Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = Persea americana

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 330 KB  
Article
Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control
by Adilene Velázquez-Medina, Evangelina Esmeralda Quiñones-Aguilar, Ernestina Gutiérrez-Vázquez, Nuria Gómez-Dorantes, Gabriel Rincón-Enríquez and Luis López-Pérez
Microorganisms 2025, 13(9), 1974; https://doi.org/10.3390/microorganisms13091974 - 23 Aug 2025
Viewed by 587
Abstract
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast [...] Read more.
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast to organic agronomic management (OM), where organic fertilizers are used. This alters the diversity and abundance of soil microorganism populations, which in turn affects crop health. This study aimed to isolate and morphologically characterize rhizospheric bacteria from avocado trees under different agronomic management systems (CM and OM). For the bacterial isolates, their ability to promote plant growth in vitro was determined through biochemical tests for phosphorus and calcium solubilization and nitrogen fixation. In addition, their in vivo effect on tomato (S. lycopersicum) growth was evaluated, and their antagonistic capacity against Fusarium sp. was assessed. The results showed differences in the quantity, diversity, and morphologies of bacterial isolates depending on the type of agronomic management. A higher Shannon diversity index was found in OM (2.44) compared to CM (1.75). A total of 35 bacterial isolates were obtained from both management types. A greater number of isolates from OM soils exhibited in vitro PGP activity; notably, eight isolates from OM plots showed phosphate-solubilizing activity, compared to only one from CM plots. Furthermore, although all isolates demonstrated nitrogen fixing capacity, those from OM orchards produced significantly higher nitrate levels than the control (Azospirillum vinelandii). On the other hand, inoculation of tomato plants with bacterial isolates from OM soils increased plant height, root length, and total fresh and dry biomass compared to isolates from CM soils. Likewise, OM isolates exhibited greater antagonistic activity against Fusarium sp. These findings demonstrate the impact of agronomic management on soil bacterial populations and its effect on plant growth and protection against pathogens. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
20 pages, 343 KB  
Review
Valorization of Avocado (Persea americana) Peel and Seed: Functional Potential for Food and Health Applications
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Antioxidants 2025, 14(9), 1032; https://doi.org/10.3390/antiox14091032 - 22 Aug 2025
Viewed by 560
Abstract
The growing emphasis on sustainability and circular economy strategies has driven increasing interest in the valorization of agro-industrial by-products. Among these, the peel and seed of avocado (Persea americana), typically discarded during processing, have emerged as promising sources of bioactive compounds, [...] Read more.
The growing emphasis on sustainability and circular economy strategies has driven increasing interest in the valorization of agro-industrial by-products. Among these, the peel and seed of avocado (Persea americana), typically discarded during processing, have emerged as promising sources of bioactive compounds, particularly phenolic constituents with recognized antioxidant capacity. This review critically examines the current scientific literature on the phytochemical composition, antioxidant activity, and potential health benefits associated with avocado peel and seed. In addition, it explores recent technological advances in extraction methods and highlights the applicability of these by-products in the formulation of functional foods, nutraceuticals, and other health-related products. Challenges related to safety, bioavailability, and regulatory aspects are also discussed. By consolidating available evidence, this work supports the potential of avocado peel and seed as valuable functional ingredients and contributes to sustainable innovation in the food and health industries. Full article
Show Figures

Graphical abstract

18 pages, 1286 KB  
Article
Oral Delivery of Avocado Peel Extract Using Albumin Nanocarriers to Modulate Cholesterol Absorption
by Laura M. Teixeira, Ana S. Viana, Catarina P. Reis and Rita Pacheco
Pharmaceutics 2025, 17(8), 1061; https://doi.org/10.3390/pharmaceutics17081061 - 15 Aug 2025
Viewed by 464
Abstract
Background/Objectives: Hypercholesterolemia, a metabolic disorder and major risk factor for cardiovascular disease, remains a global health concern. Although current pharmacological interventions effectively reduce cholesterol levels, their use is often associated with adverse side effects. These limitations have driven interest in alternative or complementary [...] Read more.
Background/Objectives: Hypercholesterolemia, a metabolic disorder and major risk factor for cardiovascular disease, remains a global health concern. Although current pharmacological interventions effectively reduce cholesterol levels, their use is often associated with adverse side effects. These limitations have driven interest in alternative or complementary approaches based on natural products; however, the poor solubility, stability, and bioavailability of many natural compounds emphasize the need for innovative drug delivery systems to enhance their health-promoting potential. The extract obtained from Persea americana peels, a sustainable and underutilized by-product, has previously been reported to have cholesterol-lowering properties. Methods: The extract was encapsulated in bovine serum albumin nanoparticles. The nanoformulation was characterized for physicochemical properties and for extract stability under acid-simulated gastric digestion. Safety and biocompatibility were evaluated by in vitro cytotoxicity assays using intestinal Caco-2 and liver HepG2 cells, and in vivo toxicity using Artemia salina. The bioavailability of the extract and the nanoformulation’s capacity to reduce cholesterol absorption in a differentiated Caco-2 cell model were additionally assessed. Results: Encapsulation enhanced extract stability and bioavailability, protecting it from degradation in acid simulated gastric digestion. The nanoparticles showed favorable physicochemical properties, including a small size of less than 100 nm, and demonstrated safety and biocompatibility. In the Caco-2 model, the encapsulation of the extract resulted in reduced cholesterol permeation compared to the free extract Conclusions: These findings suggest that the nanoformulation developed may offer a safe and effective strategy for the oral delivery of P. americana peel extract, reinforcing its potential for application in hypercholesterolemia management. Full article
Show Figures

Figure 1

12 pages, 1362 KB  
Article
Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment
by Giulia Modica, Fabio Arcidiacono, Stefano La Malfa, Alessandra Gentile and Alberto Continella
Horticulturae 2025, 11(8), 928; https://doi.org/10.3390/horticulturae11080928 - 6 Aug 2025
Viewed by 440
Abstract
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by [...] Read more.
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by hot and dry summer that affects plant physiology. Methods: The experiment was carried out in Sicily (South Italy) on 12-year-old avocado cv. Hass grafted onto Walter Hole rootstock. Two subplots each of forty homogenous trees were selected and treated (1) with calcium carbonate (DECCO Shield®) and (2) with water (control) at the following phenological phases: 711, 712 and 715 BBCH. The climatic parameters were recorded throughout the year. Physiological measurements (leaf transpiration, net photosynthesis, stomatal conductance, leaf water potential) were measured at 105, 131 and 168 days after full bloom. Fruit growth was monitored, and physico-chemical analyses were carried out at harvest. Results: The antitranspirant increased photosynthesis and stomatal conductance and reduced leaf transpiration (−26.1%). Fruit growth rate increased during summer, although no morphological and qualitative difference was observed at harvest. PCA highlighted the positive effect of the calcium carbonate on overall plant physiology. Conclusions: Antitranspirant foliar application reduced heat stress effects by improving physiological responses of avocado trees. Full article
Show Figures

Graphical abstract

22 pages, 775 KB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Cited by 1 | Viewed by 733
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

22 pages, 2066 KB  
Article
Optimizing In Vitro Establishment Protocols for ‘Merensky 2’ Avocado Rootstock (Persea americana Mill.)
by Fernanda García-Cabrera, Mónica Castro, Ricardo Cautin, Carmen Estay, Leda Guzmán, María José Marchant and Francesca Guerra
Horticulturae 2025, 11(8), 900; https://doi.org/10.3390/horticulturae11080900 - 3 Aug 2025
Viewed by 496
Abstract
In vitro propagation of avocado faces several limitations. To optimize the establishment phase, we evaluated three plant material types: etiolated shoots, 30-day covered field shoots, and uncovered field shoots, collected at two time points. Biochemical and anatomical analyses were conducted to understand material [...] Read more.
In vitro propagation of avocado faces several limitations. To optimize the establishment phase, we evaluated three plant material types: etiolated shoots, 30-day covered field shoots, and uncovered field shoots, collected at two time points. Biochemical and anatomical analyses were conducted to understand material performance during establishment. Across both collection times, etiolated shoots exhibited minimal oxidation, enhanced bud sprouting, reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels, increased peroxidase (POD) activity, and improved xylem development, consistently outperforming field-derived materials. Using etiolated shoots, we optimized disinfection and in vitro multiplication protocols. Pre-disinfection with 3 mL L−1 Phyton 27® and 2% sodium hypochlorite yielded the highest survival rates. In multiplication experiments, varying concentrations of 6-benzylaminopurine (BAP) and meta-topolin (MT), supplemented with gibberellic acid (GA3), did not significantly affect growth variation. However, 8.88 µM BAP with 0.29 µM GA3 resulted in the greatest number of sprouted buds. Full article
Show Figures

Figure 1

16 pages, 3034 KB  
Article
Identification of Avocado Fruit Disease Caused by Diaporthe phaseolorum and Colletotrichum fructicola in China
by Aosiqi Ma, Yuhang Xu, Hongxing Feng, Yanyuan Du, Huan Liu, Song Yang, Jie Chen and Xin Hao
J. Fungi 2025, 11(8), 547; https://doi.org/10.3390/jof11080547 - 23 Jul 2025
Viewed by 694
Abstract
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to [...] Read more.
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to fruit quality. Menglian in Yunnan Province is the largest avocado production area in China. In November 2024, fruit rot was observed on avocado fruits in Yunnan, China, characterized by reddish-brown discoloration, premature ripening, softening, and pericarp decay, with a field infection rate of 22%. Concurrently, anthracnose was detected in avocado fruits, presenting as small dark brown spots that developed into irregular rust-colored lesions, followed by dry rot depressions, ultimately leading to soft rot, peeling, or hardened dry rot, with a field infection rate of 15%. Infected fruit samples were collected, and fungal strains were isolated, purified, and inoculated via spore suspension, followed by re-isolation. The strains were conclusively identified as Diaporthe phaseolorum (SWFU20, SWFU21) and Colletotrichum fructicola (SWFU12, SWFU13) through an integrated approach combining DNA extraction, polymerase chain reaction (PCR), sequencing, phylogenetic reconstruction, and morphological characterization. This is the first report of D. phaseolorum causing fruit rot and C. fructicola causing anthracnose on avocado in China. In future research, we will test methods for the control of D. phaseolorum and C. fructicola. The identification of these pathogens provides a foundation for future disease management research, supporting the sustainable development of the avocado industry. Full article
Show Figures

Figure 1

13 pages, 5234 KB  
Article
Neosilba batesi Curran (Diptera: Lonchaeidae): Identification, Distribution, and Its Relationship with Avocado Fruits
by Braulio Alberto Lemus-Soriano, Oscar Morales-Galván, David García-Gallegos, Diana Vely García-Banderas, Mona Kassem and Carlos Patricio Illescas-Riquelme
Diversity 2025, 17(7), 499; https://doi.org/10.3390/d17070499 - 21 Jul 2025
Viewed by 581
Abstract
In this study, the association between Neosilba batesi (Diptera: Lonchaeidae) and avocado fruits (Persea americana L.) was investigated. Fruits showing signs of rot and infested with Diptera larvae were collected from commercial orchards in the states of Michoacán and Jalisco, Mexico. N. [...] Read more.
In this study, the association between Neosilba batesi (Diptera: Lonchaeidae) and avocado fruits (Persea americana L.) was investigated. Fruits showing signs of rot and infested with Diptera larvae were collected from commercial orchards in the states of Michoacán and Jalisco, Mexico. N. batesi was identified in association with fruits from both trees and the ground at all sampling sites. Furthermore, a phylogenetic analysis based on the mitochondrial cytochrome c oxidase subunit I (COI) gene supported the morphological identification, showing >99% identity with records from Veracruz, and revealed distinct genetic lineages within the Neosilba genus. In a study within one Michoacán orchard, infested tree-borne fruits averaged 5.40 cm in length and 3.90 cm in width, with a mean of 9.61 larvae emerging per fruit. Females were observed to lay eggs in openings between the pedicel and the fruit, never piercing the exocarp. In contrast, on fallen fruit, they utilized existing wounds with exposed pulp. Infested avocados exhibit characteristic spots indicating the presence of internal larvae and generally detach from the tree. Larvae can feed on avocados in various stages of decomposition and may either emerge through wounds or pupate within the fruit. These findings support the opportunistic and saprophagous behavior associated with this fly species. Full article
Show Figures

Figure 1

16 pages, 614 KB  
Article
Bioactive Properties of Persea americana Peel Extract and Their Role in Hypercholesterolemia Management and Cardiovascular Health
by Laura M. Teixeira, Catarina P. Reis and Rita Pacheco
Foods 2025, 14(14), 2482; https://doi.org/10.3390/foods14142482 - 16 Jul 2025
Cited by 1 | Viewed by 368
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with hypercholesterolemia being a major contributing risk factor. Although cholesterol-lowering drugs are widely available, concerns about several adverse side effects have increased the demand for natural alternatives, with the most common approaches involving the [...] Read more.
Cardiovascular diseases remain the leading cause of death worldwide, with hypercholesterolemia being a major contributing risk factor. Although cholesterol-lowering drugs are widely available, concerns about several adverse side effects have increased the demand for natural alternatives, with the most common approaches involving the incorporation of foods rich in bioactive compounds into the diet. To explore this growing interest in food-based strategies for cardiovascular health, this study formulated and evaluated an aqueous peel extract of Persea americana to assess its potential role as a complementary approach to managing hypercholesterolemia. The extract was characterized, revealing the presence of various bioactive compounds, including pyridoxine-O-Hex, which was identified for the first time in a P. americana extract component. The safety profile of the extract was confirmed through in vivo assessment. Furthermore, the extract demonstrated protective effects against oxidative stress in HepG2 cells. Additionally, permeability studies using Caco-2 cells, as a model of the gastrointestinal barrier, indicated that the extract effectively reduced cholesterol’s permeation. In summary, these findings suggest that P. americana peel extract may serve as a promising natural product for functional foods for cardiovascular health and hypercholesterolemia management. Full article
(This article belongs to the Special Issue Advances in Biological Activities of Functional Food (3rd Edition))
Show Figures

Graphical abstract

15 pages, 1756 KB  
Article
Optimization of Extraction Parameters for Phenolics Recovery from Avocado Peels Using Ultrasound and Microwave Technologies
by Lorena Martínez-Zamora, María Carmen Bueso, Mathieu Kessler, Rosa Zapata, Perla A. Gómez and Francisco Artés-Hernández
Foods 2025, 14(14), 2431; https://doi.org/10.3390/foods14142431 - 10 Jul 2025
Cited by 1 | Viewed by 628
Abstract
Background: Avocado (Persea americana) peels account for ~20% of the fruit weight and are rich in bioactive compounds, offering significant revalorization potential. This study optimized the extraction parameters of phenolics using ultrasound- (UAE) and microwave-assisted technologies (MAE) with a Central Composite [...] Read more.
Background: Avocado (Persea americana) peels account for ~20% of the fruit weight and are rich in bioactive compounds, offering significant revalorization potential. This study optimized the extraction parameters of phenolics using ultrasound- (UAE) and microwave-assisted technologies (MAE) with a Central Composite Design (CCD). Methods: The extraction variables included EtOH concentration (0–100%), temperature (13–47 °C for UAE and 55–95 °C for MAE), and time (3–37 min for UAE and 3–27 min for MAE). Total antioxidant capacity (TAC) and total phenolic compounds (TPC) were measured, while individual phenolics were analyzed via HPLC/MS. Results: EtOH concentration was the most influential variable, with optimal conditions involving 94.55% EtOH and moderate temperatures over short times (45 °C for 5 min in UAE and 67 °C for 12 min in MAE). Both techniques yielded comparable results for effective conditions, though MAE required higher temperatures and longer times. In this sense, the data show that UAE extracted higher concentrations of procyanidins (+15%), demonstrating superior performance using a lower time and temperature, making it more efficient. Conclusions: UAE and MAE effectively extract antioxidants, promoting sustainability in the agri-food sector. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

14 pages, 3921 KB  
Article
First Report of Phytophthora mengei Causing Root Rot and Canker in Avocado (Persea americana) in Michoacán, Mexico
by Alejandra Mondragón-Flores, Alejandro Soto-Plancarte, Gerardo Rodríguez-Alvarado, Patricia Manosalva, Salvador Ochoa-Ascencio, Benjamin Hoyt, Nuria Gómez-Dorantes and Sylvia Patricia Fernández-Pavía
Microorganisms 2025, 13(7), 1471; https://doi.org/10.3390/microorganisms13071471 - 24 Jun 2025
Viewed by 807
Abstract
Mexico is the world’s leading producer of avocado (Persea americana); however, its productivity is threatened by various diseases, especially root rot caused by Phytophthora. While P. cinnamomi is the most commonly reported species worldwide, this study identified P. [...] Read more.
Mexico is the world’s leading producer of avocado (Persea americana); however, its productivity is threatened by various diseases, especially root rot caused by Phytophthora. While P. cinnamomi is the most commonly reported species worldwide, this study identified P. mengei for the first time as a causal agent of root rot and trunk canker in avocado orchards in the state of Michoacán, México. The morphological and molecular characterization of four isolates (three from canker and one from root rot) confirmed their identity: semi-papillate sporangia and plerotic oospores with paragynous antheridia, with sequence identities of 99.87% (ITS) and 100% (COI) with type sequences of P. mengei. Pathogenicity tests demonstrated the ability to infect roots, stems, and fruits, although with a low reisolation percentage in roots (10%), suggesting an opportunistic pathogen behavior. Sensitivity tests to potassium phosphite (EC50 of 3.67 μg/mL−1 a.i.) and metalaxyl-M (0.737 μg/mL−1 a.i.) revealed possible limitations for chemical control. These findings position P. mengei as an emerging pathogen with important implications for integrated crop management. To the best of our knowledge, this is the first report of P. mengei causing root rot and trunk canker in avocado in Michoacán, Mexico. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Figure 1

20 pages, 2737 KB  
Article
Natural Nanoparticles for Drug Delivery: Proteomic Insights and Anticancer Potential of Doxorubicin-Loaded Avocado Exosomes
by Dina Salem, Shaimaa Abdel-Ghany, Eman Mohamed, Nada F. Alahmady, Amany Alqosaibi, Ibtesam S. Al-Dhuayan, Mashael Mashal Alnamshan, Rebekka Arneth, Borros Arneth and Hussein Sabit
Pharmaceuticals 2025, 18(6), 844; https://doi.org/10.3390/ph18060844 - 4 Jun 2025
Viewed by 1243
Abstract
Background: Exosomes have recently attracted significant attention for their potential in drug delivery. Plant-derived exosomes, in particular, may serve as direct anticancer agents due to their unique characteristics, including immunogenicity, biocompatibility, safety, cell-free nature, and nanoscale structure. Methods: This study characterizes [...] Read more.
Background: Exosomes have recently attracted significant attention for their potential in drug delivery. Plant-derived exosomes, in particular, may serve as direct anticancer agents due to their unique characteristics, including immunogenicity, biocompatibility, safety, cell-free nature, and nanoscale structure. Methods: This study characterizes Persea americana (avocado)-derived exosomes, exploring their anticancer properties, proteomic profile, and therapeutic potential. Results: Isolated exosomes exhibited a diameter of 99.58 ± 5.09 nm (non-loaded) and 151.2 ± 6.36 nm (doxorubicin (DOX)-loaded), with zeta potentials of −17 mV and −28 mV, respectively. Proteomic analysis identified 47 proteins, including conserved exosome markers (GAPDH, tubulin) and stress-response proteins (defensin, endochitinase). Functional enrichment revealed roles in photosynthesis, glycolysis, ATP synthesis, and transmembrane transport, supported by protein–protein interaction networks highlighting energy metabolism and cellular trafficking. DOX encapsulation efficiency was 18%, with sustained release (44.4% at 24 h). In vitro assays demonstrated reduced viability in breast cancer (MCF-7, T47D, 4T1) and endothelial (C166) cells, enhanced synergistically by DOX (Av+DOX). Gene expression analysis revealed cell-specific modulation: Av+DOX upregulated TP53 and STAT in T47D but suppressed both in 4T1/C166, suggesting context-dependent mechanisms. Conclusions: These findings underscore avocado exosomes as promising nanovehicles for drug delivery, combining biocompatibility, metabolic functionality, and tunable cytotoxicity. Their plant-derived origin offers a scalable, low-cost alternative to mammalian exosomes, with potential applications in oncology and targeted therapy. Further optimization of loading efficiency and in vivo validation are warranted to advance translational prospects. Full article
Show Figures

Figure 1

19 pages, 1288 KB  
Article
CND and DRIS Methods for Nutritional Diagnosis in ‘Hass’ Avocado Production
by Marcelo Almeida de Oliveira Junior, Danilo Eduardo Rozane, Tatiana Cantuarias-Avilés and Simone Rodrigues da Silva
Horticulturae 2025, 11(6), 621; https://doi.org/10.3390/horticulturae11060621 - 1 Jun 2025
Viewed by 990
Abstract
The production of fruit crops plays a vital role in the agricultural sector, contributing significantly to the social and economic development of rural communities. In Brazil, fruit production is diverse due to favorable edaphoclimatic conditions, with avocado (Persea americana Mill.) emerging as [...] Read more.
The production of fruit crops plays a vital role in the agricultural sector, contributing significantly to the social and economic development of rural communities. In Brazil, fruit production is diverse due to favorable edaphoclimatic conditions, with avocado (Persea americana Mill.) emerging as an important crop. Its production continues to expand in both cultivated areas and yield, making it a key export to non-producing countries. However, despite its importance, nutritional management information, crucial for achieving high yields, remains limited. Current guidelines on nutrition monitoring are outdated, general, and based on data from other countries with different edaphoclimatic conditions, making them not directly applicable to Brazilian orchards. Furthermore, outdated nutritional information becomes less reliable over time, as climate change alters soil conditions and crop nutrient concentrations and requirements, reinforcing the need for the establishment of up-to-date and specific nutritional information. This study aimed to establish nutritional standards for ‘Hass’ avocado production using the Diagnosis and Recommendation Integrated System (DRIS) and Compositional Nutrient Diagnosis (CND) methodologies, and to define sufficiency ranges (SRs) and Critical Levels (CLs) for both macronutrients (N, P, K, Ca, Mg, and S) and micronutrients (B, Cu, Fe, Mn, and Zn). The analyses were based on yield (t ha−1) and leaf nutrient content data from commercial orchards, with datasets divided into younger (4–9 years) and older (10–26 years) plant groups. The DRIS effectively established nutritional standards for younger plants, explaining 11% of yield variation through nutritional balance. CND, in turn, was effective for both groups, accounting for 14% of yield variation and outperforming DRIS in associating nutritional status with productivity. SRs and CLs for ‘Hass’ avocado production were defined using both DRIS and CND. Together, these indices and diagnostic parameters offer valuable tools for enhancing nutritional monitoring and fertilization strategies in Brazil. Notably, SRs and CLs varied according to plant age. Full article
(This article belongs to the Special Issue Orchard Management Under Climate Change: 2nd Edition)
Show Figures

Figure 1

17 pages, 2679 KB  
Article
First Report of Trametes hirsuta, Causal Agent White Rot in Avocado Trees Grown in the State of Michoacán, México
by Juan Mendoza-Churape, Ma. Blanca Nieves Lara-Chávez, Rosario Ramírez-Mendoza, César Ramiro Martínez-González, Hexon Angel Contreras-Cornejo, Yurixhi Atenea Raya-Montaño, Teresita del Carmen Ávila-Val and Margarita Vargas-Sandoval
Pathogens 2025, 14(6), 532; https://doi.org/10.3390/pathogens14060532 - 26 May 2025
Viewed by 720
Abstract
México is the world’s leading producer of avocado, with 2,540,715 tons in the last year. Trametes spp. are macromycete fungi that rot wood. In 2022, in the state of Michoacán, México, sporomas of Trametes sp. were found in the trunks of avocado trees [...] Read more.
México is the world’s leading producer of avocado, with 2,540,715 tons in the last year. Trametes spp. are macromycete fungi that rot wood. In 2022, in the state of Michoacán, México, sporomas of Trametes sp. were found in the trunks of avocado trees (Persea americana var. Hass) of 10 years old and older. The trees showed disease symptoms including yellowing of leaves, widespread defoliation, and wilting. It was observed that 10% of the infected trees were felled after heavy rains. In the place where the fungus settled, abundant cream-colored and cottony mycelium developed, causing “white rot”. The incidence of the disease in the sampled orchards was 60% in the tree population per hectare with 350 trees. The symptomatic trees studied were randomly selected from seven orchards. The collected fungal samples show typical structures corresponding to Trametes sp., including large sporomas, a pileus with a surface of concentric zones of various ocher tones, and a porous hymenium. The samples showed a 99% match with the species Trametes hirsuta. Laboratory bioassays of inoculation in fresh wood segments of avocado formed typical sporomas of the pathogen. Finally, the fungus was recovered and reisolated in vitro in PDA, and its identity was confirmed through the morphological characteristics and molecular tests. To the best of our knowledge, this article reports for the first time that P. americana cv. Hass and Mendez are new hosts for T. hirsuta. Therefore, the environmental and horticultural management conditions that favor the proliferation of T. hirsuta must be investigated. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Graphical abstract

33 pages, 15037 KB  
Article
Persea americana Peel: A Promising Source of Nutraceutical for the Mitigation of Cardiovascular Risk in Arthritic Rats Through the Gut–Joint Axis
by Doha A. Mohamed, Asmaa A. Ramadan, Hoda B. Mabrok, Gamil E. Ibrahim and Shaimaa E. Mohammed
Biomolecules 2025, 15(4), 590; https://doi.org/10.3390/biom15040590 - 16 Apr 2025
Viewed by 1000
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the inflammation of synovial fluid. The incidence of cardiovascular diseases (CVDs) is increasing in RA patients. This research is the first report to investigate the anti-arthritic effect of avocado peel nutraceutical (APN) [...] Read more.
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the inflammation of synovial fluid. The incidence of cardiovascular diseases (CVDs) is increasing in RA patients. This research is the first report to investigate the anti-arthritic effect of avocado peel nutraceutical (APN) and its potential in mitigating the cardiovascular risk associated with RA. The antioxidant activity and phytochemical composition of APN were assessed. The potential interaction of APN’s active compounds with protein tyrosine phosphatase non-receptor type 22 (PTPN22) was studied using molecular docking. The impact of APN on the plasma lipid profile, oxidative and inflammatory markers, and the indices of coronary risk and atherogenicity as CVD markers were evaluated. The gene expression of COX-2, IL-6, IL-1β, IL-10, and TNF-α in liver and spleen tissues were measured. The rat gut microbiota profile was investigated using 16S rRNA amplicon sequencing. APN exhibited high antioxidant activity, low atherogenicity and thrombogenicity indices, and a high ratio of hypocholesterolemic to hypercholesterolemic fatty acids indicating its cardioprotective potential. The administration of APN led to a reduction in oxidative stress markers, inflammatory markers, dyslipidemia, and CVD markers. APN administration downregulated the expression of COX-2, IL-6, IL-1β, and TNF-α genes, while the IL-10 gene was significantly upregulated in the liver and spleen. Treatment with APN was favorable in restoring eubiosis in the gut by modulating RA-associated bacterial taxa linked to impaired immune function and cardiometabolic diseases. In molecular docking, β-amyrin and ellagic acid showed the highest binding affinity for PTPN22. APN may represent a promising approach to ameliorating the cardiovascular risk of RA. The present results will be offering a foundation for future in-depth research in nutraceuticals from agriculture by-products. Additionally, they will be supporting the public health policies aimed at preventing and controlling rheumatoid arthritis. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop