Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = PLA–ABS comparison

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4087 KB  
Article
Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA
by I. S. ELDeeb, Ehssan Esmael, Saad Ebied, Mohamed Ragab Diab, Mohammed Dekis, Mikhail A. Petrov, Abdelhameed A. Zayed and Mohamed Egiza
J. Manuf. Mater. Process. 2025, 9(7), 221; https://doi.org/10.3390/jmmp9070221 - 1 Jul 2025
Viewed by 1025
Abstract
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene [...] Read more.
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA), aiming to determine optimal conditions for enhanced strength. ASTM D638-Type IV specimens were printed using nozzle diameters ranging from 0.05 to 0.25 mm and speeds from 15 to 80 mm/s. For ABS, tensile strength increased from 56.46 MPa to 60.74 MPa, representing a 7.6% enhancement, as nozzle diameter increased, with the best performance observed at 0.25 mm and 45 mm/s, attributed to improved melt flow and interlayer fusion. PLA exhibited a non-linear response, reaching a maximum strength of 89.59 MPa under the same conditions, marking a 22.3% enhancement over the minimum value. The superior performance of PLA was linked to optimal thermal management that enhanced crystallinity and interlayer bonding. Fractographic analysis revealed reduced porosity and smoother fracture surfaces under optimized conditions. Overall, PLA consistently outperformed ABS across all settings, with an average tensile strength advantage of 47.5%. The results underscore the need for material-specific parameter tuning in FFF and offer practical insights for optimizing mechanical performance in applications demanding high structural integrity, including biomedical, aerospace, and functional prototyping. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

26 pages, 1458 KB  
Review
The Evolution of Thermoplastic Raw Materials in High-Speed FFF/FDM 3D Printing Era: Challenges and Opportunities
by Antreas Kantaros, Meropi Katsantoni, Theodore Ganetsos and Nicolae Petrescu
Materials 2025, 18(6), 1220; https://doi.org/10.3390/ma18061220 - 9 Mar 2025
Cited by 9 | Viewed by 2495
Abstract
The evolution of thermoplastic materials has played a critical role in advancing high-speed Fused Filament Fabrication (FFF) and Fused Deposition Modeling (FDM) 3D printing technologies. This study explores the performance and challenges associated with next-generation thermoplastics specifically designed for high-speed printing, such as [...] Read more.
The evolution of thermoplastic materials has played a critical role in advancing high-speed Fused Filament Fabrication (FFF) and Fused Deposition Modeling (FDM) 3D printing technologies. This study explores the performance and challenges associated with next-generation thermoplastics specifically designed for high-speed printing, such as high-speed PLA, ABS, and PETG, in comparison to conventional materials. A systematic analysis was conducted to evaluate the key parameters, including the mechanical properties, layer adhesion, surface finish, and dimensional accuracy, under varying high-speed printing conditions. The results reveal that high-speed thermoplastics, when coupled with advanced hardware and optimized motion control systems, achieve up to a 70% reduction in printing time without significant trade-offs in mechanical integrity or precision. Additionally, the study identifies challenges, such as increased thermal stresses, warping, and the need for precise cooling strategies, which can impact material performance at elevated speeds. Opportunities for future development are also discussed, including the design of novel polymer formulations and hardware innovations to further enhance the reliability and scalability of high-speed FFF/FDM printing. This work underscores the potential of adopting such advanced thermoplastic materials in the high-speed 3D printing era and highlights the critical interplay between material science and hardware engineering for achieving next-generation manufacturing capabilities. Full article
Show Figures

Figure 1

16 pages, 2026 KB  
Article
Head-to-Head Evaluation of FDM and SLA in Additive Manufacturing: Performance, Cost, and Environmental Perspectives
by Maryam Abbasi, Paulo Váz, José Silva and Pedro Martins
Appl. Sci. 2025, 15(4), 2245; https://doi.org/10.3390/app15042245 - 19 Feb 2025
Cited by 7 | Viewed by 2225
Abstract
This paper conducts a comprehensive experimental comparison of two widely used additive manufacturing (AM) processes, Fused Deposition Modeling (FDM) and Stereolithography (SLA), under standardized conditions using the same test geometries and protocols. FDM parts were printed with both Polylactic Acid (PLA) and Acrylonitrile [...] Read more.
This paper conducts a comprehensive experimental comparison of two widely used additive manufacturing (AM) processes, Fused Deposition Modeling (FDM) and Stereolithography (SLA), under standardized conditions using the same test geometries and protocols. FDM parts were printed with both Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) filaments, while SLA used a general-purpose photopolymer resin. Quantitative evaluations included surface roughness, dimensional accuracy, tensile properties, production cost, and energy consumption. Additionally, environmental considerations and process reliability were assessed by examining waste streams, recyclability, and failure rates. The results indicate that SLA achieves superior surface quality (Ra2μm vs. 12–13μm) and dimensional tolerances (±0.05mm vs. ±0.150.20mm), along with higher tensile strength (up to 70MPa). However, FDM provides notable advantages in cost (approximately 60% lower on a per-part basis), production speed, and energy efficiency. Moreover, from an environmental perspective, FDM is more favorable when using biodegradable PLA or recyclable ABS, whereas SLA resin waste is hazardous. Overall, the study highlights that no single process is universally superior. FDM offers a rapid, cost-effective solution for prototyping, while SLA excels in precision and surface finish. By presenting a detailed, data-driven comparison, this work guides engineers, product designers, and researchers in choosing the most suitable AM technology for their specific needs. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

18 pages, 2833 KB  
Article
Performance Analysis of FFF-Printed Carbon Fiber Composites Subjected to Different Annealing Methods
by Javaid Butt, Md Ashikul Alam Khan, Muhammad Adnan and Vahaj Mohaghegh
J. Manuf. Mater. Process. 2024, 8(6), 252; https://doi.org/10.3390/jmmp8060252 - 11 Nov 2024
Cited by 1 | Viewed by 2059
Abstract
Annealing is a popular post-process used to enhance the performance of parts made by fused filament fabrication. In this work, four different carbon-fiber-based composites were subjected to two different annealing methods to compare their effectiveness in terms of dimensional stability, surface roughness, tensile [...] Read more.
Annealing is a popular post-process used to enhance the performance of parts made by fused filament fabrication. In this work, four different carbon-fiber-based composites were subjected to two different annealing methods to compare their effectiveness in terms of dimensional stability, surface roughness, tensile strength, hardness, and flexural strength. The four materials include PLA-CF, PAHT-CF, PETG-CF, and ABS-CF. The annealing methods involved heating the printed composites inside an oven in two different ways: placed on a tray and fluidized bed annealing with sharp sand. Annealing was conducted for a one-hour time interval at different annealing temperatures selected as per the glass transition temperatures of the four materials. The results showed that oven annealing provides better results under all scenarios except dimensional stability. PETG-CF and ABS-CF composites were significantly affected by oven annealing with expansion along the z-axis as high 8.42% and 18% being observed for PETG-CF and ABS-CF, respectively. Oven annealing showed better surface finish due to controlled and uniform heating, whereas the abrasive nature of sand and contact with sand grains caused inconsistencies on the surface of the composites. Sand annealing showed comparable hardness values to oven annealing. For tensile and flexural testing, sand annealing showed consistent values for all cases but lower than those obtained by oven annealing. However, oven annealing values started to decrease at elevated temperatures for PETG-CF and ABS-CF. This work offers a valuable comparison by highlighting the limitations of conventional oven annealing in achieving dimensional stability. It provides insights that can be leveraged to fine-tune designs for optimal results when working with different FFF-printed carbon-fiber-based composites, ensuring better accuracy and performance across various applications. Full article
Show Figures

Figure 1

15 pages, 6312 KB  
Article
Predicting the Optimal Input Parameters for the Desired Print Quality Using Machine Learning
by Rajalakshmi Ratnavel, Shreya Viswanath, Jeyanthi Subramanian, Vinoth Kumar Selvaraj, Valarmathi Prahasam and Sanjay Siddharth
Micromachines 2022, 13(12), 2231; https://doi.org/10.3390/mi13122231 - 16 Dec 2022
Cited by 9 | Viewed by 3192
Abstract
3D printing is a growing technology being incorporated into almost every industry. Although it has obvious advantages, such as precision and less fabrication time, it has many shortcomings. Although several attempts were made to monitor the errors, many have not been able to [...] Read more.
3D printing is a growing technology being incorporated into almost every industry. Although it has obvious advantages, such as precision and less fabrication time, it has many shortcomings. Although several attempts were made to monitor the errors, many have not been able to thoroughly address them, like stringing, over-extrusion, layer shifting, and overheating. This paper proposes a study using machine learning to identify the optimal process parameters such as infill structure and density, material (ABS, PLA, Nylon, PVA, and PETG), wall and layer thickness, count, and temperature. The result thus obtained was used to train a machine learning algorithm. Four different network architectures (CNN, Resnet152, MobileNet, and Inception V3) were used to build the algorithm. The algorithm was able to predict the parameters for a given requirement. It was also able to detect any errors. The algorithm was trained to pause the print immediately in case of a mistake. Upon comparison, it was found that the algorithm built with Inception V3 achieved the best accuracy of 97%. The applications include saving the material from being wasted due to print time errors in the manufacturing industry. Full article
(This article belongs to the Special Issue Machine Learning for Advanced Manufacturing)
Show Figures

Figure 1

16 pages, 3568 KB  
Article
Foot Orthosis and Sensorized House Slipper by 3D Printing
by Lorenzo Brognara, Massimiliano Fantini, Kavin Morellato, Gabriela Graziani, Nicola Baldini and Omar Cauli
Materials 2022, 15(12), 4064; https://doi.org/10.3390/ma15124064 - 8 Jun 2022
Cited by 16 | Viewed by 4049
Abstract
Background: In clinical practice, specific customization is needed to address foot pathology, which must be disease and patient-specific. To date, the traditional methods for manufacturing custom functional Foot Orthoses (FO) are based on plaster casting and manual manufacturing, hence orthotic therapy depends entirely [...] Read more.
Background: In clinical practice, specific customization is needed to address foot pathology, which must be disease and patient-specific. To date, the traditional methods for manufacturing custom functional Foot Orthoses (FO) are based on plaster casting and manual manufacturing, hence orthotic therapy depends entirely on the skills and expertise of individual practitioners. This makes the procedures difficult to standardize and replicate, as well as expensive, time-consuming and material-wasting, as well as difficult to standardize and replicate. 3D printing offers new perspectives in the development of patient-specific orthoses, as it permits addressing all the limitations of currently available technologies, but has been so far scarcely explored for the podiatric field, so many aspects remain unmet, especially for what regards customization, which requires the definition of a protocol that entails all stages from patient scanning to manufacturing. Methods: A feasibility study was carried out involving interdisciplinary cooperation between industrial engineers and podiatrists. To that end: (i) For patient-specific data acquisition, 3D scanning of the foot is compared to traditional casting. (ii) a modelling GD workflow is first created to design a process permitting easy creations of customized shapes, enabling the end user (the podiatrist) to interactively customize the orthoses. Then, (iii) a comparison is made between different printing materials, in order to reproduce the same mechanical behavior shown by standard orthoses. To do this, the mechanical properties of standard materials (Polycarbonate sheets), cut and hand-shaped, are compared with four groups of 3D printed samples: poly(ethylene glycol) (PETG), poly(acrylonitrile-butadiene.styrene) (ABS), polycarbonate (PC) and poly(lactic acid) (PLA) obtained by Fused Filament Fabrication (FFF). Results: Differences found between the foot plaster model obtained with the plaster slipper cast in a neutral position and the model of the real foot obtained with 3D scanning in the same position can be ascribed to the non-stationarity of the patient during the acquisition process, and were limited by a locking system with which no substantial differences in the almost entire sole of the foot scan were observed. Conclusions: Using the designed GD workflow, podiatrists with limited CAD skills can easily design and interactively customize foot orthoses to adapt them to the patients’ clinical needs. 3D printing enables the complex shape of the orthoses to be reproduced easily and quickly. Compared to Polycarbonate sheets (gold standard), all the printed materials were less deformable and reached lower yield stress for comparable deformation. No modifications in any of the materials as a result of printing process were observed. Full article
Show Figures

Figure 1

15 pages, 10136 KB  
Article
Polymer–Nickel Composite Filaments for 3D Printing of Open Porous Materials
by Ewelina Mackiewicz, Tomasz Wejrzanowski, Bogusława Adamczyk-Cieślak and Graeme J. Oliver
Materials 2022, 15(4), 1360; https://doi.org/10.3390/ma15041360 - 12 Feb 2022
Cited by 18 | Viewed by 4126
Abstract
Catalysis has been a key way of improving the efficiency-to-cost ratio of chemical and electrochemical processes. There have been recent developments in catalyst materials that enable the development of novel and more sophisticated devices that, for example, can be used in applications, such [...] Read more.
Catalysis has been a key way of improving the efficiency-to-cost ratio of chemical and electrochemical processes. There have been recent developments in catalyst materials that enable the development of novel and more sophisticated devices that, for example, can be used in applications, such as membranes, batteries or fuel cells. Since catalytic reactions occur on the surface, most catalyst materials are based on open porous structures, which facilitates the transport of fluids (gas or liquid) and chemical (or electrochemical) specific surface activity, thus determining the overall efficiency of the device. Noble metals are typically used for low temperature catalysis, whereas lower cost materials, such as nickel, are used for catalysis at elevated temperatures. 3D printing has the potential to produce a more sophisticated fit for purpose catalyst material. This article presents the development, fabrication and performance comparison of three thermoplastic composites where PLA (polylactic acid), PVB (polyvinyl butyral) or ABS (acrylonitrile butadiene styrene) were used as the matrix, and nickel particles were used as filler with various volume fractions, from 5 to 25 vol%. The polymer–metal composites were extruded in the form of filaments and then used for 3D FDM (Fused Deposition Modeling) printing. The 3D printed composites were heat treated to remove the polymer and sinter the nickel particles. 3D printed composites were also prepared using nickel foam as a substrate to increase the final porosity and mechanical strength of the material. The result of the study demonstrates the ability of the optimized filament materials to be used in the fabrication of high open porosity (over 60%) structures that could be used in high-temperature catalysis and/or electrocatalysis. Full article
Show Figures

Graphical abstract

21 pages, 9704 KB  
Article
Effects of Heat-Treatment on Tensile Behavior and Dimension Stability of 3D Printed Carbon Fiber Reinforced Composites
by Amal Nassar, Mona Younis, Mohamed Elzareef and Eman Nassar
Polymers 2021, 13(24), 4305; https://doi.org/10.3390/polym13244305 - 9 Dec 2021
Cited by 27 | Viewed by 4101
Abstract
This work investigated the effects of heat treatment on the tensile behavior of 3D-printed high modules carbon fiber-reinforced composites. The manufacturing of samples with different material combinations using polylactic acid (PLA) reinforced with 9% carbon fiber (PLACF), acrylonitrile butadiene styrene (ABS) reinforced with [...] Read more.
This work investigated the effects of heat treatment on the tensile behavior of 3D-printed high modules carbon fiber-reinforced composites. The manufacturing of samples with different material combinations using polylactic acid (PLA) reinforced with 9% carbon fiber (PLACF), acrylonitrile butadiene styrene (ABS) reinforced with 9% carbon fiber (ABSCF) were made. This paper addresses the tensile behavior of different structured arrangements at different% of densities between two kinds of filaments. The comparison of the tensile behavior between heat treated and untreated samples. The results showed that heat treatment improves the tensile properties of samples by enhancing the bonding of filament layers and by reducing the porosity content. At all structure specifications, the rectilinear pattern gives higher strength of up to 33% compared with the Archimedean chords pattern. Moreover, there is a limited improvement in the tensile strength and modulus of elasticity values for the samples treated at low heat-treatment temperature. The suggested methodology to evaluate the tensile behavior of the pairs of materials selected is innovative and could be used to examine sandwich designs as an alternative to producing multi-material components using inexpensive materials. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Design, Preparation and Applications)
Show Figures

Figure 1

15 pages, 7018 KB  
Article
On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers
by Nectarios Vidakis, Markos Petousis, Emmanouil Velidakis, Marco Liebscher, Viktor Mechtcherine and Lazaros Tzounis
Polymers 2020, 12(12), 2924; https://doi.org/10.3390/polym12122924 - 6 Dec 2020
Cited by 130 | Viewed by 7875
Abstract
In this study, the strain rate sensitivity of five different thermoplastic polymers processed via Fused Filament Fabrication (FFF) Additive Manufacturing (AM) is reported. Namely, Polylactic Acid (PLA), Acrylonitrile-Butadiene-Styrene (ABS), Polyethylene Terephthalate Glycol (PETG), Polyamide 6 (PA6), and Polypropylene (PP) were thoroughly investigated under [...] Read more.
In this study, the strain rate sensitivity of five different thermoplastic polymers processed via Fused Filament Fabrication (FFF) Additive Manufacturing (AM) is reported. Namely, Polylactic Acid (PLA), Acrylonitrile-Butadiene-Styrene (ABS), Polyethylene Terephthalate Glycol (PETG), Polyamide 6 (PA6), and Polypropylene (PP) were thoroughly investigated under static tensile loading conditions at different strain rates. Strain rates have been selected representing the most common applications of polymeric materials manufactured by Three-Dimensional (3D) Printing. Each polymer was exposed to five different strain rates in order to elucidate the dependency and sensitivity of the tensile properties, i.e., stiffness, strength, and toughness on the applied strain rate. Scanning Electron Microscopy (SEM) was employed to investigate the 3D printed samples’ fractured surfaces, as a means to derive important information regarding the fracture process, the type of fracture (brittle or ductile), as well as correlate the fractured surface characteristics with the mechanical response under certain strain rate conditions. An Expectation–Maximization (EM) analysis was carried out. Finally, a comparison is presented calculating the strain rate sensitivity index “m” and toughness of all materials at the different applied strain rates. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

12 pages, 3618 KB  
Article
The Effect of Printing Parameters on Electrical Conductivity and Mechanical Properties of PLA and ABS Based Carbon Composites in Additive Manufacturing of Upper Limb Prosthetics
by Attila Pentek, Miklos Nyitrai, Adam Schiffer, Hajnalka Abraham, Matyas Bene, Emese Molnar, Roland Told and Peter Maroti
Crystals 2020, 10(5), 398; https://doi.org/10.3390/cryst10050398 - 15 May 2020
Cited by 32 | Viewed by 5625
Abstract
Additive manufacturing technologies are dynamically developing, strongly affecting almost all fields of industry and medicine. The appearance of electrically conductive polymers has had a great impact on the prototyping process of different electrical components in the case of upper limb prosthetic development. The [...] Read more.
Additive manufacturing technologies are dynamically developing, strongly affecting almost all fields of industry and medicine. The appearance of electrically conductive polymers has had a great impact on the prototyping process of different electrical components in the case of upper limb prosthetic development. The widely used FFF 3D printing technology mainly uses PLA (polylactic acid) and ABS (acrylonitrile butadiene styrene) based composites, and despite their presence in the field, a detailed, critical characterization and comparison of them has not been performed yet. Our aim was to characterize two PLA and ABS based carbon composites in terms of electrical and mechanical behavior, and extend the observations with a structural and signal transfer analysis. The measurements were carried out by changing the different printing parameters, including layer resolution, printing orientation and infill density. To determine the mechanical properties, static and dynamic tests were conducted. The electrical characterization was done by measuring the resistance and signal transfer characteristics. Scanning electron microscopy was used for the structural analysis. The results proved that the printing parameters had a significant effect on the mechanical and electrical characteristics of both materials. As a major novelty, it was concluded that the ABS carbon composite has more favorable behavior in the case of additive manufacturing of electrical components of upper limb prosthetics, and they can be used as moving, rotating parts as well. Full article
Show Figures

Figure 1

20 pages, 9346 KB  
Article
Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics
by Javaid Butt and Raghunath Bhaskar
J. Manuf. Mater. Process. 2020, 4(2), 38; https://doi.org/10.3390/jmmp4020038 - 28 Apr 2020
Cited by 134 | Viewed by 10304
Abstract
Fused filament fabrication (FFF) is a cost-effective additive manufacturing method that makes use of thermoplastics to produce customised products. However, there are several limitations associated with FFF that are adversely affecting its growth including variety of materials, rough surface finish and poor mechanical [...] Read more.
Fused filament fabrication (FFF) is a cost-effective additive manufacturing method that makes use of thermoplastics to produce customised products. However, there are several limitations associated with FFF that are adversely affecting its growth including variety of materials, rough surface finish and poor mechanical properties. This has resulted in the development of metal-infused thermoplastics that can provide better properties. Furthermore, FFF-printed parts can be subjected to post-processes to improve their surface finish and mechanical properties. This work takes into consideration two commonly used polymeric materials, i.e., ABS (acrylonitrile butadiene styrene) and PLA (polylactic acid) and compares the results with two metal-infused thermoplastics i.e., copper-enhanced PLA and aluminium-enhanced ASA (acrylonitrile styrene acrylate). The four different materials were subjected to a post-process called annealing to enhance their mechanical properties. The effect of annealing on these four materials was investigated through dimensional analysis, ultrasonic testing, tensile testing, microstructural analysis and hardness testing. The results showed that annealing affects the materials differently. However, a correlation among ultrasonic testing, tensile testing and microstructural analysis was observed for all the materials based on their crystallinity. It was found that the semi-crystalline materials (i.e., PLA and copper enhanced PLA) showed a considerable increase in tensile strength post-annealing. However, the amorphous materials (ABS and aluminium-enhanced ASA) showed a comparatively lower increase in tensile strength, demonstrating that they were less receptive to annealing. These results were supported by higher transmission times and a high percentage of voids in the amorphous materials. The highest hardness values were observed for the ASA material and the lowest for the ABS material. This work provides a good comparison for the metal-infused thermoplastics and their applicability with the commonly used PLA and ABS materials. Full article
Show Figures

Graphical abstract

13 pages, 2048 KB  
Article
Effect of Matrix and Graphite Filler on Thermal Conductivity of Industrially Feasible Injection Molded Thermoplastic Composites
by Tom Wieme, Lingyan Duan, Nicolas Mys, Ludwig Cardon and Dagmar R. D’hooge
Polymers 2019, 11(1), 87; https://doi.org/10.3390/polym11010087 - 8 Jan 2019
Cited by 40 | Viewed by 5409
Abstract
To understand how the thermal conductivity (TC) of virgin commercial polymers and their composites with low graphite filler amounts can be improved, the effect of material choice, annealing and moisture content is investigated, all with feasible industrial applicability in mind focusing on injection [...] Read more.
To understand how the thermal conductivity (TC) of virgin commercial polymers and their composites with low graphite filler amounts can be improved, the effect of material choice, annealing and moisture content is investigated, all with feasible industrial applicability in mind focusing on injection molding. Comparison of commercial HDPE, PP, PLA, ABS, PS, and PA6 based composites under conditions minimizing the effect of the skin-core layer (measurement at half the sample thickness) allows to deduce that at 20 m% of filler, both the (overall) in- and through-plane TC can be significantly improved. The most promising results are for HDPE and PA6 (through/in-plane TC near 0.7/4.3 W·m−1K−1 for HDPE and 0.47/4.3 W·m−1K−1 for PA6 or an increase of 50/825% and 45/1200% respectively, compared to the virgin polymer). Testing with annealed and nucleated PA6 and PLA samples shows that further increasing the crystallinity has a limited effect. A variation of the average molar mass and moisture content is also almost without impact. Intriguingly, the variation of the measuring depth allows to control the relative importance of the TC of the core and skin layer. An increased measurement depth, hence, a higher core-to-skin ratio measurement specifically indicates a clear increase in the through-plane TC (e.g., factor 2). Therefore, for basic shapes, the removal of the skin layer is recommendable to increase the TC. Full article
(This article belongs to the Special Issue Polymers for Modern and Advanced Engineering Applications)
Show Figures

Graphical abstract

9 pages, 3640 KB  
Article
MRI Compatible Planar Material Acoustic Lenses
by Daniel Tarrazó-Serrano, Sergio Castiñeira-Ibáñez, Eugenio Sánchez-Aparisi, Antonio Uris and Constanza Rubio
Appl. Sci. 2018, 8(12), 2634; https://doi.org/10.3390/app8122634 - 15 Dec 2018
Cited by 24 | Viewed by 5402
Abstract
Zone plate lenses are used in many areas of physics where planar geometry is advantageous in comparison with conventional curved lenses. There are several types of zone plate lenses, such as the well-known Fresnel zone plates (FZPs) or the more recent fractal and [...] Read more.
Zone plate lenses are used in many areas of physics where planar geometry is advantageous in comparison with conventional curved lenses. There are several types of zone plate lenses, such as the well-known Fresnel zone plates (FZPs) or the more recent fractal and Fibonacci zone plates. The selection of the lens material plays a very important role in beam modulation control. This work presents a comparison between FZPs made from different materials in the ultrasonic range in order to use them as magnetic resonance imaging (MRI) compatible materials. Three different MRI compatible polymers are considered: Acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA) and polylactic acid (PLA). Numerical simulations based on finite elements method (FEM) and experimental results are shown. The focusing capabilities of brass lenses and polymer zone plate lenses are compared. Full article
(This article belongs to the Special Issue Modelling, Simulation and Data Analysis in Acoustical Problems)
Show Figures

Figure 1

13 pages, 4951 KB  
Article
Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS
by Wenzheng Wu, Peng Geng, Guiwei Li, Di Zhao, Haibo Zhang and Ji Zhao
Materials 2015, 8(9), 5834-5846; https://doi.org/10.3390/ma8095271 - 1 Sep 2015
Cited by 780 | Viewed by 31908
Abstract
Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone [...] Read more.
Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop