Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ReCIVA® device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 993 KB  
Article
Optimization of a Breath Analysis Methodology to Potentially Diagnose Transplanted Kidney Rejection: A Preclinic Study
by Nicoletta De Vietro, Antonella Maria Aresta, Arcangelo Picciariello, Donato Francesco Altomare, Giuseppe Lucarelli, Alessia Di Gilio, Jolanda Palmisani, Gianluigi De Gennaro and Carlo Zambonin
Appl. Sci. 2023, 13(5), 2852; https://doi.org/10.3390/app13052852 - 23 Feb 2023
Cited by 8 | Viewed by 4206
Abstract
Chronic kidney disease (CKD) may result in end-stage renal disorder and an increased mortality rate. Presently, kidney transplantation represents the only definitive treatment to restore normal life expectancy. Nevertheless, there is an elevated risk of organ rejection in the short–medium term after surgery. [...] Read more.
Chronic kidney disease (CKD) may result in end-stage renal disorder and an increased mortality rate. Presently, kidney transplantation represents the only definitive treatment to restore normal life expectancy. Nevertheless, there is an elevated risk of organ rejection in the short–medium term after surgery. This preclinic study proposes the optimization of an innovative, fast, non-invasive, and cheap thermal desorption-gas chromatograph–mass spectrometry (TD-GC–MS) protocol, which provides simple monitoring of the respiratory profile of CKD-affected patients, before and during the first year after surgery, and aims to preemptively predict the rejection of the transplanted kidney. Twenty volatile organic compounds (VOCs), known as targets and, which are representative of the major classes of molecules discriminating between CKD-affected patients and healthy individuals, were selected from the literature, and employed to optimize the methodology. Calibration curves, linearity concentration ranges, the limit of detection (LOD), and the limit of quantification (LOQ) were estimated for the chosen molecules as well as the intraday and interday reproducibility of the method. The applicability of the TD-GC–MS developed approach was tested by analyzing the breath of healthy and pathological subjects using the ReCIVA® device. Sixty-seven molecules were identified, and between these, thirteen of the twenty selected compounds were quantified and were identified to have high prognostic values. Full article
Show Figures

Figure 1

20 pages, 2095 KB  
Article
Breath Analysis: Comparison among Methodological Approaches for Breath Sampling
by Alessia Di Gilio, Jolanda Palmisani, Gianrocco Ventrella, Laura Facchini, Annamaria Catino, Niccolò Varesano, Pamela Pizzutilo, Domenico Galetta, Massimo Borelli, Pierluigi Barbieri, Sabina Licen and Gianluigi de Gennaro
Molecules 2020, 25(24), 5823; https://doi.org/10.3390/molecules25245823 - 10 Dec 2020
Cited by 63 | Viewed by 6719
Abstract
Despite promising results obtained in the early diagnosis of several pathologies, breath analysis still remains an unused technique in clinical practice due to the lack of breath sampling standardized procedures able to guarantee a good repeatability and comparability of results. The most diffuse [...] Read more.
Despite promising results obtained in the early diagnosis of several pathologies, breath analysis still remains an unused technique in clinical practice due to the lack of breath sampling standardized procedures able to guarantee a good repeatability and comparability of results. The most diffuse on an international scale breath sampling method uses polymeric bags, but, recently, devices named Mistral and ReCIVA, able to directly concentrate volatile organic compounds (VOCs) onto sorbent tubes, have been developed and launched on the market. In order to explore performances of these new automatic devices with respect to sampling in the polymeric bag and to study the differences in VOCs profile when whole or alveolar breath is collected and when pulmonary wash out with clean air is done, a tailored experimental design was developed. Three different breath sampling approaches were compared: (a) whole breath sampling by means of Tedlar bags, (b) the end-tidal breath collection using the Mistral sampler, and (c) the simultaneous collection of the whole and alveolar breath by using the ReCIVA. The obtained results showed that alveolar fraction of breath was relatively less affected by ambient air (AA) contaminants (p-values equal to 0.04 for Mistral and 0.002 for ReCIVA Low) with respect to whole breath (p-values equal to 0.97 for ReCIVA Whole). Compared to Tedlar bags, coherent results were obtained by using Mistral while lower VOCs levels were detected for samples (both breath and AA) collected by ReCIVA, likely due to uncorrected and fluctuating flow rates applied by this device. Finally, the analysis of all data also including data obtained by explorative analysis of the unique lung cancer (LC) breath sample showed that a clean air supply might determine a further confounding factor in breath analysis considering that lung wash-out is species-dependent. Full article
(This article belongs to the Special Issue Volatile Organic Compounds (VOCs): Their Meaning in Human Health)
Show Figures

Figure 1

Back to TopTop