Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = PLX4032

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1387 KiB  
Article
Design and Synthesis of Pyridine-Based Pyrrolo[2,3-d]pyrimidine Analogs as CSF1R Inhibitors: Molecular Hybridization and Scaffold Hopping Approach
by Srinivasulu Cherukupalli, Carsten Degenhart, Peter Habenberger, Anke Unger, Jan Eickhoff, Bård Helge Hoff and Eirik Sundby
Pharmaceuticals 2025, 18(6), 814; https://doi.org/10.3390/ph18060814 - 28 May 2025
Abstract
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of [...] Read more.
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of Pexidartinib with our pyrrolo[2,3-d]pyrimidine nucleus, and the idea was supported by initial molecular docking studies. Thus, several new compounds were synthesized with Pexidartinib fragments on C4, C5, and C6 on the pyrrolopyrimidine scaffold using molecular hybridization. Methods: Nine final products were synthesized using a combination of Buchwald-Hartwig and Suzuki-Miyaura cross-coupling reactions in three to four steps and in good yields. The analogues were subsequently profiled as CSF1R inhibitors in enzymatic and cellular assays, and ADME properties were evaluated for some derivatives. Results: N-Methyl-N-(3-methylbenzyl)-6-(6-((pyridin-3-ylmethyl)amino)pyridin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (12b) emerged as the most potent CSF1R inhibitor, showing low-nanomolar enzymatic activity, cellular efficacy, and favorable ADME properties, highlighting its promise as a lead compound for further development. Conclusions: These findings suggest that combining structural elements from previously reported CSF1R inhibitors such as Pexidartinib could guide the development of improved drug candidates targeting this kinase. Full article
(This article belongs to the Special Issue Design and Synthesis of Small Molecule Kinase Inhibitors)
22 pages, 4738 KiB  
Article
Tri-Phenyl-Phosphonium-Based Nano Vesicles: A New In Vitro Nanomolar-Active Weapon to Eradicate PLX-Resistant Melanoma Cells
by Silvana Alfei, Carola Torazza, Francesca Bacchetti, Maria Grazia Signorello, Mario Passalacqua, Cinzia Domenicotti and Barbara Marengo
Int. J. Mol. Sci. 2025, 26(7), 3227; https://doi.org/10.3390/ijms26073227 - 30 Mar 2025
Viewed by 419
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer, with characteristics including a poor prognosis, chemotherapy-induced secondary tumorigenesis, and the emergence of drug resistance. Our recent study demonstrated that triphenyl phosphonium (TPP)-based nanovesicles (BPPB), which have amphiphilic properties, exert potent [...] Read more.
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer, with characteristics including a poor prognosis, chemotherapy-induced secondary tumorigenesis, and the emergence of drug resistance. Our recent study demonstrated that triphenyl phosphonium (TPP)-based nanovesicles (BPPB), which have amphiphilic properties, exert potent ROS-dependent anticancer effect against PLX4032 (PLX)-sensitive MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines, evidencing more marked efficacy on MeOV cells. Here, taking advantage of this in vitro model, the antitumoral effect of BPPB was tested on PLX-resistant (PLX-R) MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines to find a new potential strategy to fight melanoma therapy resistance. Specifically, we investigated both its effects on cell viability in dose- and time-dependent experiments and those on ROS generation. Our results show that BPPB exerted strong antiproliferative effects, regardless of their acquired resistance of cells to PLX, that correlated with ROS overproduction for 24 h treatments only. Moreover, in terms of cell viability, PLX-R MeTRAV cells demonstrated a remarkably higher tolerance to 24 h BPPB treatment than PLX-R MeOV. On the contrary, BPPB exposure for longer periods induced similar responses in both cell lines (IC50 = 87.8–106.5 nM on MeOV and 81.0–140.6 nM on MeTRAV). Notably, BPPB cytotoxicity on non-tumorigenic human keratinocytes (HaCaT) was low, thus establishing that BPPB is appreciably selective for CMM cells, allowing for selectivity index values (SIs) up to 11.58. Furthermore, the BPPB concentration causing 50% hemolysis (HC50) was found to be 16–173 and 4–192-fold higher than the IC50 calculated for PLX-R MeOV and MeTRAV cells, respectively. Correlation studies established that BPPB exerts cytotoxic effects on PLX-R MeOV and MeTRAV cells by a time-dependent mechanism, while a concentration-dependent mechanism was observed only at 24 h of exposure. Finally, a ROS-dependent mechanism can be assumed only in PLX-R MeTRAV cells in 72 h treatment. Full article
(This article belongs to the Special Issue New Anti-cancer Agents: Design, Synthesis and Applications)
Show Figures

Graphical abstract

23 pages, 10436 KiB  
Article
Genomic Analysis of 96 Paenibacillus larvae Bacteriophages Including 26 from Aotearoa, New Zealand
by Danielle N. Kok, Sophia P. Gosselin, Brenham Howard, Steven G. Cresawn, Philippos K. Tsourkas and Heather L. Hendrickson
Viruses 2025, 17(2), 137; https://doi.org/10.3390/v17020137 - 21 Jan 2025
Viewed by 1001
Abstract
The bacterium Paenibacillus larvae is responsible for the devastating honey bee (Apis mellifera) disease American Foulbrood. Research into bacteriophages that infect P. larvae is growing rapidly due to increasing antibiotic resistance and restrictions on antibiotic use in beehives in some countries. [...] Read more.
The bacterium Paenibacillus larvae is responsible for the devastating honey bee (Apis mellifera) disease American Foulbrood. Research into bacteriophages that infect P. larvae is growing rapidly due to increasing antibiotic resistance and restrictions on antibiotic use in beehives in some countries. In this study, we present the sequenced and annotated genomes of 26 novel P. larvae phages recently isolated in New Zealand, which brings the total number of sequenced and annotated P. larvae phages to 96. The 26 novel phages belong to the pre-existing Vegas or Harrison clusters. We performed a comprehensive genomic analysis of all 96 phage genomes, grouping them into five divergent clusters and two singletons. The majority of these phages are temperate, with the possible exception of three phages that may be lytic. All 96 of these phages encode an N-acteylmuramoyl-L-alanine amidase that serves as their lysin. The amidases are from two divergent clusters, both of which show a high degree of intra-cluster similarity. Six phages and a prophage contain the Plx1 P. larvae toxin gene, which we suggest may be mobilizable. This study expands our knowledge of P. larvae phages from around the world. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

22 pages, 10728 KiB  
Article
Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy
by Hilla Pe’er-Nissan, Pnina Shirel Itzhak, Iris Gispan, Racheli Ofir and Gal Yadid
Int. J. Mol. Sci. 2025, 26(1), 234; https://doi.org/10.3390/ijms26010234 - 30 Dec 2024
Viewed by 3590
Abstract
Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing [...] Read more.
Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving. The results revealed an addiction-stage and region-specific impairment in microglia following chronic cocaine exposure, with deficits observed in the Nucleus Accumbens (NAc) during the maintenance stage and in both the NAc and Dentate Gyrus (DG) during the extinction and reinstatement stages. Furthermore, PLX-PAD cell therapy demonstrated a significant reduction in cocaine craving and seeking behavior, interestingly accompanied by the prevention of Iba-1 level decrease and restoration of microglial activity in the NAc and DG. These findings highlight the unique role of microglia in modulating cocaine addiction behaviors through their influence on synaptic plasticity and neuronal remodeling associated with memory formation. They also suggest that PLX-PAD therapy may mitigate the detrimental effects of chronic cocaine exposure on microglia, underscoring the importance of incorporating microglia in comprehensive addiction rehabilitation strategies. Full article
(This article belongs to the Special Issue Advances in Classic and Psychedelic Pharma for Psychiatric Diseases)
Show Figures

Figure 1

11 pages, 2014 KiB  
Article
Applying Different Conditions in the OphthalMimic Device Using Polymeric and Hydrogel-Based Hybrid Membranes to Evaluate Gels and Nanostructured Ophthalmic Formulations
by Jonad L. A. Contarato, Geisa N. Barbalho, Marcilio Cunha-Filho, Guilherme M. Gelfuso and Tais Gratieri
Gels 2024, 10(8), 538; https://doi.org/10.3390/gels10080538 - 20 Aug 2024
Viewed by 3823
Abstract
The OphthalMimic is a 3D-printed device that simulates human ocular conditions with artificial lacrimal flow, cul-de-sac area, moving eyelid, and a surface to interact with ophthalmic formulations. All tests with such a device have used a continuous artificial tear flow rate of 1 [...] Read more.
The OphthalMimic is a 3D-printed device that simulates human ocular conditions with artificial lacrimal flow, cul-de-sac area, moving eyelid, and a surface to interact with ophthalmic formulations. All tests with such a device have used a continuous artificial tear flow rate of 1 mL/min for 5 min. Here, we implemented protocol variations regarding the application time and simulated tear flow to increase the test’s discrimination and achieve reliable performance results. The new protocols incorporated the previously evaluated 0.2% fluconazole formulations containing or not chitosan as a mucoadhesive component (PLX16CS10 and PLX16, respectively) and novel moxifloxacin 5% formulations, either in a conventional formulation and a microemulsion (CONTROL and NEMOX, respectively). The flow rate was reduced by 50%, and a pre-flow application period was also included to allow formulation interaction with the membrane. The OphthalMimic model was used with both polymeric and hydrogel-based hybrid membranes, including a simulated eyelid. Lowering the flow made it feasible to prolong the testing duration, enhancing device discrimination potential. The hydrogel membrane was adequate for testing nanostructure formulations. The OphthalMimic device demonstrated once again to be a versatile method for evaluating the performance of ophthalmic drug formulations with the potential of reducing the use of animals for experimentation. Full article
(This article belongs to the Special Issue Designing Hydrogels for Sustained Delivery of Therapeutic Agents)
Show Figures

Graphical abstract

17 pages, 2896 KiB  
Article
Pexidartinib and Immune Checkpoint Inhibitors Combine to Activate Tumor Immunity in a Murine Colorectal Cancer Model by Depleting M2 Macrophages Differentiated by Cancer-Associated Fibroblasts
by Daisuke Shimizu, Ryo Yuge, Yuki Kitadai, Misa Ariyoshi, Ryo Miyamoto, Yuichi Hiyama, Hidehiko Takigawa, Yuji Urabe and Shiro Oka
Int. J. Mol. Sci. 2024, 25(13), 7001; https://doi.org/10.3390/ijms25137001 - 26 Jun 2024
Cited by 6 | Viewed by 2248
Abstract
Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are known to play supportive roles in tumor development and progression, but their interactions in colorectal cancer (CRC) remain unclear. Here, we investigated the effects of colon-cancer-derived CAFs on TAM differentiation, migration, and tumor immunity, both [...] Read more.
Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are known to play supportive roles in tumor development and progression, but their interactions in colorectal cancer (CRC) remain unclear. Here, we investigated the effects of colon-cancer-derived CAFs on TAM differentiation, migration, and tumor immunity, both in vitro and in vivo. When co-cultured with monocytes, CAFs attracted monocytes and induced their differentiation into M2 macrophages. Immunohistology of surgically resected human CRC specimens and orthotopically transplanted mouse tumors revealed a correlation between numbers of CAFs and numbers of M2 macrophages. In a mouse model of CRC orthotopic transplantation, treatment with an inhibitor of the colony-stimulating factor-1 receptor (PLX3397) depleted M2 macrophages and increased CD8-positive T cells infiltrating the tumor nest. While this treatment had a minor effect on tumor growth, combining PLX3397 with anti-PD-1 antibody significantly reduced tumor growth. RNA-seq following combination therapy showed activation of tumor immunity. In summary, CAFs are involved in the induction and mobilization of M2 macrophage differentiation in the CRC tumor immune microenvironment, and the combination of cancer immunotherapy and PLX3397 may represent a novel therapeutic option for CRC. Full article
Show Figures

Figure 1

12 pages, 2418 KiB  
Article
One-Step Affinity Purification of Leucine-Rich α2-Glycoproteins from Snake Sera and Characterization of Their Phospholipase A2-Inhibitory Activities as β-Type Phospholipase A2 Inhibitors
by Ryoichi Shirai, Kana Shibata, Shinobu Fujii, Rikiro Fukunaga and Seiji Inoue
Toxins 2024, 16(3), 126; https://doi.org/10.3390/toxins16030126 - 1 Mar 2024
Viewed by 1897
Abstract
Snakes contain three types of phospholipase A2 (PLA2)-inhibitory proteins in their blood, PLIα, β, and γ, which protect them from their own venom, PLA2. PLIβ is the snake ortholog of leucine-rich α2 glycoprotein (LRG). Since autologous cytochrome [...] Read more.
Snakes contain three types of phospholipase A2 (PLA2)-inhibitory proteins in their blood, PLIα, β, and γ, which protect them from their own venom, PLA2. PLIβ is the snake ortholog of leucine-rich α2 glycoprotein (LRG). Since autologous cytochrome c (Cyt c) serves as an endogenous ligand for LRG, in this study, we purified snake LRGs from various snake serum samples using Cyt c affinity chromatography. All purified snake LRGs were found to be dimers linked by disulfide bonds. Laticauda semifasciata and Naja kaouthia LRGs showed no inhibitory activity against L. semifasciata PLA2 and weak inhibitory activity against Gloydius brevicauda basic PLA2. Elaphe climacophora PLIβ had weaker inhibitory activity against G. brevicauda basic PLA2 than G. brevicauda and Elaphe quadrivirgata PLIs, which are abundant in blood and known to neutralize G. brevicauda basic PLA2. Protobothrops flavoviridis LRG showed no inhibitory activity against basic venom PLA2, PL-X, or G. brevicauda basic PLA2. Binding analysis of P. flavoviridis LRG using surface plasmon resonance showed very strong binding to snake Cyt c, followed by that to horse Cyt c, weak binding to yeast Cyt c, and no binding to P. flavoviridis PL-X or BPI/II. We also deduced the amino acid sequences of L. semifasciata and P. flavoviridis LRG by means of cDNA sequencing and compared them with those of other known sequences of PLIs and LRGs. This study concluded that snake LRG can potentially inhibit basic PLA2, but, whether it actually functions as a PLA2-inhibitory protein, PLIβ, depends on the snake. Full article
(This article belongs to the Special Issue Snake Venom: Toxicology and Associated Countermeasures)
Show Figures

Figure 1

20 pages, 4179 KiB  
Article
CXCR2-Blocking Has Context-Sensitive Effects on Rat Glioblastoma Cell Line Outgrowth (S635) in an Organotypic Rat Brain Slice Culture Depending on Microglia-Depletion (PLX5622) and Dexamethasone Treatment
by Johannes Falter, Annette Lohmeier, Petra Eberl, Eva-Maria Stoerr, Janne Koskimäki, Lena Falter, Jakob Rossmann, Tobias Mederer, Nils Ole Schmidt and Martin Proescholdt
Int. J. Mol. Sci. 2023, 24(23), 16803; https://doi.org/10.3390/ijms242316803 - 27 Nov 2023
Cited by 2 | Viewed by 1616
Abstract
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat [...] Read more.
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors—dexamethasone, PLX5622, and CXCL2—in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment. Full article
Show Figures

Figure 1

30 pages, 7496 KiB  
Article
Antiproliferative Imidazo-Pyrazole-Based Hydrogel: A Promising Approach for the Development of New Treatments for PLX-Resistant Melanoma
by Silvana Alfei, Marco Milanese, Chiara Brullo, Giulia Elda Valenti, Cinzia Domenicotti, Eleonora Russo and Barbara Marengo
Pharmaceutics 2023, 15(10), 2425; https://doi.org/10.3390/pharmaceutics15102425 - 4 Oct 2023
Cited by 4 | Viewed by 1774
Abstract
Aiming at developing a dermal formulation against melanoma, the synthesized imidazo-pyrazoles 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (3-methoxy-4-phenoxy-benzylidene)-hydrazide (4G) and 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (4-benzyloxy-3-methoxy-benzylidene)-hydrazide (4I) were screened on patient-isolated melanoma cells (MEOV NT) and on Vemurafenib (PLX4032)-resistant (MEOV PLX-R) ones. Since 4I on MEOV [...] Read more.
Aiming at developing a dermal formulation against melanoma, the synthesized imidazo-pyrazoles 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (3-methoxy-4-phenoxy-benzylidene)-hydrazide (4G) and 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (4-benzyloxy-3-methoxy-benzylidene)-hydrazide (4I) were screened on patient-isolated melanoma cells (MEOV NT) and on Vemurafenib (PLX4032)-resistant (MEOV PLX-R) ones. Since 4I on MEOV PLX-R cells was 1.4-fold more effective than PLX, a hydrogel formulation containing 4I (R4HG-4I) was prepared in parallel with an empty R4-based hydrogel (R4HG) using a synthesized antibacterial resin (R4) as gelling agent. Thanks to its high hydrophilicity, porosity (85%), and excellent swelling capability (552%), R4 allowed to achieve R4HG and R4HG-4I with high equilibrium degree of swelling (EDS) and equilibrium water content (EWC). Chemometric-assisted ATR-FTIR analyses confirmed the chemical structure of swollen and fully dried (R4HG-D and R4HG-4I-D) hydrogels. The morphology of R4HG-D and R4HG-4I-D was examined by optical microscopy and SEM, while UV–vis analyses were carried out to obtain the drug loading (DL%) and the encapsulation efficiency (EE%) of R4HG-4I. Potentiometric titrations were performed to determine the equivalents of NH3+ in both R4HG and R4HG-4I. The swelling and water release profiles of both materials and related kinetics were assessed by equilibrium swelling rate and water loss studies, respectively, while their biodegradability over time was assessed by in vitro degradation experiments determining their mass loss. Rheological experiments established that both R4HG and R4HG-4I are shear-thinning Bingham pseudoplastic fluids with low yield stress, thus assuring easy spreadability in a future topical application. Release studies evidenced a sustained and quantitative release of 4I governed mainly by diffusion. Upon favorable results from further experiments in a more realistic 3D model of melanoma, R4HG-4I could represent a starting point to develop new topical therapeutic options to adjuvate the treatments of melanoma cells also when resistant to currently available drugs. Full article
Show Figures

Graphical abstract

12 pages, 1192 KiB  
Article
Intervention Based on Psychomotor Rehabilitation in Children with Autism Spectrum Disorder ASD: Effect on Postural Control and Sensory Integration
by Imen Ben Hassen, Rihab Abid, Fatma Ben Waer, Liwa Masmoudi, Sonia Sahli, Tarak Driss and Omar Hammouda
Children 2023, 10(9), 1480; https://doi.org/10.3390/children10091480 - 30 Aug 2023
Cited by 5 | Viewed by 6086
Abstract
Postural stability and control are essential motor skills for successfully performing various activities of daily living. However, children with autism spectrum disorder (ASD) exhibit significant sensorimotor impairments. The aim of this study was to investigate the efficacy of psychomotricity training on postural control [...] Read more.
Postural stability and control are essential motor skills for successfully performing various activities of daily living. However, children with autism spectrum disorder (ASD) exhibit significant sensorimotor impairments. The aim of this study was to investigate the efficacy of psychomotricity training on postural control (PC) of children with ASD. We recruited thirty children (age = 8.01 ± 1.2; weight = 31.66 ± 8.1 kg; height = 129.7 ± 10.8 cm) diagnosed with ASD (intellectual quotient > 50) to participate in this study. They were divided into two groups: the experimental group (n = 16) and control group (n = 14). Children in the experimental group were trained with psychomotor activities two times a week for nine weeks. Statistic postural balance was assessed before and after intervention and on different vision conditions. The results showed that the psychomotor training significantly improved PC in standing position under different conditions when compared to the control group, in all parameters (CoPA; CoPLX; CoPLy) (p < 0.01). Our preliminary findings suggest the usefulness of the psychomotor training in children with ASD on static PC. Full article
(This article belongs to the Special Issue Advances in Autism Research: Diagnosis, Treatment and Best Practices)
Show Figures

Figure 1

17 pages, 3667 KiB  
Article
The Role of Extracellular Vesicles (EVs) in Chronic Graft vs. Host Disease, and the Potential Function of Placental Cell-Derived EVs as a Therapeutic Tool
by Mor Zavaro, Ayelet Dangot, Tali Hana Bar-Lev, Odelia Amit, Irit Avivi, Ron Ram and Anat Aharon
Int. J. Mol. Sci. 2023, 24(9), 8126; https://doi.org/10.3390/ijms24098126 - 1 May 2023
Cited by 1 | Viewed by 2341
Abstract
Chronic graft-versus-host disease (cGVHD) presents with dermal inflammation and fibrosis. We investigated the characteristics of extracellular vesicles (EVs) obtained from cGVHD patients, and their potential effects on human dermal fibroblast (NHDF) cells. The anti-inflammatory and anti-fibrotic effects of placental EVs were also explored [...] Read more.
Chronic graft-versus-host disease (cGVHD) presents with dermal inflammation and fibrosis. We investigated the characteristics of extracellular vesicles (EVs) obtained from cGVHD patients, and their potential effects on human dermal fibroblast (NHDF) cells. The anti-inflammatory and anti-fibrotic effects of placental EVs were also explored given their known anti-inflammatory properties. Fourteen cGVHD patients’ EVs contained higher levels of fibrosis-related proteins, TGFβ and α-smooth muscle actin (αSMA), compared to EVs from thirteen healthy subjects. The exposure of NHDF cells to the patients’ EVs increased the NHDF cells’ TGFβ and αSMA expressions. Placental EVs derived from placental-expanded cells (PLX) (Pluri Inc.) and human villous trophoblast (HVT) cells expressing the mesenchymal markers CD29, CD73, and CD105, penetrated into both the epidermal keratinocytes (HACATs) and NHDF cells. Stimulation of the HACAT cells with cytokine TNFα/INFγ (0.01–0.1 ng/µL) reduced cell proliferation, while the addition of placental EVs attenuated this effect, increasing and normalizing cell proliferation. The treatment of NHDF cells with a combination of TGFβ and placental HVT EVs reduced the stimulatory effects of TGFβ on αSMA production by over 40% (p = 0.0286). In summary, EVs from patients with cGVHD can serve as a biomarker for the cGVHD state. Placental EVs may be used to regulate dermal inflammation and fibrosis, warranting further investigation of their therapeutic potential. Full article
Show Figures

Figure 1

14 pages, 4081 KiB  
Article
Inhibition of BET Proteins Regulates Fcγ Receptor Function and Reduces Inflammation in Rheumatoid Arthritis
by Divya Shankar, Giovanna Merchand-Reyes, Nathaniel J. Buteyn, Ramasamy Santhanam, Huiqing Fang, Krishan Kumar, Xiaokui Mo, Latha P. Ganesan, Wael Jarjour, Jonathan P. Butchar and Susheela Tridandapani
Int. J. Mol. Sci. 2023, 24(8), 7623; https://doi.org/10.3390/ijms24087623 - 21 Apr 2023
Cited by 5 | Viewed by 2598
Abstract
Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). [...] Read more.
Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA. Full article
(This article belongs to the Special Issue Fc Receptors 2.0)
Show Figures

Figure 1

12 pages, 2381 KiB  
Article
In Vitro Performance Analysis of a Minoxidil Thermosensitive Gel with Reduced Runoff for Eyebrow Hair Growth
by Luciano C. G. Xavier, Breno N. Matos, Geisa N. Barbalho, Manuel A. Falcão, Marcilio Cunha-Filho, Guilherme M. Gelfuso and Tais Gratieri
Gels 2023, 9(4), 269; https://doi.org/10.3390/gels9040269 - 24 Mar 2023
Cited by 2 | Viewed by 2809
Abstract
There is a growing interest in innovative products for eyebrow hair loss treatment with fewer adverse effects. Nevertheless, a fundamental formulation aspect of preventing the fragile skin from the ocular region from being irritated is that the formulations remain restricted to the application [...] Read more.
There is a growing interest in innovative products for eyebrow hair loss treatment with fewer adverse effects. Nevertheless, a fundamental formulation aspect of preventing the fragile skin from the ocular region from being irritated is that the formulations remain restricted to the application region and do not run off. Consequently, the methods and protocols in drug delivery scientific research must be adapted to fulfill such performance analysis demand. Thus, this work aimed to propose a novel protocol to evaluate the in vitro performance of a topical gel formulation with a reduced runoff for minoxidil (MXS) delivery to eyebrows. MXS was formulated with 16% poloxamer 407 (PLX) and 0.4% of hydroxypropyl methylcellulose (HPMC). The sol/gel transition temperature, viscosity at 25 °C, and formulation runoff distance on the skin were evaluated to characterize the formulation. The release profile and skin permeation were evaluated in Franz vertical diffusion cells for 12 h and compared to a control formulation (4% PLX and 0.7% HPMC). Then, the formulation’s performance at promoting minoxidil skin penetration with minimum runoff was evaluated in a vertical custom-made permeation template (divided into three areas: superior, middle, and inferior). The MXS release profile from the test formulation was comparable to that from the MXS solution and the control formulation. There was also no difference in the MXS amount that penetrated the skin in the permeation experiments in Franz diffusion cells using the different formulations (p > 0.05). However, the test formulation demonstrated a localized MXS delivery at the application site in the vertical permeation experiment. In conclusion, the proposed protocol could differentiate the test formulation from the control, attesting to its better performance in efficiently delivering MXS to the site of interest (middle third of application). The vertical protocol can be easily employed to evaluate other gels with a drip-free appeal. Full article
Show Figures

Figure 1

11 pages, 2555 KiB  
Article
The Chemokine Receptor CCR1 Mediates Microglia Stimulated Glioma Invasion
by Nazende Zeren, Zobia Afzal, Sara Morgan, Gregory Marshall, Maithrayee Uppiliappan, James Merritt and Salvatore J. Coniglio
Int. J. Mol. Sci. 2023, 24(6), 5136; https://doi.org/10.3390/ijms24065136 - 7 Mar 2023
Cited by 11 | Viewed by 3851
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of adult brain tumor which is highly resistant to conventional treatment and therapy. Glioma cells are highly motile resulting in infiltrative tumors with poorly defined borders. Another hallmark of GBM is a high degree of [...] Read more.
Glioblastoma multiforme (GBM) is the most aggressive form of adult brain tumor which is highly resistant to conventional treatment and therapy. Glioma cells are highly motile resulting in infiltrative tumors with poorly defined borders. Another hallmark of GBM is a high degree of tumor macrophage/microglia infiltration. The level of these tumor-associated macrophages/microglia (TAMs) correlates with higher malignancy and poorer prognosis. We previously demonstrated that inhibition of TAM infiltration into glioma tumors with the CSF-1R antagonist pexidartinib (PLX3397) can inhibit glioma cell invasion in-vitro and in-vivo. In this study, we demonstrate an important role for the chemokine receptor CCR1 in mediating microglia/TAM stimulated glioma invasion. Using two structurally distinct CCR1 antagonists, including a novel inhibitor “MG-1-5”, we were able to block microglial activated GL261 glioma cell invasion in a dose dependent manner. Interestingly, treatment of a murine microglia cell line with glioma conditioned media resulted in a strong induction of CCR1 gene and protein expression. This induction was attenuated by inhibition of CSF-1R. In addition, glioma conditioned media treatment of microglia resulted in a rapid upregulation of gene expression of several CCR1 ligands including CCL3, CCL5, CCL6 and CCL9. These data support the existence of tumor stimulated autocrine loop within TAMs which ultimately mediates tumor cell invasion. Full article
(This article belongs to the Special Issue Macrophages in the Glioblastoma Tumor Microenvironment)
Show Figures

Figure 1

16 pages, 2700 KiB  
Article
SB202190 Predicts BRAF-Activating Mutations in Primary Colorectal Cancer Organoids via Erk1-2 Modulation
by Delfina Costa, Roberta Venè, Simona Coco, Luca Longo, Francesca Tosetti, Stefano Scabini, Luca Mastracci, Federica Grillo, Alessandro Poggi and Roberto Benelli
Cells 2023, 12(4), 664; https://doi.org/10.3390/cells12040664 - 20 Feb 2023
Cited by 8 | Viewed by 3245
Abstract
The p38 inhibitor SB202190 is a necessary component of the medium used for normal colorectal mucosa cultures. Sato et al. suggested that the primary activity of SB202190 may be EGFR signaling stabilization, causing an increased phosphorylation of Erk1-2 sustaining organoid proliferation. However, the [...] Read more.
The p38 inhibitor SB202190 is a necessary component of the medium used for normal colorectal mucosa cultures. Sato et al. suggested that the primary activity of SB202190 may be EGFR signaling stabilization, causing an increased phosphorylation of Erk1-2 sustaining organoid proliferation. However, the growth of some colorectal cancer (CRC)-derived organoid cultures is inhibited by this molecule via an unknown mechanism. We biochemically investigated SB202190 activity on a collection of 25 primary human CRC organoids, evaluating EGFR, Akt and Erk1-2 activation using Western blot. We found that Erk1-2 phosphorylation was induced by SB202190 in 20 organoid cultures and inhibited in 5 organoid cultures. A next-generation sequencing (NGS) analysis revealed that the inhibition of p-Erk1-2 signaling corresponded to the cultures with BRAF mutations (with four different hits, one being undescribed), while p-Erk1-2 induction was apparently unrelated to other mutations involving the EGFR pathway (Her2, KRAS and NRAS). We found that SB202190 mirrored the biochemical activity of the BRAF inhibitor Dabrafenib, known to induce the paradoxical activation of p-Erk1-2 signaling in BRAF wild-type cells. SB202190 was a more effective inhibitor of BRAF-mutated organoid growth in the long term than the specific BRAF inhibitors Dabrafenib and PLX8394. Overall, SB202190 can predict BRAF-activating mutations in patient-derived organoids, as well as allowing for the identification of new BRAF variants, preceding and enforcing NGS data. Full article
Show Figures

Graphical abstract

Back to TopTop