Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Powassan virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3998 KB  
Article
Dysregulation of microRNAs in the Brains of Mice Infected with Powassan Virus
by Amany Elsharkawy, Komal Arora, Hamid Reza Jahantigh and Mukesh Kumar
Viruses 2025, 17(10), 1288; https://doi.org/10.3390/v17101288 - 23 Sep 2025
Viewed by 186
Abstract
microRNAs (miRNAs) are known to play critical roles in the regulation of gene expression during neurodegenerative diseases and neurotropic viral infections. However, their specific contribution to the pathogenesis of Powassan virus (POWV) infection in the brain remains poorly understood. Understanding miRNA dynamics in [...] Read more.
microRNAs (miRNAs) are known to play critical roles in the regulation of gene expression during neurodegenerative diseases and neurotropic viral infections. However, their specific contribution to the pathogenesis of Powassan virus (POWV) infection in the brain remains poorly understood. Understanding miRNA dynamics in the brain during POWV infection may reveal novel insights into viral neuropathogenesis and host antiviral responses. Therefore, in the present study, we analyzed miRNA expression profiles in the mouse brain at different time points following a peripheral POWV infection. A total of 599 miRNAs were examined at day 3, 6, and 9 post-infection. Infection with POWV resulted in the modulation of several miRNAs in the brain at all time points. There was a progressive increase in the number of dysregulated miRNAs over the course of infection. This correlated with POWV dissemination into the brain with a progressive increase in viral RNA levels that peaked at day 9 post-infection. There was an early upregulation of miR-1983, miR-19a, and miR-216b that persisted until day 9 post-infection. POWV infection also resulted in the downregulation of miR-500 at all examined time points. Using IPA, we determined the significant canonical pathways affected by miRNA dysregulation. POWV infection modulated the activation of the thyroid hormone receptor and retinoid X receptor (TR/RXR) and the regulation of the phosphatase and tensin homolog (PTEN). Additionally, macrophage classical activation and growth arrest and DNA damage-inducible 45 (GADD45) signaling were activated as early as day 3 post-infection and persisted until day 9 post-infection. Furthermore, our analysis revealed the activation of cell death pathways such as necrosis and apoptosis and the inhibition of cell cycle progression, as well as leukopoiesis. To our knowledge, this is the first study to evaluate the modulation of miRNAs in the brain following POWV infection. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

22 pages, 1773 KB  
Article
Comprehensive Analysis of the Impact of Weight Loss Thresholds on Mouse Models of Fatal Viral Infection
by Devin Kenney, Mao Matsuo, Giulia Unali, Alan Wacquiez, Mohsan Saeed and Florian Douam
Viruses 2025, 17(9), 1225; https://doi.org/10.3390/v17091225 - 7 Sep 2025
Viewed by 849
Abstract
Preclinical studies in virological research are pivotal to comprehend mechanisms of viral virulence and pathogenesis and evaluate antiviral therapies or vaccines. Mouse models, through access to various genetic strains and amenable reagents, along with their ease of implementation and cost-effectiveness, remain the gold [...] Read more.
Preclinical studies in virological research are pivotal to comprehend mechanisms of viral virulence and pathogenesis and evaluate antiviral therapies or vaccines. Mouse models, through access to various genetic strains and amenable reagents, along with their ease of implementation and cost-effectiveness, remain the gold standard for establishing go/no-go thresholds before advancing to non-human primate or clinical studies. In preclinical mouse studies, standardized weight loss thresholds (WLTs)—which correspond to an established percentage of weight change at which animals are humanely euthanized—are a routine metric to quantitatively evaluate the lethality of a viral pathogen and the effectiveness of antiviral countermeasures in preventing fatal viral disease. While it is recognized that WLTs can significantly impact the assessment of viral virulence, they are often established to meet existing ethical or methodological requirements, rather than being based on a specific scientific rationale. Here, we examine how various experimental variables—including mouse and viral strains and the sex ratio within a mouse cohort—influence the ability of a WLT to support the generation of robust mouse models of fatal viral infection. Using various mouse strains and viral pathogens, we report that variations in experimental conditions in mouse preclinical studies can significantly compromise the performance of a non-adjusted WLT to yield an accurate estimate of viral virulence. Our findings advocate for a robust adjustment of WLT to each experimental framework and associated variables to establish mouse models of fatal viral infection that can generate high-resolution data acquisition while upholding ethical standards. Overall, our study provides methodological insights to enhance the unbiased acquisition and benchmarking of viral virulence and antiviral efficacy data in mouse models. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

25 pages, 1259 KB  
Review
Cerebrovascular Disease as a Manifestation of Tick-Borne Infections: A Narrative Review
by David Doyle, Samuel Kim, Alexis Berry, Morgan Belle, Nicholas Panico, Shawn Kaura, Austin Price, Taylor Reardon and Margaret Ellen
J. Vasc. Dis. 2025, 4(3), 33; https://doi.org/10.3390/jvd4030033 - 21 Aug 2025
Viewed by 850
Abstract
Background/Objectives: Tick-borne diseases (TBDs) are increasingly recognized as causes of both systemic and neurologic illness. While their impact on vascular health is established, their role in cerebrovascular disease remains underexplored. This review aims to synthesize clinical evidence linking TBDs with cerebrovascular events, [...] Read more.
Background/Objectives: Tick-borne diseases (TBDs) are increasingly recognized as causes of both systemic and neurologic illness. While their impact on vascular health is established, their role in cerebrovascular disease remains underexplored. This review aims to synthesize clinical evidence linking TBDs with cerebrovascular events, focusing on mechanisms of injury, pathogen-specific associations, and treatment outcomes. Methods: A narrative review was conducted using Boolean keyword searches across PubMed, Scopus, EMBASE, and Web of Science. Relevant literature on ischemic and hemorrhagic stroke, cerebral vasculitis, and stroke mimics associated with TBDs was examined. The review included case reports, observational studies, and mechanistic research. Pathogen-specific data and disease characteristics were extracted and summarized. Results: Several tick-borne pathogens were associated with cerebrovascular complications. Borrelia burgdorferi was most commonly implicated and typically presented with large-vessel vasculitis. Rickettsia, Ehrlichia, and Anaplasma species caused endothelial injury through immune-mediated inflammation. Powassan virus and Crimean–Congo hemorrhagic fever virus exhibited central nervous system involvement and hemorrhagic potential. Babesia species contributed to vascular injury through thrombocytopenia and embolic complications. Neuroimaging frequently demonstrated multifocal stenoses and vessel wall inflammation. Antimicrobial treatment, particularly with doxycycline or ceftriaxone, was often effective, especially when administered early. Supportive care for stroke symptoms varied by presentation and underlying pathogen. Conclusions: Cerebrovascular disease caused by tick-borne pathogens is an underrecognized but potentially reversible condition. Despite diverse etiologies, most pathogens share a final common pathway of endothelial dysfunction. Early recognition and targeted antimicrobial therapy, combined with supportive stroke care, are essential to improving patient outcomes. Full article
(This article belongs to the Topic Diagnosis and Management of Acute Ischemic Stroke)
Show Figures

Figure 1

15 pages, 3221 KB  
Article
Development of a Deer Tick Virus Infection Model in C3H/HeJ Mice to Mimic Human Clinical Outcomes
by Dakota N. Paine, Erin S. Reynolds, Charles E. Hart, Jessica Crooker and Saravanan Thangamani
Viruses 2025, 17(8), 1092; https://doi.org/10.3390/v17081092 - 7 Aug 2025
Viewed by 701
Abstract
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human [...] Read more.
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human infection with DTV can result in acute febrile illness followed by central nervous system complications, such as encephalitis and meningoencephalitis. Currently, there are mouse models established for investigating the pathogenesis and clinical outcomes of DTV that mimic human infections, but the strains of mice utilized are refractory to infection with B. burgdorferi s.l. Here, we describe the pathogenesis and clinical outcomes of DTV infection in C3H/HeJ mice. Neurological clinical signs, mortality, and weight loss were observed in all DTV-infected mice during the investigation. Infected animals demonstrated consistent viral infection in their organs. Additionally, neuropathology of brain sections indicated the presence of meningoencephalitis throughout the brain. This data, along with the clinical outcomes for the mice, indicates successful infection and showcases the neuroinvasive nature of the virus. This is the first study to identify C3H/HeJ mice as an appropriate model for DTV infection. As C3H/HeJ mice are already an established model for B. burgdorferi s.l. infection, this model could serve as an ideal system for investigating disease progression and pathogenesis of co-infections. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

13 pages, 554 KB  
Review
Innate Immune Response to Powassan Virus Infection: Progress Toward Infection Control
by Mohammad Enamul Hoque Kayesh, Michinori Kohara and Kyoko Tsukiyama-Kohara
Vaccines 2025, 13(7), 754; https://doi.org/10.3390/vaccines13070754 - 15 Jul 2025
Viewed by 489
Abstract
Powassan virus is an emerging tick-borne flavivirus that poses a significant threat to human health. The outcome of Powassan virus infection is shaped by both viral factors and the host immune response. While this review aimed to examine the innate immune response, particularly [...] Read more.
Powassan virus is an emerging tick-borne flavivirus that poses a significant threat to human health. The outcome of Powassan virus infection is shaped by both viral factors and the host immune response. While this review aimed to examine the innate immune response, particularly toll-like receptor-mediated immune responses to Powassan virus, data specific to the immune response to Powassan virus remain scarce. Therefore, we focused on toll-like receptor responses to related flaviviruses to infer possible mechanisms of host response. Insights from both in vivo and in vitro studies are critical for guiding the development of effective therapeutic and preventive strategies. Currently, there are no clinically approved treatments or vaccines for Powassan virus, highlighting the urgent need for their development. We also highlight recent progress in POWV vaccine development, with an emphasis on the potential use of toll-like receptor agonists as adjuvants to enhance immunogenicity and improve vaccine efficacy. Full article
Show Figures

Figure 1

26 pages, 1669 KB  
Review
Animal Models, Therapeutics, and Vaccine Approaches to Emerging and Re-Emerging Flaviviruses
by Thomas J. Baric and Z. Beau Reneer
Viruses 2025, 17(1), 1; https://doi.org/10.3390/v17010001 - 24 Dec 2024
Cited by 2 | Viewed by 3316
Abstract
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These [...] Read more.
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These viruses cause a variety of diseases in humans with the most prevalent being caused by dengue, resulting in hemorrhagic fever and associated sequala. Current approaches for therapeutic control of flavivirus infections are limited, and despite recent advances, there are no approved drugs. Vaccines, available for a few circulating flaviviruses, still have limited potential for controlling contemporary and future outbreaks. Mouse models provide us with a valuable tool to test the effectiveness of drugs and vaccines, yet for many flaviviruses, well-established mouse models are lacking. In this review, we highlight the current state of flavivirus vaccines and therapeutics, as well as our current understanding of mouse models for various flaviviruses. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Figure 1

26 pages, 450 KB  
Review
Arbovirus in Solid Organ Transplants: A Narrative Review of the Literature
by Kiran Gajurel, Reshika Dhakal and Stan Deresinski
Viruses 2024, 16(11), 1778; https://doi.org/10.3390/v16111778 - 15 Nov 2024
Cited by 5 | Viewed by 2135 | Correction
Abstract
The incidence of arbovirus infections has increased in recent decades. Other than dengue, chikungunya, and West Nile viruses, the data on arbovirus in solid organ transplant (SOT) are limited to case reports, and infections in renal transplant recipients account for most of the [...] Read more.
The incidence of arbovirus infections has increased in recent decades. Other than dengue, chikungunya, and West Nile viruses, the data on arbovirus in solid organ transplant (SOT) are limited to case reports, and infections in renal transplant recipients account for most of the reported cases. Dengue and West Nile infections seem to be more severe with higher mortality in SOT patients than in the general population. Acute kidney injury is more frequent in patients with dengue and chikungunya although persistent arthralgia with the latter is less frequent. There is no clear relationship between arboviral infection and acute cellular rejection. Pre-transplant screening of donors should be implemented during increased arboviral activity but, despite donor screening and negative donor nucleic acid amplification test (NAT), donor derived infection can occur. NAT may be transiently positive. IgM tests lack specificity, and neutralizing antibody assays are more specific but not readily available. Other tests, such as immunohistochemistry, antigen tests, PCR, metagenomic assays, and viral culture, can also be performed. There are a few vaccines available against some arboviruses, but live vaccines should be avoided. Treatment is largely supportive. More data on arboviral infection in SOT are needed to understand its epidemiology and clinical course. Full article
(This article belongs to the Special Issue Viral Infections in Immunocompromised Hosts)
11 pages, 1287 KB  
Article
Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development
by Erik H. Klontz, Navid Chowdhury, Nolan Holbrook, Isaac H. Solomon, Sam R. Telford, Matthew T. Aliota, Chantal B. F. Vogels, Nathan D. Grubaugh, Jeffrey Helgager, Holly R. Hughes, Jason Velez, Anne Piantadosi, Charles Y. Chiu, Jacob Lemieux and John A. Branda
Viruses 2024, 16(11), 1653; https://doi.org/10.3390/v16111653 - 23 Oct 2024
Cited by 2 | Viewed by 1900
Abstract
Powassan virus (POWV) is an emerging tick-borne virus that causes severe meningoencephalitis in the United States, Canada, and Russia. Serology is generally the preferred diagnostic modality, but PCR on cerebrospinal fluid, blood, or urine has an important role, particularly in immunocompromised patients who [...] Read more.
Powassan virus (POWV) is an emerging tick-borne virus that causes severe meningoencephalitis in the United States, Canada, and Russia. Serology is generally the preferred diagnostic modality, but PCR on cerebrospinal fluid, blood, or urine has an important role, particularly in immunocompromised patients who are unable to mount a serologic response. Although the perceived poor sensitivity of PCR in the general population may be due to the biology of infection and health-seeking behavior (with short viremic periods that end before hospital presentation), limitations in assay design may also contribute. Genome sequences from clinical POWV cases are extremely scarce; PCR assay design has been informed by those available, but the numbers are limited. Larger numbers of genome sequences from tick-derived POWV are available, but it is not known if POWV genomes from human infections broadly mirror genomes from tick hosts, or if human infections are caused by a subset of more virulent strains. We obtained viral genomic data from 10 previously unpublished POWV human infections and showed that they broadly mirror the diversity of genome sequences seen in ticks, including all three major clades (lineage I, lineage II Northeast, and lineage II Midwest). These newly published clinical POWV genome sequences include the first confirmed lineage I infection in the United States, highlighting the relevance of all clades in human disease. An in silico analysis of published POWV PCR assays shows that many assays were optimized against a single clade and have mismatches that may affect their sensitivity when applied across clades. This analysis serves as a launching point for improved PCR design for clinical diagnostics and environmental surveillance. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance)
Show Figures

Figure 1

12 pages, 2139 KB  
Article
Selection Pressure Profile Suggests Species Criteria among Tick-Borne Orthoflaviviruses
by Andrei A. Deviatkin, Yulia A. Aleshina, Galina G. Karganova and Alexander N. Lukashev
Viruses 2024, 16(10), 1554; https://doi.org/10.3390/v16101554 - 30 Sep 2024
Viewed by 1452
Abstract
Orthoflaviviruses are arthropod-borne viruses that are transmitted by mosquitoes or ticks and cause a range of significant human diseases. Among the most important tick-borne orthoflaviviruses (TBFVs) is tick-borne encephalitis virus (TBEV), which is endemic in Eurasia, and Powassan virus, which is endemic in [...] Read more.
Orthoflaviviruses are arthropod-borne viruses that are transmitted by mosquitoes or ticks and cause a range of significant human diseases. Among the most important tick-borne orthoflaviviruses (TBFVs) is tick-borne encephalitis virus (TBEV), which is endemic in Eurasia, and Powassan virus, which is endemic in Asia and North America. There is a significant controversy regarding species assignment in the tick-borne encephalitis virus complex due to the complex phylogenetic, serological, ecological, and pathogenetic properties of viruses. Comparing the rate of non-synonymous to synonymous substitutions (dN/dS) over the course of tick-borne orthoflavivirus diversification suggests that there is a very strong stabilizing selection (Nei-Gojobori dN/dS < 0.1) among tick-borne orthoflaviviruses that differ by less than 13.5% amino acid/21.4% nucleotide sequences, and discretely more rapid accumulation of non-synonymous substitutions (dN/dS > 0.13) among more divergent viruses that belong to distinct species. This pattern was similarly observed in genome regions encoding structural (E) and non-structural (NS3) proteins. Below this distance threshold, viruses appear fit and strongly tied to their ecological niche, whereas above the threshold, a greater degree of adaptation appears necessary. This species criterion suggests that all subtypes of TBEV, all related ovine/caprine encephalomyelitis viruses, and Omsk hemorrhagic fever virus (OHFV) together correspond to a single species. Within this species, viruses make up 11 subtypes that are reliably segregated by a 10% nucleotide distance cut-off suggested earlier for TBEV. The same 10% subtype cut-off suggests that Powassan virus includes two subtypes, Powassan and Deer Tick virus. Full article
Show Figures

Figure 1

12 pages, 2259 KB  
Article
Strain-Dependent Assessment of Powassan Virus Transmission to Ixodes scapularis Ticks
by Rebekah J. McMinn, Emily N. Gallichotte, Samantha Courtney, Sam R. Telford and Gregory D. Ebel
Viruses 2024, 16(6), 830; https://doi.org/10.3390/v16060830 - 23 May 2024
Cited by 1 | Viewed by 1768
Abstract
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are [...] Read more.
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12–20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick–virus association is stable across diverse viral genotypes. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance)
Show Figures

Figure 1

19 pages, 7467 KB  
Article
Comparative Pathogenesis of Two Lineages of Powassan Virus Reveals Distinct Clinical Outcome, Neuropathology, and Inflammation
by Erin S. Reynolds, Charles E. Hart, Jacob T. Nelson, Brandon J. Marzullo, Allen T. Esterly, Dakota N. Paine, Jessica Crooker, Paul T. Massa and Saravanan Thangamani
Viruses 2024, 16(6), 820; https://doi.org/10.3390/v16060820 - 22 May 2024
Cited by 6 | Viewed by 2206
Abstract
Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, [...] Read more.
Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, and Trojan horse routes. Flaviviruses may utilize different or multiple mechanisms of neuroinvasion depending on the specific virus, infection site, and host variability. In this work we have shown that the infection of BALB/cJ mice with either Powassan virus lineage I (Powassan virus) or lineage II (deer tick virus) results in distinct spatial tropism of infection in the CNS which correlates with unique clinical presentations for each lineage. Comparative transcriptomics of infected brains demonstrates the activation of different immune pathways and downstream host responses. Ultimately, the comparative pathology and transcriptomics are congruent with different clinical signs in a murine model. These results suggest that the different disease presentations occur in clinical cases due to the inherent differences in the two lineages of Powassan virus. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance)
Show Figures

Figure 1

16 pages, 2216 KB  
Article
Widespread Circulation of Tick-Borne Viruses in Virginia—Evidence of Exposure to Heartland, Bourbon, and Powassan Viruses in Wildlife and Livestock
by Ahmed Garba, Jennifer Riley, Kevin K. Lahmers and Gillian Eastwood
Microorganisms 2024, 12(5), 899; https://doi.org/10.3390/microorganisms12050899 - 30 Apr 2024
Cited by 4 | Viewed by 2686
Abstract
Emerging tick-borne viruses such as Powassan virus (POWV), Bourbon virus (BRBV), and Heartland virus (HRTV), whilst rare, can cause severe health problems in humans. While limited clinical cases have been reported thus far in Virginia, the presence of tick-borne viruses poses a serious [...] Read more.
Emerging tick-borne viruses such as Powassan virus (POWV), Bourbon virus (BRBV), and Heartland virus (HRTV), whilst rare, can cause severe health problems in humans. While limited clinical cases have been reported thus far in Virginia, the presence of tick-borne viruses poses a serious health threat, and the extent of their prevalence in Virginia is unknown. Here, we sought evidence of POWV, BRBV, and HRTV exposure in Virginia via a serological assessment of wildlife and livestock. Wildlife in Virginia were found to be seropositive against POWV (18%), BRBV (8%), and HRTV (5%), with western and northern regions of the state having a higher prevalence. Multiple wildlife species were shown to have been exposed to each virus examined. To a lesser extent, cattle also showed exposure to tick-borne viruses, with seroprevalences of 1%, 1.2%, and 8% detected in cattle against POWV, BRBV, and HRTV, respectively. Cross-reactivity against other known circulating mosquito-borne flaviviruses was ruled out. In conclusion, there is widespread exposure to tick-borne viruses in western and northern Virginia, with exposure to a diverse range of animal populations. Our study provides the first confirmation that HRTV is circulating in the Commonwealth. These findings strengthen the existing evidence of emerging tick-borne viruses in Virginia and highlight the need for public health vigilance to avoid tick bites. Full article
(This article belongs to the Special Issue Ticks and Tick-Borne Diseases in Animals, 2nd Edition)
Show Figures

Figure 1

7 pages, 497 KB  
Brief Report
Direct Evidence of Powassan Virus Vertical Transmission in Ixodes scapularis in Nature
by Rachel E. Lange, Melissa A. Prusinski, Alan P. Dupuis and Alexander T. Ciota
Viruses 2024, 16(3), 456; https://doi.org/10.3390/v16030456 - 16 Mar 2024
Cited by 5 | Viewed by 2297
Abstract
Powassan virus (POWV) is a tick-borne flavivirus endemic in North America and Russia. Experimental infections with POWV have confirmed horizontal, transstadial, vertical, and cofeeding transmission routes for potential virus maintenance. In the field, vertical transmission has never been observed. During New York State [...] Read more.
Powassan virus (POWV) is a tick-borne flavivirus endemic in North America and Russia. Experimental infections with POWV have confirmed horizontal, transstadial, vertical, and cofeeding transmission routes for potential virus maintenance. In the field, vertical transmission has never been observed. During New York State tick-borne pathogen surveillance, POWV RNA and/or infectious POWV was detected in five pools of questing Ixodes scapularis larvae. Additionally, engorged female I. scapularis adults were collected from hunter-harvested white-tailed deer (Odocoileus virginianus) in a region with relatively high tick infection rates of POWV and allowed to oviposit under laboratory conditions. POWV RNA was detected in three female adult husks and one pool of larvae from a positive female. Infectious virus was isolated from all three RNA-positive females and the single positive larval pool. The detection of RNA and infectious virus in unfed questing larvae from the field and larvae from replete females collected from the primary tick host implicates vertical transmission as a potential mechanism for the maintenance of POWV in I. scapularis in nature, and elucidates the potential epidemiological significance of larval ticks in the transmission of POWV to humans. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance)
Show Figures

Figure 1

16 pages, 501 KB  
Systematic Review
Hemophagocytic Lymphohistiocytosis (HLH) in Patients with Tick-Borne Illness: A Scoping Review of 98 Cases
by Dorde Jevtic, Marilia Dagnon da Silva, Alberto Busmail Haylock, Charles W. Nordstrom, Stevan Oluic, Nikola Pantic, Milan Nikolajevic, Nikola Nikolajevic, Magdalena Kotseva and Igor Dumic
Infect. Dis. Rep. 2024, 16(2), 154-169; https://doi.org/10.3390/idr16020012 - 21 Feb 2024
Cited by 12 | Viewed by 4193
Abstract
Hemophagocytic lymphohistiocytosis (HLH) secondary to tick-borne infections is a rare but potentially life-threatening syndrome. We performed a scoping review according to PRISMA guidelines to systematically analyze the existing literature on the topic. A total of 98 patients were included, with a mean age [...] Read more.
Hemophagocytic lymphohistiocytosis (HLH) secondary to tick-borne infections is a rare but potentially life-threatening syndrome. We performed a scoping review according to PRISMA guidelines to systematically analyze the existing literature on the topic. A total of 98 patients were included, with a mean age of 43.7 years, of which 64% were men. Most cases, 31%, were reported from the USA. Immunosuppression was present in 21.4%, with the most common cause being previous solid organ transplantation. Constitutional symptoms were the most common, observed in 83.7% of the patients, while fever was reported in 70.4% of cases. Sepsis was present in 27.6%. The most common laboratory abnormalities in this cohort were thrombocytopenia in 81.6% of patients, while anemia, leukopenia, and leukocytosis were observed in 75.5%, 55.1%, and 10.2%, respectively. Liver enzyme elevation was noted in 63.3% of cases. The H-score was analyzed in 64 patients, with the mean value being 209, and bone marrow analysis was performed in 61.2% of patients. Ehrlichia spp. was the main isolated agent associated with HLH in 45.9%, followed by Rickettsia spp. in 14.3% and Anaplasma phagocytophilum in 12.2%. Notably, no patient with Powassan virus infection or Lyme borreliosis developed HLH. The most common complications were acute kidney injury (AKI) in 35.7% of patients, shock with multiple organ dysfunction in 22.5%, encephalopathy/seizure in 20.4%, respiratory failure in 16.3%, and cardiac complications in 7.1% of patients. Treatment included antibiotic therapy alone in 43.9%, while 5.1% of patients were treated with immunosuppressants alone. Treatment with both antibiotics and immunosuppressants was used in 51% of patients. Appropriate empiric antibiotics were used in 62.2%. In 43.9% of cases of HLH due to tick-borne disease, patients received only antimicrobial therapy, and 88.4% of those recovered completely without the need for immunosuppressive therapy. The mortality rate in our review was 16.3%, and patients who received inappropriate or delayed empiric therapy had a worse outcome. Hence, we suggest empiric antibiotic treatment in patients who are suspected of having HLH due to tick-borne disease or in whom diagnostic uncertainty persists due to diagnostic delay in order to minimize mortality. Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

9 pages, 632 KB  
Article
Active Surveillance of Powassan Virus in Massachusetts Ixodes scapularis Ticks, Comparing Detection Using a New Triplex Real-Time PCR Assay with a Luminex Vector-Borne Panel
by Guang Xu, Eric Siegel, Nolan Fernandez, Emily Bechtold, Timothy Daly, Alan P. Dupuis, Alexander Ciota and Stephen M. Rich
Viruses 2024, 16(2), 250; https://doi.org/10.3390/v16020250 - 4 Feb 2024
Cited by 1 | Viewed by 5066
Abstract
Powassan virus is an emerging tick-borne pathogen capable of causing severe neuroinvasive disease. As the incidence of human Powassan virus grows both in magnitude and geographical range, the development of sensitive detection methods for diagnostics and surveillance is critical. In this study, a [...] Read more.
Powassan virus is an emerging tick-borne pathogen capable of causing severe neuroinvasive disease. As the incidence of human Powassan virus grows both in magnitude and geographical range, the development of sensitive detection methods for diagnostics and surveillance is critical. In this study, a Taqman-based triplex real-time PCR assay was developed for the simultaneous and quantitative detection of Powassan virus and Powassan virus lineage II (deer tick virus) in Ixodes scapularis ticks. An exon–exon junction internal control was built-in to allow for accurate detection of RNA quality and the failure of RNA extraction. The newly developed assay was also applied to survey deer tick virus in tick populations at 13 sites on Cape Cod and Martha’s Vineyard Island in Massachusetts. The assay’s performance was compared with the Luminex xMAP MultiFLEX Vector-borne Panel 2. The results suggested that the real-time PCR method was more sensitive. Powassan virus infection rates among ticks collected from these highly endemic tick areas ranged from 0.0 to 10.4%, highlighting the fine-scale geographic variations in deer tick virus presence in this region. Looking forward, our PCR assay could be adopted in other Powassan virus surveillance systems. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance)
Show Figures

Graphical abstract

Back to TopTop