Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (725)

Search Parameters:
Keywords = RC beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1279 KB  
Article
Deteriorated Cyclic Behaviour of Corroded RC Framed Elements: A Practical Proposal for Their Modelling
by José Barradas-Hernández, Dariniel Barrera-Jiménez, Irving Ramírez-González, Franco Carpio-Santamaría, Alejandro Vargas-Colorado, Sergio Márquez-Domínguez, Rolando Salgado-Estrada, José Piña-Flores and Abigail Zamora-Hernández
Buildings 2025, 15(17), 3110; https://doi.org/10.3390/buildings15173110 - 29 Aug 2025
Abstract
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes [...] Read more.
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes a simplified numerical modelling approach to simulate the cyclic behaviour of existing RC framed structures with corrosion levels (η) below 25%. The proposed modelling employs concentrated plasticity hinges for beams and fiber sections for columns, incorporating corrosion-induced degradation through modified backbone curves and material properties based on the corrosion level of the structural element. The modelling approach was validated against experimental results from the literature; the proposed model adequately captures hysteretic energy, lateral load, and deformation capacities, with maximum errors of 11% for maximum lateral load, 12% for ultimate load, and 33% for dissipated energy in RC frames. For isolated columns, the errors were 11, 12, and 22%, respectively. In addition, a maximum difference of 7% was found in the lateral load capacity of the corroded frames associated with the Life Safety limit state. Finally, it was concluded that the proposed methodology is suitable for representing the cyclic behaviour of corroded RC columns and frames and provides engineers with a tool to evaluate the behaviour of corroded structures without resorting to complex models. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
22 pages, 8482 KB  
Article
Effect of C-FRP (Carbon Fiber Reinforced Polymer) Rope and Sheet Strengthening on the Shear Behavior of RC Beam-Column Joints
by Emmanouil Golias and Chris Karayannis
Fibers 2025, 13(9), 113; https://doi.org/10.3390/fib13090113 - 22 Aug 2025
Viewed by 290
Abstract
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical [...] Read more.
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical ropes at column corners, provide enhanced core confinement and shear reinforcement. C-FRP sheets applied to the beam’s plastic hinge region further increase flexural strength and delay localized failure. Three full-scale, shear-deficient RC joints were subjected to cyclic lateral loading. The unstrengthened specimen (JB0V) exhibited rapid stiffness deterioration, premature joint shear cracking, and unstable hysteretic behavior. In contrast, the specimen strengthened solely with X-shaped C-FRP ropes (JB0VF2X2c) displayed a markedly slower rate of stiffness degradation, delayed crack development, and improved energy dissipation stability. The fully retrofitted specimen (JB0VF2X2c + C-FRP) demonstrated the most pronounced gains, with peak load capacity increased by 65%, equivalent viscous damping enhanced by 55%, and joint shear deformations reduced by more than 40%. Even at 4% drift, it retained over 90% of its peak strength, while localizing damage away from the joint core—a performance unattainable by the unstrengthened configuration. These results clearly establish that the combined C-FRP rope–sheet system transforms the seismic response of deficient RC joints, offering a lightweight, non-invasive, and rapidly deployable retrofit solution. By simultaneously boosting shear resistance, ductility, and energy dissipation while controlling damage localization, the technique provides a robust pathway to extend service life and significantly enhance post-earthquake functionality in critical structural connections. Full article
Show Figures

Figure 1

26 pages, 13046 KB  
Article
Damage Identification of Corroded Reinforced Concrete Beams Based on SSA-ELM
by Libin Tian, Xuyang Gao, Panfeng Ba, Chunying Zheng and Caiwei Liu
Buildings 2025, 15(16), 2937; https://doi.org/10.3390/buildings15162937 - 19 Aug 2025
Viewed by 263
Abstract
Accurately quantifying corrosion damage in reinforced concrete (RC) beams is a significant challenge for structural health monitoring. This study introduces a novel damage identification method that integrates the Sparrow Search Algorithm (SSA)-optimized Extreme Learning Machine (ELM) to address this issue. By utilizing dynamic [...] Read more.
Accurately quantifying corrosion damage in reinforced concrete (RC) beams is a significant challenge for structural health monitoring. This study introduces a novel damage identification method that integrates the Sparrow Search Algorithm (SSA)-optimized Extreme Learning Machine (ELM) to address this issue. By utilizing dynamic characteristics, including natural frequencies and mode shapes, as input features, the model predicts three critical damage indicators: the mass corrosion ratio (ηs), flexural capacity reduction factor (α), and flexural stiffness reduction factor (β). Validation through ABAQUS finite element simulations demonstrated the superior performance of the SSA-ELM approach compared to conventional ELM, achieving a 60–70% reduction in mean square error (MSE). Specifically, the MSE for ηs decreased from 2.1062 to 0.3174. The experimental validation conducted on seven RC beams with corrosion levels ranging from 0% to 14.1% confirmed the method’s reliability, with prediction errors for α and β ranging from 5 to 10%. This represents a 50% improvement in accuracy compared to conventional ELM, which exhibited errors in the range of 9–20%. SSA-ELM is a novel and more effective solution to the challenges (e.g., early convergence and convergence speed) faced by existing optimized ELM methods (especially GWO-ELM and GA-ELM). Furthermore, the practical implementation of the proposed framework includes a MATLAB R2024a-based graphical user interface (GUI) with Docker containerization, enabling efficient field deployment for structural assessment. Overall, this study establishes SSA-ELM as a promising tool for post-corrosion safety evaluation of RC structures. Full article
Show Figures

Figure 1

33 pages, 6091 KB  
Article
Performance-Based Seismic Evaluation of Local Staggered RC Frames with Steel Tube-Reinforced Concrete Columns Under Multi-Angle Earthquakes
by Shuyun Zhang, Long Guo, Lihua Ge, En Wang and Junfu Tong
Appl. Sci. 2025, 15(16), 9092; https://doi.org/10.3390/app15169092 - 18 Aug 2025
Viewed by 277
Abstract
Staggered floor frame structures with good spatial adaptability are widely used in large-space civil buildings such as conference halls and terminal buildings. However, the short columns formed by staggered floor slabs significantly affect load transfer, which is unfavorable to the seismic performance of [...] Read more.
Staggered floor frame structures with good spatial adaptability are widely used in large-space civil buildings such as conference halls and terminal buildings. However, the short columns formed by staggered floor slabs significantly affect load transfer, which is unfavorable to the seismic performance of the structure. To address this issue, based on a practical project, this paper establishes a finite element analysis model, sets up steel-tube-reinforced concrete (ST-RC) columns at staggered floors to improve the insufficient ductility of short columns, and adopts the dynamic time–history analysis method combined with performance-based evaluation methods to study the effects of different seismic input angles (0°, 30°, 60°, 90°) on the seismic performance of local staggered floor frame structures at both the overall and member levels. The research results show that at the overall level, the fourth floor of the staggered floor frame structure is the weak floor, and the most unfavorable seismic input angle is 60°; additionally, at the member level, the damage of each member meets the performance objectives. Frame beams are more severely damaged under 0° and 90° seismic input, frame columns are more severely damaged under 30° and 60° seismic input, and the damage degree of ST-RC columns is similar in the four directions. As energy-dissipating members, frame beams have a significantly higher proportion of nonlinear strain energy than frame columns and ST-RC columns, which can effectively consume a large amount of seismic energy and enable the structure to retain more safety reserves. Therefore, for irregular buildings such as staggered floor frame structures that are prone to damage due to insufficient ductility of short columns, setting ST-RC columns at staggered floors can effectively reduce structural damage. The adoption of evaluation methods at both the overall structural and member levels enables a comprehensive understanding of the damage status of staggered floor structures. Full article
Show Figures

Figure 1

19 pages, 7534 KB  
Article
Finite Element Analysis of Vertical Bearing Performance in RC Slab–Column Joints: Effects of Bottom Reinforcement and Concealed Beams
by Xianglan Wei, Gaowang Cai, Naiwen Ke, Yuanwen Liu, Guangyu Wu and Yigang Jia
Buildings 2025, 15(16), 2905; https://doi.org/10.3390/buildings15162905 - 16 Aug 2025
Viewed by 420
Abstract
The vertical load-bearing performance of slab–column joints is significantly affected by bottom reinforcement and concealed beams, but existing studies remain insufficient in analyzing their influence mechanisms. To address this, the effects of bottom reinforcement, concealed beam width, and punch-to-span ratio on the mechanical [...] Read more.
The vertical load-bearing performance of slab–column joints is significantly affected by bottom reinforcement and concealed beams, but existing studies remain insufficient in analyzing their influence mechanisms. To address this, the effects of bottom reinforcement, concealed beam width, and punch-to-span ratio on the mechanical properties of joints are systematically investigated in this study through finite element analysis. Validating 2 experimental models and establishing 13 parametric models, the results shows that adding bottom reinforcement can enhance the late-stage bearing capacity and ductility of joints; increasing the ratio of top-to-bottom reinforcement improves bearing capacity but reduces ductility; a wider concealed beam leads to better bearing capacity and ductility performance of the joint; and under the same concealed beam width, a larger punching–span ratio reduces bearing capacity but improves ductility. This study reveals the critical role of bottom reinforcement and concealed beams in joint performance, providing a theoretical basis for optimizing design. Full article
(This article belongs to the Special Issue Seismic and Durability Performance of Steel Connections)
Show Figures

Figure 1

18 pages, 2610 KB  
Article
Shear Strength of RC T-Beams Without Shear Reinforcement Based on Crack Sliding Model
by Penggang Tian, Yufei Han, Kai Wang, Jiajia Wang, Zhiheng Tian and Ergang Xiong
Buildings 2025, 15(16), 2814; https://doi.org/10.3390/buildings15162814 - 8 Aug 2025
Viewed by 275
Abstract
Considering the effect of the flange on the shear capacity of reinforced concrete (RC) beams without stirrups, a shear capacity calculation formula based on the crack sliding model is proposed for RC beams without stirrups in this paper. Test data of 444 rectangular [...] Read more.
Considering the effect of the flange on the shear capacity of reinforced concrete (RC) beams without stirrups, a shear capacity calculation formula based on the crack sliding model is proposed for RC beams without stirrups in this paper. Test data of 444 rectangular section beams and 172 T-beams were collected to verify this calculation theory, and the calculation results were compared with domestic and international design codes. The collected datasets were analyzed using five common machine learning models. The results show that the shear capacity calculation method proposed by the codes of each country is in good agreement with the test results. Compared to the calculation of the codes, the addressed calculation method in this study is more accurate and can effectively account for the contribution of the T-beam flange to the shear capacity. The machine learning models selected in this paper exhibit desirable accuracy on the test set, which demonstrates the applicability of the machine learning models in the calculation of shear capacity for reinforced concrete beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 2480 KB  
Article
Towards Sustainable Building Materials: An Experimental Investigation into the Effect of Recycled Construction Waste Aggregate on the Properties of High-Performance Concrete
by Radoslav Gandel, Jan Jerabek, Andrea Peknikova, Libor Topolář and Oldrich Sucharda
Buildings 2025, 15(15), 2772; https://doi.org/10.3390/buildings15152772 - 6 Aug 2025
Cited by 1 | Viewed by 338
Abstract
This study presents a comparison of the mechanical properties of selected high-performance concrete mixtures, some of which contained a proportion of recycled concrete aggregate (15% or 30%) as a substitute for natural aggregate. A reference mixture without recycled concrete aggregate was used for [...] Read more.
This study presents a comparison of the mechanical properties of selected high-performance concrete mixtures, some of which contained a proportion of recycled concrete aggregate (15% or 30%) as a substitute for natural aggregate. A reference mixture without recycled concrete aggregate was used for comparison. Initially, the properties of concrete containing both the natural and recycled aggregate types were characterized. This was followed by a series of mechanical tests investigating the compressive strength, flexural strength, and chemical resistance (including resistance to de-icing agents and sulfuric acid). The structural performance of reinforced concrete (RC) beams produced from the mixtures was assessed, and surface morphology was evaluated using a digital microscope. The results confirmed that the use of recycled aggregate had a measurable yet limited effect on the properties of hardened concrete. While the compressive strength tended to decrease slightly with an increasing degree of replacement, the flexural strength remained stable in all the mixtures. The tested mixtures demonstrated adequate resistance to de-icing agents and sulfuric acid. Interestingly, specimens subjected to a frost-resistance test showed improved flexural strength, potentially due to ongoing hydration or microcrack healing. In addition, the RC beams with partial aggregate replacement achieved a higher load-bearing capacity compared to the reference beams. The optical surface evaluation method proved to be a valuable tool, complementary to conventional strength testing. This research enhances the current understanding of recycled aggregate concrete and supports its potential for structural applications. Full article
(This article belongs to the Special Issue Constructions in Europe: Current Issues and Future Challenges)
Show Figures

Figure 1

22 pages, 8767 KB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 - 31 Jul 2025
Viewed by 263
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

20 pages, 2619 KB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 - 31 Jul 2025
Viewed by 433
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

19 pages, 2595 KB  
Article
Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering
by Alessandra Fiore, Sebastiano Marasco and Rita Greco
Appl. Sci. 2025, 15(15), 8432; https://doi.org/10.3390/app15158432 - 29 Jul 2025
Viewed by 322
Abstract
Data-driven approaches and calibration techniques for mathematical models, starting from observed data, are attracting more and more interest in the field of civil engineering. Among them, evolutionary polynomial regression (EPR) is an artificial intelligence (AI) technique that combines genetic algorithms (GAs) and regression [...] Read more.
Data-driven approaches and calibration techniques for mathematical models, starting from observed data, are attracting more and more interest in the field of civil engineering. Among them, evolutionary polynomial regression (EPR) is an artificial intelligence (AI) technique that combines genetic algorithms (GAs) and regression strategies. However, the difficulties and uncertainties inherent in the method have pointed out how the implementation of proper computational methods together with the use of recent and qualified databases of experimental data are essential to carry out reliable formulations. In this framework, this paper explores a new robust EPR approach able to remove potential outliers and leverage points often occurring in biased dataset and simultaneously accounting for the effects of probabilistic uncertainties. Uncertainties are incorporated in the EPR methodology by adopting the direct perturbation method. In particular, it is shown the importance to set the parameters representative of experimental and analytical dispersions on the basis of the characteristics of the database in terms of homogeneity. With this purpose, two different case-studies are analyzed, dealing with the shear capacity of RC beams without stirrups and the compressive strength of cement-based mortar specimens, respectively. Finally, the best capacity equations are selected and discussed. Full article
Show Figures

Figure 1

23 pages, 5594 KB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 445
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

23 pages, 4918 KB  
Article
Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion
by Dong Li, Minghai Wang, Yishuai He, Jiangxing Zhang, Liu Jin and Xiuli Du
Buildings 2025, 15(15), 2641; https://doi.org/10.3390/buildings15152641 - 26 Jul 2025
Viewed by 288
Abstract
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms [...] Read more.
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms of large-size beams. To address this gap, this paper establishes a meso-scale numerical analysis model for RC beams reinforced with Carbon Fiber Reinforced Polymer (CFRP) sheets under combined bending and torsion pressures. The research analyzes how the fiber ratio and torsion-bending ratio govern torsion-induced failure characteristics and size effects in CFRP-strengthened RC beams. The results indicate that an increase in the fiber ratio leads to accumulated damage distribution in the RC beam, a gradual decrease in CFRP sheet strain, and an increase in peak load and peak torque, albeit with diminishing amplitudes; as the torsion-bending ratio increases, crack distribution becomes more concentrated, the angle between cracks and the horizontal direction decreases, overall peak load decreases, peak torque increases, and CFRP sheet strain increases; and the nominal torsional capacity of CFRP-strengthened RC beams declines with increasing size, exhibiting a reduction of 24.1% to 35.6%, which distinctly demonstrates the torsional size effect under bending–torsion coupling conditions. A modified Torque Size Effect Law is formulated, characterizing in quantitative terms the dependence of the fiber ratio and the torsion-bending ratio. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 2698 KB  
Article
Behavior of Demountable and Replaceable Fabricated RC Beam with Bolted Connection Under Mid-Span Compression
by Dongping Wu, Yan Liang, Huachen Liu and Sheng Peng
Buildings 2025, 15(15), 2589; https://doi.org/10.3390/buildings15152589 - 22 Jul 2025
Viewed by 259
Abstract
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis [...] Read more.
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis of five full-scale RC beams, the effects of high-strength bolt specifications and stiffeners were compared, and the behavior of the fabricated RC beams with bolted connections was analyzed. The test process was observed and the test results were analyzed. The failure mode, cracking load, yield load, ultimate load, stiffness change, deflection measured value, ductility, and other indicators of the specimens were compared and analyzed. It was shown that the failure mode of the fabricated RC beam was reinforcement failure, which met the three stress stages of the normal section bending of the reinforcement beam. The failure position occurred at 10~15 cm of the concrete outside the bolt connection, and the beam support and the core area of the bolt connection were not damaged. The fabricated RC beam has good mechanical performance and high bearing capacity. In addition, comparing the test value with the simulation value, it is found that they are in good agreement, indicating that ABAQUS software of 2024 can be well used for the simulation analysis of the behavior of fabricated RC beam structure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4549 KB  
Article
Failure Mode Discrimination and Stochastic Behavior Study of RC Beams Under Impact Loads
by Taochun Yang, Yating Jiang, Xiaoyan Zhang, Qinghai Liu and Yin Wang
Modelling 2025, 6(3), 70; https://doi.org/10.3390/modelling6030070 - 22 Jul 2025
Viewed by 302
Abstract
To clarify the potential failure modes of reinforced concrete (RC) beams under impact and understand their impact resistance safety, a comprehensive study was conducted by focusing on the failure mode discrimination and failure probability of RC beams under impact loads. This research utilized [...] Read more.
To clarify the potential failure modes of reinforced concrete (RC) beams under impact and understand their impact resistance safety, a comprehensive study was conducted by focusing on the failure mode discrimination and failure probability of RC beams under impact loads. This research utilized drop hammer impact tests, ABAQUS2022 software, and theoretical methods. The study examined three typical failure modes of RC beams under impact loads: flexural failure, flexural-shear failure, and shear failure. A discrimination criterion based on the flexural-shear capacity–effect curve was developed. Utilizing this criterion, along with the basic principles of structural reliability theory, the failure probability of RC beams under impact loads was calculated and analyzed using the Monte Carlo method. The results indicate that the criterion based on the flexural-shear capacity–effect curve can be used for discriminating failure modes of RC beams under impact loads. The impact velocity and stirrup ratio were identified as crucial factors that influenced the failure modes of RC beams under impact. Specifically, an increase in the stirrup spacing reduced the reliability of the RC beams under impact, while an increase in the stirrup ratio could significantly enhance their impact resistance. Furthermore, with a constant impact energy, an increase in beam span correlated with the improved reliability of RC beams under impact, where larger spans yielded a better impact resistance. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Graphical abstract

25 pages, 5596 KB  
Article
Impact of Reinforcement Corrosion on Progressive Collapse Behavior of Multi-Story RC Frames
by Luchuan Ding, Xiaodi Dai, Yiping Gan and Yihua Zeng
Buildings 2025, 15(14), 2534; https://doi.org/10.3390/buildings15142534 - 18 Jul 2025
Viewed by 286
Abstract
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any [...] Read more.
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any point during a structure’s service life and at various locations within the structural system, this study examines the progressive collapse behavior of deteriorated RC frames subjected to simulated reinforcement corrosion. This paper presents an investigation into the system-level progressive collapse responses of deteriorated RC frames, which extends the current state of the art in this field. The influence of different material deteriorations, different corrosion locations, different column removal scenarios, and dynamic effects on structural response is explored. According to the results obtained in this research, a significant reduction in progressive collapse resistance can be resulted in with increasing corrosion levels. Notably, only reinforcement corrosion in the beams located directly above the removed column (i.e., within the directly affected part) for the investigated RC frame had a substantial impact on structural performance. In contrast, corrosion in other regions and concrete deterioration exhibited minimal influence in this work. An increased number of corroded floors further reduced collapse resistance. Dynamic progressive collapse resistance was found to be considerably lower than its static counterpart and decreased at a slightly faster rate as corrosion progressed. Additionally, the energy-based method was shown to provide a reasonable approximation of the maximum dynamic responses at different corrosion levels, offering a computationally efficient alternative to full dynamic analysis. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop