Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,699)

Search Parameters:
Keywords = ROLL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3065 KB  
Article
Coordinated Control of Trajectory Tracking and Lateral Stability for Distributed Electric-Driven Buses
by Yuanjie Huang, Xian Zheng, Tongqun Han and Wenhao Tan
World Electr. Veh. J. 2025, 16(10), 576; https://doi.org/10.3390/wevj16100576 (registering DOI) - 13 Oct 2025
Abstract
To resolve the inherent coupling conflict between trajectory tracking and lateral stability in distributed electric drive buses, this paper proposes a hierarchical cooperative control framework. A simplified two-degree-of-freedom (2-DOF) vehicle model is first established, and kinematically derived reference states for stable motion are [...] Read more.
To resolve the inherent coupling conflict between trajectory tracking and lateral stability in distributed electric drive buses, this paper proposes a hierarchical cooperative control framework. A simplified two-degree-of-freedom (2-DOF) vehicle model is first established, and kinematically derived reference states for stable motion are computed. At the upper level, a model predictive controller (MPC) generates real-time steering commands while explicitly minimizing lateral tracking error. At the lower level, a proportional integral derivative (PID)-based roll moment controller and a linear quadratic regulator (LQR)-based direct yaw moment controller are designed, with four-wheel torque distribution achieved via quadratic programming subject to friction circle and vertical load constraints. Co-simulation results using TruckSim and MATLAB/Simulink demonstrate that, during high-speed single-lane-change maneuvers, peak lateral error is reduced by 11.59–18.09%, and root-mean-square (RMS) error by 8.67–14.77%. Under medium-speed double-lane-change conditions, corresponding reductions of 3.85–12.16% and 4.48–11.33% are achieved, respectively. These results fully validate the effectiveness of the proposed strategy. Compared with the existing MPC–direct yaw moment control (DYC) decoupled control framework, the coordinated control strategy proposed in this paper achieves the optimal trade-off between trajectory tracking and lateral stability while maintaining the quadratic programming solution delay below 0.5 milliseconds. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

15 pages, 752 KB  
Article
Quantifying Gait and Posture in Geriatric Inpatients Using Inertial Sensors and Posturography: A Cross-Sectional Study
by René Schwesig, Nicole Strutz, Aline Schönenberg, Matti Panian, Karl-Stefan Delank, Kevin G. Laudner and Tino Prell
Diagnostics 2025, 15(20), 2578; https://doi.org/10.3390/diagnostics15202578 (registering DOI) - 13 Oct 2025
Abstract
Background/Objectives: Mobility screening is standard practice in hospitalized geriatric patients, but clinical assessments alone may not fully capture functional capacity and related risks. This study aimed to describe the physical performance (gait analysis, postural stability and regulation) and clinical–functional status (e.g., [...] Read more.
Background/Objectives: Mobility screening is standard practice in hospitalized geriatric patients, but clinical assessments alone may not fully capture functional capacity and related risks. This study aimed to describe the physical performance (gait analysis, postural stability and regulation) and clinical–functional status (e.g., Tinetti [TIN], Barthel Index [BI]) in geriatric inpatients, and to explore associations between measures from different domains. Methods: Fifty-five geriatric inpatients (mean age: 84.3 ± 5.47 years, range: 71–97; 49% female) underwent spatiotemporal gait analysis (inertial sensor system/RehaGait) and posturography (Interactive Balance System). Clinical assessments included TIN, BI, Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS), Clinical Frailty Scale (CFS), and Numeric Rating Scale (NRS). Gait and postural data were compared with age-, sex-, and height-adjusted reference values. Results: Clinical data indicated a low fall risk (TIN: 24), moderate functional independence (BI: 54), and moderate frailty (CFS: 5). Deviations from reference values were more frequent in gait parameters (18/50%) than in postural parameters (6/17%), with postural stability consistently reduced. The largest differences for the geriatric patients compared with the reference gait data were found for stride length, walking speed, double and single support, roll-off angle, and landing angle. TIN showed the strongest correlation with walking speed (r = 0.47, 95% CI: 0.22–0.67), a relationship unaffected by gender (partial r = 0.52). Conclusions: Gait assessment revealed greater performance deficits than postural measures in this cohort. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

17 pages, 887 KB  
Article
Comparison of Linear and Beta Autoregressive Models in Forecasting Nonstationary Percentage Time Series
by Carlo Grillenzoni
Forecasting 2025, 7(4), 57; https://doi.org/10.3390/forecast7040057 (registering DOI) - 13 Oct 2025
Abstract
Positive percentage time series are present in many empirical applications; they take values in the continuous interval (0,1) and are often modeled with linear dynamic models. Risks of biased predictions (outside the admissible range) and problems of heteroskedasticity in the presence of asymmetric [...] Read more.
Positive percentage time series are present in many empirical applications; they take values in the continuous interval (0,1) and are often modeled with linear dynamic models. Risks of biased predictions (outside the admissible range) and problems of heteroskedasticity in the presence of asymmetric distributions are ignored by practitioners. Alternative models are proposed in the statistical literature; the most suitable is the dynamic beta regression which belongs to generalized linear models (GLM) and uses the logit transformation as a link function. However, owing to the Jensen inequality, this approach may also not be optimal in prediction; thus, the aim of the present paper is the in-depth forecasting comparison of linear and beta autoregressions. Simulation experiments and applications to nonstationary time series (the US unemployment rate and BR hydroelectric energy) are carried out. Rolling regression for time-varying parameters is applied to both linear and beta models, and a prediction criterion for the joint selection of model order and sample size is defined. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2025)
Show Figures

Figure 1

65 pages, 10545 KB  
Article
Stability of a Single-Channel Rolling Aerospace Vehicle with Semi-Automatic Command to Line of Sight
by Teodor-Viorel Chelaru, Cristian Emil Constantinescu, Valentin Pană and Costin Ene
Aerospace 2025, 12(10), 921; https://doi.org/10.3390/aerospace12100921 (registering DOI) - 13 Oct 2025
Abstract
This paper presents a stability analysis of single-channel, slow-rolling, Semi-Automatic Command to Line of Sight (SACLOS) missiles using a comparison of the Routh–Hurwitz and the Frank–Wall stability criteria and a nonlinear analysis. Beginning with a six-degree-of-freedom (6-DOF) model in the Resal frame, a [...] Read more.
This paper presents a stability analysis of single-channel, slow-rolling, Semi-Automatic Command to Line of Sight (SACLOS) missiles using a comparison of the Routh–Hurwitz and the Frank–Wall stability criteria and a nonlinear analysis. Beginning with a six-degree-of-freedom (6-DOF) model in the Resal frame, a linearized model for the commanded motion is developed. This linearized model, which features complex coefficients due to the coupling of longitudinal channels in rolling missiles, is used to define the structural scheme of the commanded object and its flight quality parameters. The guidance kinematic relations, guidance device equations, and actuator relations, incorporating a switching function specific to slow-rolling, single-channel missiles, are also defined and linearized within the Resal frame to construct a comprehensive structural diagram of the SACLOS missile. From this, the characteristic polynomial with complex coefficients is derived and analyzed by comparing the Routh–Hurwitz and the Frank–Wall stability criteria. This analysis determines a stability domain for the guidance gain and establishes a minimum limit for the guidance time. The stability domain defined through the linear model is then validated using a nonlinear model in the body frame. Full article
Show Figures

Figure 1

23 pages, 1869 KB  
Article
Multi-Dimensional Uniform Cooling Process for Ship Plate Steel Continuous Casting
by Xiaodong Yang, Zhenyao Chen, Jianchao Guan, Xin Xie, Chun He, Hao Hu, Mujun Long, Jianhua Liu and Dengfu Chen
Metals 2025, 15(10), 1137; https://doi.org/10.3390/met15101137 - 13 Oct 2025
Abstract
In slab continuous casting, achieving uniform cooling in the secondary cooling zone is essential for ensuring both surface integrity and internal quality. To optimize the process for ship plate steel, a solidification heat transfer model was developed, incorporating radiation, water film evaporation, spray [...] Read more.
In slab continuous casting, achieving uniform cooling in the secondary cooling zone is essential for ensuring both surface integrity and internal quality. To optimize the process for ship plate steel, a solidification heat transfer model was developed, incorporating radiation, water film evaporation, spray impingement, and roll contact. The influence of secondary cooling water flow on slab temperature distribution was systematically investigated from multiple perspectives. The results show that a weak cooling strategy is crucial for maintaining higher surface temperatures and aligning the solidification endpoint with the soft reduction zone. Along the casting direction, a “strong-to-weak” cooling pattern effectively prevents abrupt temperature fluctuations, while reducing the inner-to-outer arc water ratio from 1.0 to 0.74 mitigates transverse thermal gradients. In addition, shutting off selected nozzles in the later stage of secondary cooling at medium and low casting speeds increases the slab corner temperature in the straightening zone by approximately 50 °C, thereby avoiding brittle temperature ranges. Overall, the proposed multi-dimensional uniform cooling strategy reduces temperature fluctuations and significantly improves slab quality, demonstrating strong potential for industrial application. Full article
(This article belongs to the Special Issue Advances in Continuous Casting and Refining of Steel)
Show Figures

Figure 1

19 pages, 20836 KB  
Article
Design and Flight Experiment of a Motor-Directly-Driven Flapping-Wing Micro Air Vehicle with Extension Springs
by Seungik Choi, Changyong Oh, Taesam Kang and Jungkeun Park
Biomimetics 2025, 10(10), 686; https://doi.org/10.3390/biomimetics10100686 (registering DOI) - 12 Oct 2025
Abstract
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES [...] Read more.
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES revealed a resonant frequency of 19.59 Hz for the flapping-wing mechanism, and actual flapping experiments confirmed this to be 20 Hz. Using a six-axis load cell, we demonstrated the ability to generate roll, pitch, and yaw moments for attitude control based on wing flapping variations. All roll, pitch, and yaw moments were linearly proportional to the wing flapping variations. MEMS gyroscopes and accelerometers were used to measure roll, pitch, and yaw angular velocities and the gravity. A complementary filter was applied to these measurements to obtain the roll and pitch angles required for attitude control. A microprocessor, two motor drive circuits, one MEMS gyroscope/accelerometer, and one EEPROM for flight data storage were implemented on a single, ultra-compact electronic control board and mounted on the MDD-FWMAVES. Simple roll and pitch PD controllers were implemented on this electronic control board, and the controlled flight feasibility of the MDD-FWMAVES was explored. Flight tests demonstrated stable hovering for approximately 6 s. While yaw control was not achieved, the onboard feedback control system demonstrated stable roll and pitch control. Therefore, the MDD-FWMAVES holds the potential to be developed into a high-performance flapping-wing micro air vehicle if its flight system and controller are improved. Full article
(This article belongs to the Special Issue Bio-Inspired Flight Systems and Bionic Aerodynamics 2.0)
Show Figures

Graphical abstract

14 pages, 6040 KB  
Article
Analysis of Key Factors Affecting the Sensitivity of Dual-Backplate Capacitive MEMS Microphones
by Chengpu Sun, Haosheng Liu, Ludi Kang and Bilong Liu
Micromachines 2025, 16(10), 1154; https://doi.org/10.3390/mi16101154 - 12 Oct 2025
Abstract
This paper presents a comprehensive investigation of sensitivity-determining factors in dual-backplate capacitive MEMS microphones through analytical modeling, finite element analysis (FEM), and experimental validation. The study focuses on three critical design parameters: backplate perforation density, membrane tension, and electrode gap spacing. A lumped [...] Read more.
This paper presents a comprehensive investigation of sensitivity-determining factors in dual-backplate capacitive MEMS microphones through analytical modeling, finite element analysis (FEM), and experimental validation. The study focuses on three critical design parameters: backplate perforation density, membrane tension, and electrode gap spacing. A lumped parameter model (LPM) and FEM simulations are employed to characterize the dynamic behavior and frequency response of the microphone. Simulation results demonstrate that reducing the backplate hole diameter or hole count amplifies squeeze-film damping, inducing nonlinear effects and anti-resonance dips near the fundamental frequency (f0) while mitigating low-frequency roll-off (<100 Hz). Membrane tension exhibits a nonlinear relationship with sensitivity, stabilizing at high tension (>7000 N/m) but risking pull-in instability at low tension (<1500 N/m). Smaller electrode gaps enhance sensitivity but are constrained by pull-in voltage limitations. The FEM model achieves higher accuracy (≤2 dB error) than LPM in predicting low-frequency response anomalies. This work provides systematic guidelines for optimizing dual-backplate MEMS microphone designs, balancing sensitivity, stability, and manufacturability. Full article
Show Figures

Figure 1

20 pages, 5763 KB  
Article
Layer Thickness Effects on Residual Stress, Microstructure, and Tensile Properties of Cu18150/Al1060/Cu18150 Multilayered Composites: An Integrated EBSD-KAM Approach
by Yuchao Zhao, Mahmoud Ebrahimi, Shokouh Attarilar, Qiang Lu, Haiyan Jiang and Qudong Wang
Materials 2025, 18(20), 4673; https://doi.org/10.3390/ma18204673 (registering DOI) - 11 Oct 2025
Abstract
This study examines the influence of layer thickness (0.9, 1.6, 2.4, and 4 mm) on the distribution of residual stress, microstructural evolution, and tensile properties of Cu18150/Al1060/Cu18150 multilayered composites fabricated via a combined cast-rolling and hot-rolling technique. The grain refinement, dislocation density, and [...] Read more.
This study examines the influence of layer thickness (0.9, 1.6, 2.4, and 4 mm) on the distribution of residual stress, microstructural evolution, and tensile properties of Cu18150/Al1060/Cu18150 multilayered composites fabricated via a combined cast-rolling and hot-rolling technique. The grain refinement, dislocation density, and residual stress gradients across the interfaces were characterized and analyzed using integrated electron backscatter diffraction and kernel average misorientation mapping. The results demonstrated that specimens with a lower layer thickness (0.9–1.6 mm) possess a significantly improved tensile strength of 351 MPa, which is mainly due to the significant grain refinement and the presence of compressive residual stresses at the region of the Al/Cu interfaces. However, tensile strength decreased to 261 MPa in specimens with thicker layers (4 mm), accompanied by improved ductility, e.g., elongation of 30%. This is associated with a reduction in the degrees of interfacial constraint and the formation of more homogeneous deformation structures that accommodate a larger strain. The intermediate layer thickness of 2.4 mm offers an optimal compromise, achieving a tensile strength of 317 MPa while maintaining balanced mechanical performance. These results emphasize the importance of layer thickness in controlling such stress profiles and optimizing the mechanical behavior of hybrid metal composites, providing useful guidance on the design and fabrication of superior structural-form materials. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Laminated Materials)
Show Figures

Figure 1

26 pages, 17384 KB  
Article
Hydrodynamic Modelling and Morphometric Assessment of Supratidal Boulder Transport on the Moroccan Atlantic Coast: A Dual-Site Analysis
by Asma Gharnate, Ronadh Cox, Hatim Sanad, Omar Taouali, Majda Oueld Lhaj and Nadia Mhammdi
Earth 2025, 6(4), 124; https://doi.org/10.3390/earth6040124 - 11 Oct 2025
Abstract
Coastal boulder deposits (CBDs) are important geomorphic indicators of extreme wave activity, yet integrated morphometric and hydrodynamic analyses remain limited along the Moroccan Atlantic coast. This study characterizes the morphology, spatial distribution, and transport thresholds of supratidal boulders at Oued Cherrat and Mansouria, [...] Read more.
Coastal boulder deposits (CBDs) are important geomorphic indicators of extreme wave activity, yet integrated morphometric and hydrodynamic analyses remain limited along the Moroccan Atlantic coast. This study characterizes the morphology, spatial distribution, and transport thresholds of supratidal boulders at Oued Cherrat and Mansouria, and quantifies the wave energy required for their mobilization. Between 2021 and 2025, 85 boulders were surveyed, supported by lithological analyses, GPS mapping, and pre-/post-storm photographic documentation. At Oued Cherrat, boulders ranged from 0.01 to 3.56 m3 (≤7.84 t), with solitary blocks located 30–94 m inland and larger imbricated clasts up to 150.5 m. At Mansouria, dimensions reached 22 × 20 × 3.5 m (>2032 t), positioned 5–140 m from the shoreline. Storms in January and March 2025 displaced boulders up to 4.5 m at Oued Cherrat (e.g., 6.39 t) and up to 3 m at Mansouria (e.g., 21.42 t), with new blocks deposited and megaboulders showing slight in situ rotations. Hydrodynamic modelling estimated sliding thresholds of 1.1–4.0 m/s at Oued Cherrat and 2.7–11.0 m/s at Mansouria, while rolling thresholds reached 18.23 m/s. These values confirm the dependence of transport on boulder mass, imbrications, and topography. The findings demonstrate that extreme storms can rapidly reorganize multi-tonne CBDs, while the largest megaboulders require rare, exceptionally high-energy events. Full article
25 pages, 3612 KB  
Article
Application of the ICP-OES and SEM-EDS Techniques for Elemental Analysis of Various Types of Cosmetic Products with Antiperspirant and Deodorant Properties Available on the EU Market
by Elżbieta Maćkiewicz, Aleksandra Zimon, Aleksandra Pawlaczyk, Jadwiga Albińska and Małgorzata Iwona Szynkowska-Jóźwik
Molecules 2025, 30(20), 4050; https://doi.org/10.3390/molecules30204050 (registering DOI) - 11 Oct 2025
Viewed by 88
Abstract
Nowadays deodorants and antiperspirants play an important role in maintaining daily hygiene, exerting a substantial influence on both physical comfort and social functioning. Consequently, they can be regarded as a pivotal component of contemporary personal hygiene programs. The aim of this study was [...] Read more.
Nowadays deodorants and antiperspirants play an important role in maintaining daily hygiene, exerting a substantial influence on both physical comfort and social functioning. Consequently, they can be regarded as a pivotal component of contemporary personal hygiene programs. The aim of this study was to undertake a comparative analysis of the elemental composition of diverse samples (72) of various roll-on deodorants and antiperspirants, sticks, and solid natural potassium–aluminium alums. These analyses were performed using ICP-OES and SEM-EDS techniques. The obtained results were then subjected to statistical and chemometric analysis. Studies demonstrated that Al and Zr were the most significant elements in the tested samples. Aluminium, a prevalent component in antiperspirants, was quantified in concentrations ranging from 0.9% to 4.4%, and in potassium–aluminium alums up to 4.7%. Aluminium and zirconium compounds were found to be the predominant elements in stick antiperspirants, with zirconium levels reaching up to 3%. The presence of lead was quantified in 35 of the 72 samples, with 19 samples exhibiting concentrations exceeding 1 mg/L. The highest lead level, reaching 15.90 mg/L, was found in potassium–aluminium alum. Furthermore, SEM-EDS analysis was conducted to verify the elemental composition, to provide data on additional ingredients, and to partially verify the information contained on the product labels. Full article
Show Figures

Figure 1

16 pages, 3417 KB  
Article
Roll Angular Velocity and Lateral Overturning Tendency of a Small-Tracked Forestry Tractor Under No-Sideslip Dynamic Driving Conditions
by Yun-Jeong Yang, Moon-Kyeong Jang and Ju-Seok Nam
Forests 2025, 16(10), 1568; https://doi.org/10.3390/f16101568 - 11 Oct 2025
Viewed by 65
Abstract
In this study, a driving test was conducted using a small-tracked forestry tractor with a scale of 1/11 in the shape of an actual tractor to assess safety under dynamic conditions. The driving conditions resulting in lateral overturning were derived. Additionally, an angular [...] Read more.
In this study, a driving test was conducted using a small-tracked forestry tractor with a scale of 1/11 in the shape of an actual tractor to assess safety under dynamic conditions. The driving conditions resulting in lateral overturning were derived. Additionally, an angular velocity sensor was used to analyze the variation in roll angular velocity with driving conditions. Driving condition variables comprised obstacle height, ground slope angle, and driving speed. Obstacle height had five levels between 0 and 40 mm in 10 mm intervals, and ground slope angle had 11 levels at 5° intervals from 0° to 50°. Driving speed had three levels: 0.07, 0.11, and 0.13 m/s. The ground slope angle resulting in lateral overturning in the driving scenario was lower than that in non-driving under all conditions. Roll angular velocity increased as obstacle height and tractor driving speed increased. However, ground slope angle did not significantly affect angular velocity. Roll angular velocity at the moment of lateral overturning was about 90 deg/s regardless of driving conditions. A certain critical angular velocity was found to induce lateral overturning, and adjusting the driving method such as reducing driving speed and making turns when the roll angular velocity of the tractor approached the critical value improved safety. However, the quantitative results from the small tractor cannot be directly applied to full-size tractors. Although numerical values may differ, this study focused on capturing the overall trends in lateral overturning considering various driving conditions. Future studies can improve the practical applicability of these findings by determining the critical angular velocity of various full-size tractors. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

18 pages, 5594 KB  
Article
Optimization of High-Pressure Grinding Roll (HPGR) Performance in an Industrial-Scale HPGR/Tower Mill Comminution Circuit
by Bo Wei, Zhitao Yuan, Quan Feng, Qiang Zhang, Xinyang Xu, Qingyou Meng, Bern Klein and Lixia Li
Minerals 2025, 15(10), 1065; https://doi.org/10.3390/min15101065 - 11 Oct 2025
Viewed by 165
Abstract
The integration of high-pressure grinding roller (HPGR) with pre-concentration techniques and stirred mills is recognized for its energy efficiency. Studies have suggested that the feed with a P80 around 1 mm is acceptable for stirred mills or coarse particle flotation. Nonetheless, published [...] Read more.
The integration of high-pressure grinding roller (HPGR) with pre-concentration techniques and stirred mills is recognized for its energy efficiency. Studies have suggested that the feed with a P80 around 1 mm is acceptable for stirred mills or coarse particle flotation. Nonetheless, published experimental data characterizing the comminution behavior of single-stage HPGR circuits configured with a 1 mm screen aperture remain scarce. Moreover, extant research remains confined to laboratory scale. Consequently, critical performance metrics, including production capacity, screening efficiency, and process continuity, have not been substantively documented in the literature. In this paper, the HPGR performance in an industrial-scale HPGR/tower mill comminution circuit was assessed and optimized by laboratory and industrial tests. The research meticulously analyzed the impact of feed rate on the industrial-scale flip-flow screen and HPGR performance and found that the HPGR featuring two studded rolls with a diameter of 800 mm and a width of 400 mm, operating in a reverse classification circuit with a scalped feed by a 14.64 m2 flip-flow screen while running continuously 24 h per day, is capable of producing a −1 mm comminution product suitable for tower mill feed. Under the optimal operating conditions identified, it achieved a specific energy consumption of 4.57 kWh/t with a feed rate of 27.08 t/h. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 2376 KB  
Article
Novel Higher Order Technologies, Based on Spectral Moduli, for Condition Monitoring of Rotating Machinery
by Tomasz Ciszewski, Len Gelman and Andrew Ball
Sensors 2025, 25(20), 6290; https://doi.org/10.3390/s25206290 - 10 Oct 2025
Viewed by 232
Abstract
Recent trends in research on rotating machinery diagnosis focus on contactless diagnostic technologies. In this paper, novel higher order spectral technologies, based on spectral moduli, are proposed. The proposed technologies estimate statistical dependencies between moduli of harmonics of bearing defect frequencies. Moduli of [...] Read more.
Recent trends in research on rotating machinery diagnosis focus on contactless diagnostic technologies. In this paper, novel higher order spectral technologies, based on spectral moduli, are proposed. The proposed technologies estimate statistical dependencies between moduli of harmonics of bearing defect frequencies. Moduli of harmonics of bearing defect frequencies, which appear due to bearing faults, are statistically dependent. The Third Order Modulus (TOM) is a novel higher order spectral signal processing technology developed for rotating machinery diagnostics. The paper presents mathematical expressions for new technologies as well as a detailed description of the signal processing algorithm of motor current for bearings diagnostics. The TOM technology is comprehensively validated via experimental trials for motor bearing diagnosis via motor current signature analysis. Results of experimental trials clearly show that the TOM technology is highly effective for diagnosis of bearing defects. Estimates of the total probabilities of correct diagnosis provided by the TOM technology are 100%. The TOM technology is experimentally compared with the classic bicoherence (CB) technology using eight bearings: four pristine bearings and four damaged bearings with two damage types. Comparison has shown that the TOM technology is more effective than the CB technology. Full article
(This article belongs to the Special Issue Sensor-Based Condition Monitoring and Non-Destructive Testing)
Show Figures

Figure 1

20 pages, 17921 KB  
Article
Development and Balancing Control of Control Moment Gyroscope (CMG) Unicycle–Legged Robot
by Seungchul Shin, Minjun Choi, Seongmin Ahn, Seongyong Hur, David Kim and Dongil Choi
Machines 2025, 13(10), 937; https://doi.org/10.3390/machines13100937 - 10 Oct 2025
Viewed by 81
Abstract
A wheeled–legged robot has the advantage of stable and agile movement on flat ground and an excellent ability to overcome obstacles. However, when faced with a narrow footprint, there is a limit to its ability to move. We developed the control moment gyroscope [...] Read more.
A wheeled–legged robot has the advantage of stable and agile movement on flat ground and an excellent ability to overcome obstacles. However, when faced with a narrow footprint, there is a limit to its ability to move. We developed the control moment gyroscope (CMG) unicycle–legged robot to solve this problem. A scissored pair of CMGs was applied to control the roll balance, and the pitch balance was modeled as a double-inverted pendulum. We performed Linear Quadratic Regulator (LQR) control and model predictive control (MPC) in a system in which the control systems in the roll and pitch directions were separated. We also devised a method for controlling the rotation of the robot in the yaw direction using torque generated by the CMG, and the performance of these controllers was verified in the Gazebo simulator. In addition, forward driving control was performed to verify mobility, which is the main advantage of the wheeled–legged robot; it was confirmed that this control enabled the robot to pass through a narrow space of 0.15 m. Before implementing the verified controllers in the real world, we built a CMG test platform and confirmed that balancing control was maintained within ±1. Full article
15 pages, 6338 KB  
Article
High-Strength Low-Alloy Steels for Automobiles: Microstructure and Mechanical Properties
by Guoqiang Ma, Bo Gao, Zhen Chen, Yuquan Li, Ruirui Wu, Hailian Gui and Zhibing Chu
Materials 2025, 18(20), 4660; https://doi.org/10.3390/ma18204660 - 10 Oct 2025
Viewed by 192
Abstract
High-strength low-alloy (HSLA) steel is widely used in automotive industry for reduction of consumption and emissions. The microstructure and mechanical properties of two automotive HSLA steels with different strength grades were systematically investigated in present study. Microstructural characterization was conducted using optical microscopy [...] Read more.
High-strength low-alloy (HSLA) steel is widely used in automotive industry for reduction of consumption and emissions. The microstructure and mechanical properties of two automotive HSLA steels with different strength grades were systematically investigated in present study. Microstructural characterization was conducted using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD), while mechanical properties were evaluated with Vickers hardness tester and tensile tests. Both steels exhibited a ferrite matrix with spheroidized carbides/pearlites. However, Sample A displayed equiaxed ferrite grains with localized pearlite colonies, while Sample B featured pronounced elongated ferrite grains with a band structure. Tensile testing revealed that Sample B had higher ultimate tensile stress and yield stress compared to Sample A. Texture analysis indicated that both steels were dominated by α-fiber and γ-fiber textures, with minor θ-fiber texture, resulting in minimal mechanical anisotropy between the rolling direction (RD) and transverse direction (TD). The quantitative assessment of strengthening mechanisms, based on microstructural parameters and experimental data, revealed that grain boundary strengthening dominates, with dislocation strengthening also contributing significantly. This work provides the first comprehensive quantification of individual strengthening contributions in automotive HSLA steels, offering critical guidance for developing further higher-strength automotive steels. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop