Read more.
Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These advantages open the doors to multidisciplinary fields going from composite materials to bio-applications. Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. This review has the aim of providing to the readers the basic knowledge of PET-RAFT polymerization and explores the new possibilities that this innovative technique offers in terms of industrial applications, new materials production, and green conditions. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

13 pages, 591 KB  
Review
Flotillin: A Promising Biomarker for Alzheimer’s Disease
by Efthalia Angelopoulou, Yam Nath Paudel, Mohd. Farooq Shaikh and Christina Piperi
J. Pers. Med. 2020, 10(2), 20; https://doi.org/10.3390/jpm10020020 - 26 Mar 2020
Cited by 26 | Viewed by 8600
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of beta amyloid (Aβ) in extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) mainly consisting of tau protein. Although the exact etiology of the disease remains elusive, accumulating evidence highlights the key role of lipid [...] Read more.
Alzheimer’s disease (AD) is characterized by the accumulation of beta amyloid (Aβ) in extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) mainly consisting of tau protein. Although the exact etiology of the disease remains elusive, accumulating evidence highlights the key role of lipid rafts, as well as the endocytic pathways in amyloidogenic amyloid precursor protein (APP) processing and AD pathogenesis. The combination of reduced Aβ42 levels and increased phosphorylated tau protein levels in the cerebrospinal fluid (CSF) is the most well established biomarker, along with Pittsburgh compound B and positron emission tomography (PiB-PET) for amyloid imaging. However, their invasive nature, the cost, and their availability often limit their use. In this context, an easily detectable marker for AD diagnosis even at preclinical stages is highly needed. Flotillins, being hydrophobic proteins located in lipid rafts of intra- and extracellular vesicles, are mainly involved in signal transduction and membrane–protein interactions. Accumulating evidence highlights the emerging implication of flotillins in AD pathogenesis, by affecting APP endocytosis and processing, Ca2+ homeostasis, mitochondrial dysfunction, neuronal apoptosis, Aβ-induced neurotoxicity, and prion-like spreading of Aβ. Importantly, there is also clinical evidence supporting their potential use as biomarker candidates for AD, due to reduced serum and CSF levels that correlate with amyloid burden in AD patients compared with controls. This review focuses on the emerging preclinical and clinical evidence on the role of flotillins in AD pathogenesis, further addressing their potential usage as disease biomarkers. Full article
(This article belongs to the Special Issue Novel Biomarkers in Alzheimer’s Disease)
Show Figures

Figure 1

10 pages, 1318 KB  
Article
PET-RAFT Polymerization Catalyzed by Small Organic Molecule under Green Light Irradiation
by Huazhen Tao, Lei Xia, Guang Chen, Tianyou Zeng, Xuan Nie, Ze Zhang and Yezi You
Polymers 2019, 11(5), 892; https://doi.org/10.3390/polym11050892 - 15 May 2019
Cited by 9 | Viewed by 7849
Abstract
Photocatalyzed polymerization using organic molecules as catalysts has attracted broad interest because of its easy operation in ambient environments and low toxicity compared with metallic catalysts. In this work, we reported that 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) can act as an efficient photoredox catalyst for photoinduced [...] Read more.
Photocatalyzed polymerization using organic molecules as catalysts has attracted broad interest because of its easy operation in ambient environments and low toxicity compared with metallic catalysts. In this work, we reported that 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) can act as an efficient photoredox catalyst for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under green light irradiation. Well-defined (co)polymers can be obtained using this technique without any additional additives like noble metals and electron donors or acceptors. The living characteristics of polymerization were verified by kinetic study and the narrow dispersity (Đ) of the produced polymer. Excellent chain-end fidelity was demonstrated through chain extension as well. In addition, this technique showed great potential for various RAFT agents and monomers including acrylates and acrylamides. Full article
(This article belongs to the Special Issue Macromolecular Design via Controlled Polymerization)
Show Figures

Graphical abstract

13 pages, 2509 KB  
Article
PMMA-g-OEtOx Graft Copolymers: Influence of Grafting Degree and Side Chain Length on the Conformation in Aqueous Solution
by Irina Muljajew, Christine Weber, Ivo Nischang and Ulrich S. Schubert
Materials 2018, 11(4), 528; https://doi.org/10.3390/ma11040528 - 30 Mar 2018
Cited by 16 | Viewed by 5577
Abstract
Depending on the degree of grafting (DG) and the side chain degree of polymerization (DP), graft copolymers may feature properties similar to statistical copolymers or to block copolymers. This issue is approached by studying aqueous solutions of PMMA-g-OEtOx graft copolymers comprising [...] Read more.
Depending on the degree of grafting (DG) and the side chain degree of polymerization (DP), graft copolymers may feature properties similar to statistical copolymers or to block copolymers. This issue is approached by studying aqueous solutions of PMMA-g-OEtOx graft copolymers comprising a hydrophobic poly(methyl methacrylate) (PMMA) backbone and hydrophilic oligo(2-ethyl-2-oxazoline) (OEtOx) side chains. The graft copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) copolymerization of methyl methacrylate (MMA) and OEtOx-methacrylate macromonomers of varying DP. All aqueous solutions of PMMA-g-OEtOx (9% ≤ DG ≤ 34%; 5 ≤ side chain DP ≤ 24) revealed lower critical solution temperature behavior. The graft copolymer architecture significantly influenced the aggregation behavior, the conformation in aqueous solution and the coil to globule transition, as verified by means of turbidimetry, dynamic light scattering, nuclear magnetic resonance spectroscopy, and analytical ultracentrifugation. The aggregation behavior of graft copolymers with a side chain DP of 5 was significantly affected by small variations of the DG, occasionally forming mesoglobules above the cloud point temperature (Tcp), which was around human body temperature. On the other hand, PMMA-g-OEtOx with elongated side chains assembled into well-defined structures below the Tcp (apparent aggregation number (Nagg = 10)) that were able to solubilize Disperse Orange 3. The thermoresponsive behavior of aqueous solutions thus resembled that of micelles comprising a poly(2-ethyl-2-oxazoline) (PEtOx) shell (Tcp > 60 °C). Full article
(This article belongs to the Special Issue Temperature-Responsive Polymers)
Show Figures

Figure 1

Back to TopTop