Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Rhizostoma pulmo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 619 KB  
Case Report
Swimming in Stinging Water: A Case Report of Acute Response to Rhizostoma pulmo Presence Associated with Microscopic Observation of Free Nematocysts in Mucous Secretions
by Leonardo Brustenga, Giuseppe Di Cara, Chiara Pantella, Flavia Chiavoni, Francesco Valerio Di Pietro, Elena Giannico and Livia Lucentini
Dermato 2025, 5(3), 11; https://doi.org/10.3390/dermato5030011 - 20 Jun 2025
Viewed by 688
Abstract
The barrel jellyfish (Rhizostoma pulmo), like other cnidarians, shows cnidocytes containing cnidae, responsible for the jellyfish’s stinging properties. The sting of R. pulmo can cause contact dermatitis or urticaria and even systemic symptoms. Recent studies have identified stinging-cell structures in the [...] Read more.
The barrel jellyfish (Rhizostoma pulmo), like other cnidarians, shows cnidocytes containing cnidae, responsible for the jellyfish’s stinging properties. The sting of R. pulmo can cause contact dermatitis or urticaria and even systemic symptoms. Recent studies have identified stinging-cell structures in the mucous secretion released in the water column by Cassiopea xamachana, belonging to the same order as R. pulmo. The present paper verifies the release of stinging-cell structures in the water by R. pulmo and reports the case of two 17-year-old adolescents (one male and one female) who were affected by epidermal rashes consistent with the irritating sensations of stinging water. The reaction happened twice in the Ionian Sea; the patients were in proximity to R. pulmo but, on both occasions, there had been absolutely no direct contact with the jellyfish’s tentacles. To test the hypothesis of stinging water caused by R. pulmo, samples of sea water and mucous harvested in close proximity to a living jellyfish were taken and analyzed under a microscope at different magnifications. The microscopic analysis showed the presence of free and aggregated nematocysts in both the samples of water and mucous. It is likely that the free and aggregated nematocysts observed were discharged in the water by the jellyfish and were dispersed by water currents that led them to come into contact with the patients’ skin. At present, it is not known what predisposes humans to the perception of stinging water, and it is reasonable to affirm that caution should be advised for people with an allergic history when entering the water in the presence of jellyfish. Further investigations are required to better understand both the pathophysiological pathways underlying the stinging water phenomenon and the minimum concentration of urticating elements that is able to trigger the onset of stinging water. Full article
(This article belongs to the Special Issue What Is Your Diagnosis?—Case Report Collection)
Show Figures

Figure 1

38 pages, 5968 KB  
Article
Marine Jellyfish Collagen and Other Bioactive Natural Compounds from the Sea, with Significant Potential for Wound Healing and Repair Materials
by Ana-Maria Pesterau, Antoanela Popescu, Rodica Sirbu, Emin Cadar, Florica Busuricu, Ana-Maria Laura Dragan, Carolina Pascale, Ana-Maria Ionescu, Claudia Florina Bogdan-Andreescu, Marius-Daniel Radu and Cezar Laurentiu Tomescu
Mar. Drugs 2025, 23(6), 252; https://doi.org/10.3390/md23060252 - 13 Jun 2025
Viewed by 1416
Abstract
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study [...] Read more.
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study investigates the development and evaluation of a novel composite hydrogel formulated from collagen peptides extracted from the jellyfish Rhizostoma pulmo and hydroethanolic extracts from the brown alga Cystoseira barbata, both sourced from the Romanian Black Sea coast. Throughout the work, the characteristics due to the biochemical compositions of the extracts from the brown alga C. barbata and from the jellyfish R. pulmo are highlighted as important, emphasizing the content of polysaccharides, proteins, and lipids. Total phenol content was analyzed for three extracts from natural products. The biochemical composition, antioxidant, antimicrobial, and in vitro wound-healing properties of the components and their composite (JPC-ALG) were assessed. The rheological behavior and optical microscopy studies of collagen hydrogels were prepared. The general mechanisms of wound healing with the involvement of polysaccharides and collagen peptides existing in all categories of extracts were highlighted. The study of the effects of JPC-ALG composites and individual extracts on fibroblast and keratocyte cell lines is also presented. Results demonstrated that the composite exhibited synergistic effects, enhancing fibroblast and keratinocyte migration and proliferation, key factors in wound closure. The findings support the potential application of this marine-derived bioactive composite as a promising biomaterial for wound-healing therapies. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds for Skin Health)
Show Figures

Graphical abstract

28 pages, 8350 KB  
Review
Jellyfish Collagen in the Mediterranean Spotlight: Transforming Challenges into Opportunities
by Ainara Ballesteros, Raquel Torres, Maria Pascual-Torner, Francisco Revert-Ros, Jose Tena-Medialdea, José Rafael García-March, Josep Lloret and Josep-Maria Gili
Mar. Drugs 2025, 23(5), 200; https://doi.org/10.3390/md23050200 - 3 May 2025
Viewed by 2589
Abstract
Research increasingly highlights jellyfish as a sustainable alternative to other animal species, particularly for its collagen, which has versatile applications in blue biotechnology. This review explores the properties of jellyfish-derived collagen, extraction techniques, and its diverse industrial applications based on the current scientific [...] Read more.
Research increasingly highlights jellyfish as a sustainable alternative to other animal species, particularly for its collagen, which has versatile applications in blue biotechnology. This review explores the properties of jellyfish-derived collagen, extraction techniques, and its diverse industrial applications based on the current scientific literature. With a particular focus on research in the Mediterranean Sea, we underscore the role of the order Rhizostomeae as jellyfish species with high collagen content and provide an overview of the main sources for jellyfish harvesting, including active fishing, by-catch, and aquaculture. In the Mediterranean basin, the blooming species Rhizostoma pulmo, Cotylorhiza tuberculata, and Rhopilema nomadica represent a valuable opportunity to harness their nutraceutical benefits, as well as their potential for the development of biomaterials in tissue engineering and regenerative medicine. Although jellyfish fishing is not yet well-established in the region, ongoing collaborative projects with fishermen’s guilds are focused on promoting circular and blue economy strategies to valorize jellyfish as an innovative resource. Additionally, jellyfish aquaculture emerges as a promising alternative for ensuring a sustainable supply, with the Rhizostomeae Cassiopea spp. demonstrating significant potential for biotechnological applications. Full article
(This article belongs to the Special Issue Marine Collagen: From Biological Insights to Biomedical Breakthroughs)
Show Figures

Figure 1

17 pages, 5929 KB  
Article
Biodiversity of Gelatinous Organisms in the Western Adriatic Sea and Identification of Their Echo Traces in Acoustic Data
by Andrea De Felice, Ilaria Biagiotti, Giovanni Canduci, Ilaria Costantini, Antonio Palermino, Michele Centurelli, Samuele Menicucci and Iole Leonori
Diversity 2024, 16(4), 202; https://doi.org/10.3390/d16040202 - 27 Mar 2024
Viewed by 2205
Abstract
The abundance of gelatinous organisms, such as salps and jellyfish, in the Adriatic Sea has significantly increased over the past decade. Environmental factors play a key role in driving this shift in abundance through rising temperatures and a consequent decrease in oxygen levels [...] Read more.
The abundance of gelatinous organisms, such as salps and jellyfish, in the Adriatic Sea has significantly increased over the past decade. Environmental factors play a key role in driving this shift in abundance through rising temperatures and a consequent decrease in oxygen levels in the water, for which jellyfish have higher tolerance levels. Additionally, fisheries may contribute to the proliferation of jellyfish by diminishing their natural predators and food competitors. Pelagic trawl catch data from 2015 to 2023 acquired during MEDIAS acoustic surveys in the western Adriatic Sea were reviewed to extract information concerning the abundance and distribution of salps and jellyfish. These data were subsequently analyzed and compared with satellite environmental information to identify potential correlations. When considering environmental information related to the month of the survey, the results show two significant relationships: one between the abundance of Aequorea aequorea and average salinity and another one between the abundance of Rhizostoma pulmo and bottom temperature. Furthermore, when considering environmental data from the month preceding the survey, a relationship between the overall abundance of gelatinous organisms, salps and jellyfish together, and surface temperature was identified. Additionally, an analysis was conducted on specific hauls that almost exclusively yielded jellyfish, with the aim of identifying their echo traces. Although it was not possible to allocate one jellyfish species to a specific echo trace due to the frequent co-occurrence of more than one species, a general indication of typical backscatter for these species, with a higher response at 70 kHz, was consistently observed in all cases examined. Full article
(This article belongs to the Special Issue Biodiversity and Ecology in the Mediterranean Sea)
Show Figures

Figure 1

13 pages, 1393 KB  
Article
Suitability of R. pulmo Jellyfish-Collagen-Coated Well Plates for Cytocompatibility Analyses of Biomaterials
by Yanru Ren, Luo Liu, Xin Xiong, Rumen Krastev, Ralf Smeets, Denis Rimashevskiy, Reinhard Schnettler, Said Alkildani, Steffen Emmert, Ole Jung and Mike Barbeck
Int. J. Mol. Sci. 2023, 24(3), 3007; https://doi.org/10.3390/ijms24033007 - 3 Feb 2023
Cited by 6 | Viewed by 2628
Abstract
Cytocompatibility analyses of new implant materials or biomaterials are not only prescribed by the Medical Device Regulation (MDR), as defined in the DIN ISO Norm 10993-5 and -12, but are also increasingly replacing animal testing. In this context, jellyfish collagen has already been [...] Read more.
Cytocompatibility analyses of new implant materials or biomaterials are not only prescribed by the Medical Device Regulation (MDR), as defined in the DIN ISO Norm 10993-5 and -12, but are also increasingly replacing animal testing. In this context, jellyfish collagen has already been established as an alternative to mammalian collagen in different cell culture conditions, but a lack of knowledge exists about its applicability for cytocompatibility analyses of biomaterials. Thus, the present study was conducted to compare well plates coated with collagen type 0 derived from Rhizostoma pulmo with plates coated with bovine and porcine collagen. The coated well plates were analysed in vitro for their cytocompatibility, according to EN ISO 10993-5/−12, using both L929 fibroblasts and MC3T3 pre-osteoblasts. Thereby, the coated well plates were compared, using established materials as positive controls and a cytotoxic material, RM-A, as a negative control. L929 cells exhibited a significantly higher viability (#### p < 0.0001), proliferation (## p < 0.01), and a lower cytotoxicity (## p < 0.01 and # p < 0.05)) in the Jellagen® group compared to the bovine and porcine collagen groups. MC3T3 cells showed similar viability and acceptable proliferation and cytotoxicity in all collagen groups. The results of the present study revealed that the coating of well plates with collagen Type 0 derived from R. pulmo leads to comparable results to the case of well plates coated with mammalian collagens. Therefore, it is fully suitable for the in vitro analyses of the cytocompatibility of biomaterials or medical devices. Full article
(This article belongs to the Special Issue Biomaterials for Bone Tissue Engineering 3.0)
Show Figures

Figure 1

9 pages, 1697 KB  
Communication
Effect of Rinse Solutions on Rhizostoma pulmo (Cnidaria: Scyphozoa) Stings and the Ineffective Role of Vinegar in Scyphozoan Jellyfish Species
by Ainara Ballesteros, Macarena Marambio, Carles Trullas, Eric Jourdan, Jose Tena-Medialdea and Josep-Maria Gili
Int. J. Environ. Res. Public Health 2023, 20(3), 2344; https://doi.org/10.3390/ijerph20032344 - 28 Jan 2023
Cited by 3 | Viewed by 2753
Abstract
Rhizostoma pulmo is a widely distributed scyphozoan in the Mediterranean Sea. Their stings result mainly in erythema, small vesicles, or/and pain, and cause a high number of bathers to seek assistance from first-aid services during the summer season. Despite the threat that jellyfish [...] Read more.
Rhizostoma pulmo is a widely distributed scyphozoan in the Mediterranean Sea. Their stings result mainly in erythema, small vesicles, or/and pain, and cause a high number of bathers to seek assistance from first-aid services during the summer season. Despite the threat that jellyfish stings represent to public health, there is disagreement in the scientific community on first-aid protocols, with the dispute largely centered around the effectiveness of vinegar. In the present research, we investigated the effect of commonly used rinse solutions on nematocyst discharge in R. pulmo and the effect of vinegar on three more scyphozoans (Aurelia sp., Cassiopea sp., and Rhizostoma luteum). Scented ammonia, vinegar, and acetic acid triggered nematocyst discharge in R. pulmo. Vinegar also caused nematocyst discharge in Aurelia sp., Cassiopea sp., and R. luteum. In contrast, seawater, baking soda, freshwater, urine, and hydrogen peroxide were considered neutral solutions that did not induce nematocyst discharge. These results indicate that the use of vinegar, acetic acid, or commercial products based on these compounds is counterproductive. Their use can worsen pain and discomfort caused not only by R. pulmo stings but also by those of any scyphozoan. The use of seawater is recommended for cleaning the R. pulmo sting site until an inhibitor solution that irreversibly prevents nematocyst discharge is discovered. Full article
Show Figures

Figure 1

21 pages, 25653 KB  
Article
Characterization of the Biophysical Properties and Cell Adhesion Interactions of Marine Invertebrate Collagen from Rhizostoma pulmo
by Ian P. Smith, Marco Domingos, Stephen M. Richardson and Jordi Bella
Mar. Drugs 2023, 21(2), 59; https://doi.org/10.3390/md21020059 - 19 Jan 2023
Cited by 16 | Viewed by 3745
Abstract
Collagen is the most ubiquitous biomacromolecule found in the animal kingdom and is commonly used as a biomaterial in regenerative medicine therapies and biomedical research. The collagens used in these applications are typically derived from mammalian sources which poses sociological issues due to [...] Read more.
Collagen is the most ubiquitous biomacromolecule found in the animal kingdom and is commonly used as a biomaterial in regenerative medicine therapies and biomedical research. The collagens used in these applications are typically derived from mammalian sources which poses sociological issues due to widespread religious constraints, rising ethical concern over animal rights and the continuous risk of zoonotic disease transmission. These issues have led to increasing research into alternative collagen sources, of which marine collagens, in particular from jellyfish, have emerged as a promising resource. This study provides a characterization of the biophysical properties and cell adhesion interactions of collagen derived from the jellyfish Rhizostoma pulmo (JCol). Circular dichroism spectroscopy and atomic force microscopy were used to observe the triple-helical conformation and fibrillar morphology of JCol. Heparin-affinity chromatography was also used to demonstrate the ability of JCol to bind to immobilized heparin. Cell adhesion assays using integrin blocking antibodies and HT-1080 human fibrosarcoma cells revealed that adhesion to JCol is primarily performed via β1 integrins, with the exception of α2β1 integrin. It was also shown that heparan sulfate binding plays a much greater role in fibroblast and mesenchymal stromal cell adhesion to JCol than for type I mammalian collagen (rat tail collagen). Overall, this study highlights the similarities and differences between collagens from mammalian and jellyfish origins, which should be considered when utilizing alternative collagen sources for biomedical research. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Figure 1

28 pages, 3485 KB  
Article
Combination of Solid State and Submerged Fermentation Strategies to Produce a New Jellyfish-Based Food
by Francesca Anna Ramires, Gianluca Bleve, Stefania De Domenico and Antonella Leone
Foods 2022, 11(24), 3974; https://doi.org/10.3390/foods11243974 - 8 Dec 2022
Cited by 14 | Viewed by 4250
Abstract
This study describes the set-up and optimization of a fermentation strategy applied to a composite raw material containing jellyfish biomass as the principal ingredient. New fermented food was developed by combining fresh jellyfish Rhizostoma pulmo and the sequential solid-state submerged liquid fermentation method [...] Read more.
This study describes the set-up and optimization of a fermentation strategy applied to a composite raw material containing jellyfish biomass as the principal ingredient. New fermented food was developed by combining fresh jellyfish Rhizostoma pulmo and the sequential solid-state submerged liquid fermentation method used in Asian countries for processing a high-salt-containing raw material. Aspergillus oryzae was used to drive the first fermentation, conducted in solid-state conditions, of a jellyfish-based product, here named Jelly paste. The second fermentation was performed by inoculating the Jelly paste with different selected bacteria and yeasts, leading to a final product named fermented Jellyfish paste. For the first time, a set of safety parameters necessary for monitoring and describing a jellyfish-based fermented food was established. The new fermented products obtained by the use of Debaryomyces hansenii BC T3-23 yeast strain and the Bacillus amyloliquefaciens MS3 bacterial strain revealed desirable nutritional traits in terms of protein, lipids and total phenolic content, as well as valuable total antioxidant activity. The obtained final products also showed a complex enzyme profile rich in amylase, protease and lipase activities, thus making them characterized by unique composite sensory odor descriptors (umami, smoked, dried fruit, spices). Full article
(This article belongs to the Topic Future Foods from the Sea)
Show Figures

Graphical abstract

16 pages, 2231 KB  
Article
Jellyfish Polysaccharides for Wound Healing Applications
by Chiara Migone, Noemi Scacciati, Brunella Grassiri, Marinella De Leo, Alessandra Braca, Dario Puppi, Ylenia Zambito and Anna Maria Piras
Int. J. Mol. Sci. 2022, 23(19), 11491; https://doi.org/10.3390/ijms231911491 - 29 Sep 2022
Cited by 20 | Viewed by 4438
Abstract
Jellyfishes are considered a new potential resource in food, pharmaceutical and biomedical industries. In these latter cases, they are studied as source of active principles but are also exploited to produce marine collagen. In the present work, jellyfish skin polysaccharides (JSP) with glycosaminoglycan [...] Read more.
Jellyfishes are considered a new potential resource in food, pharmaceutical and biomedical industries. In these latter cases, they are studied as source of active principles but are also exploited to produce marine collagen. In the present work, jellyfish skin polysaccharides (JSP) with glycosaminoglycan (GAG) features were extracted from Rhizostoma pulmo, a main blooming species of Mediterranean Sea, massively augmented by climate leaded “jellyfishication” of the sea. Two main fractions of R. pulmo JSP (RP-JSPs) were isolated and characterized, namely a neutral fraction (RP-JSP1) and a sulphate rich, negatively charged fraction (RP-JSP2). The two fractions have average molecular weights of 121 kDa and 590 kDa, respectively. Their sugar composition was evaluated through LC-MS analysis and the result confirmed the presence of typical GAG saccharides, such as glucose, galactose, glucosamine and galactosamine. Their use as promoters of wound healing was evaluated through in vitro scratch assay on murine fibroblast cell line (BALB/3T3 clone A31) and human keratinocytes (HaCaT). Both RP-JSPs demonstrated an effective confluency rate activity leading to 80% of scratch repair in two days, promoting both cell migration and proliferation. Additionally, RP-JSPs exerted a substantial protection from oxidative stress, resulting in improved viability of treated fibroblasts exposed to H2O2. The isolated GAG-like polysaccharides appear promising as functional component for biomedical skin treatments, as well as for future exploitation as pharmaceutical excipients. Full article
Show Figures

Figure 1

17 pages, 4433 KB  
Article
Jellyfish as an Alternative Source of Bioactive Antiproliferative Compounds
by Gennaro Riccio, Kevin A. Martinez, Jesús Martín, Fernando Reyes, Isabella D’Ambra and Chiara Lauritano
Mar. Drugs 2022, 20(6), 350; https://doi.org/10.3390/md20060350 - 25 May 2022
Cited by 14 | Viewed by 4582
Abstract
Jellyfish are commonly considered a nuisance for their negative effects on human activities (e.g., fisheries, power plants and tourism) and human health. However, jellyfish provide several benefits to humans and are commonly eaten in eastern countries. Additionally, recent studies have suggested that jellyfish [...] Read more.
Jellyfish are commonly considered a nuisance for their negative effects on human activities (e.g., fisheries, power plants and tourism) and human health. However, jellyfish provide several benefits to humans and are commonly eaten in eastern countries. Additionally, recent studies have suggested that jellyfish may become a source of high-value molecules. In this study, we tested the effects of the methanolic extracts and enriched fractions, obtained by solid-phase extraction fractionation, from the scyphomedusae Pelagia noctiluca, Rhizostoma pulmo, Cotylorhiza tuberculata and the cubomedusa Caryddea marsupialis on different human cancer cell lines in order to evaluate a potential antiproliferative activity. Our results indicated that fraction C from Caryddea marsupialis-(CM) and C. tuberculata oral arms (CTOA) were the most active to reduce cell viability in a dose-dependent manner. LC/MS based dereplication analyses highlighted that both bioactive fractions contained mainly fatty acids and derivatives, with CM additionally containing small peptides (0.7–0.8 kDa), which might contribute to its higher biological activity. The mechanism of action behind the most active fraction was investigated using PCR arrays. Results showed that the fraction C of CM can reduce the expression of genes involved in apoptosis inhibition in melanoma-treated cells, which makes jellyfish a potential new source of antiproliferative drugs to be exploited in the future. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Figure 1

12 pages, 3092 KB  
Article
Genipin-Based Crosslinking of Jellyfish Collagen 3D Hydrogels
by Laura Riacci, Angela Sorriento and Leonardo Ricotti
Gels 2021, 7(4), 238; https://doi.org/10.3390/gels7040238 - 27 Nov 2021
Cited by 28 | Viewed by 6406
Abstract
Collagen-based hydrogels are an attractive option in the field of cartilage regeneration with features of high biocompatibility and low immunogenic response. Crosslinking treatments are often employed to create stable 3D gels that can support and facilitate cell embodiment. In this study, we explored [...] Read more.
Collagen-based hydrogels are an attractive option in the field of cartilage regeneration with features of high biocompatibility and low immunogenic response. Crosslinking treatments are often employed to create stable 3D gels that can support and facilitate cell embodiment. In this study, we explored the properties of JellaGel™, a novel jellyfish material extracted from Rhizostoma pulmo. In particular, we analyzed the influence of genipin, a natural crosslinker, on the formation of 3D stable JellaGel™ hydrogels embedding human chondrocytes. Three concentrations of genipin were used for this purpose (1 mM, 2.5 mM, and 5 mM). Morphological, thermal, and mechanical properties were investigated for the crosslinked materials. The metabolic activity of embedded chondrocytes was also evaluated at different time points (3, 7, and 14 days). Non-crosslinked hydrogels resulted in an unstable matrix, while genipin-crosslinked hydrogels resulted in a stable matrix, without significant changes in their properties; their collagen network revealed characteristic dimensions in the order of 20 µm, while their denaturation temperature was 57 °C. After 7 and 14 days of culture, chondrocytes showed a significantly higher metabolic activity within the hydrogels crosslinked with 1 mM genipin, compared to those crosslinked with 5 mM genipin. Full article
(This article belongs to the Special Issue Advance in Composite Gels)
Show Figures

Figure 1

19 pages, 3169 KB  
Article
Jellyfish Collagen: A Biocompatible Collagen Source for 3D Scaffold Fabrication and Enhanced Chondrogenicity
by Zara Ahmed, Lydia C. Powell, Navid Matin, Andrew Mearns-Spragg, Catherine A. Thornton, Ilyas M. Khan and Lewis W. Francis
Mar. Drugs 2021, 19(8), 405; https://doi.org/10.3390/md19080405 - 22 Jul 2021
Cited by 32 | Viewed by 6990
Abstract
Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and [...] Read more.
Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFβ1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications. Full article
(This article belongs to the Special Issue Regenerative Potential of Marine Natural Compounds)
Show Figures

Graphical abstract

26 pages, 6831 KB  
Article
Unfolding Jellyfish Bloom Dynamics along the Mediterranean Basin by Transnational Citizen Science Initiatives
by Macarena Marambio, Antonio Canepa, Laura Lòpez, Aldo Adam Gauci, Sonia K. M. Gueroun, Serena Zampardi, Ferdinando Boero, Ons Kéfi-Daly Yahia, Mohamed Nejib Daly Yahia, Verónica Fuentes, Stefano Piraino and Alan Deidun
Diversity 2021, 13(6), 274; https://doi.org/10.3390/d13060274 - 17 Jun 2021
Cited by 49 | Viewed by 10178
Abstract
Science is addressing global societal challenges, and due to limitations in research financing, scientists are turning to the public at large to jointly tackle specific environmental issues. Citizens are therefore increasingly involved in monitoring programs, appointed as citizen scientists with potential to delivering [...] Read more.
Science is addressing global societal challenges, and due to limitations in research financing, scientists are turning to the public at large to jointly tackle specific environmental issues. Citizens are therefore increasingly involved in monitoring programs, appointed as citizen scientists with potential to delivering key data at near to no cost to address environmental challenges, therein fostering scientific knowledge and advising policy- and decision-makers. One of the first and most successful examples of marine citizen science in the Mediterranean is represented by the integrative and collaborative implementation of several jellyfish-spotting campaigns in Italy, Spain, Malta, and Tunisia starting in 2009. Altogether, in terms of time coverage, geographic extent, and number of citizen records, these represent the most effective marine citizen science campaigns thus far implemented in the Mediterranean Sea. Here, we analyzed a collective database merging records over the above four countries, featuring more than 100,000 records containing almost 25,000 observations of jellyfish specimens collected over a period of 3 to 7 years (from 2009 to 2015) by citizen scientists participating in any of the national citizen science programs included in this analysis. Such a wide citizen science exercise demonstrates a valuable and cost-effective tool to understanding ecological drivers of jellyfish proliferation over the Western and Central Mediterranean basins, as well as a powerful contribution to developing tailored adaptation and management strategies; mitigating jellyfish impacts on human activities in coastal zones; and supporting implementation of marine spatial planning, Blue Growth, and conservation strategies. Full article
(This article belongs to the Special Issue Patterns and Ecology of Jellyfish in Marine Environment)
Show Figures

Figure 1

15 pages, 5317 KB  
Article
Citizens’ Eyes on Mnemiopsis: How to Multiply Sightings with a Click!
by Valentina Tirelli, Alenka Goruppi, Rodolfo Riccamboni and Milena Tempesta
Diversity 2021, 13(6), 224; https://doi.org/10.3390/d13060224 - 22 May 2021
Cited by 8 | Viewed by 3709
Abstract
Monitoring the spreading of marine invasive species represents one of the most relevant challenges for marine scientists in order to understand their impact on the environment. In recent years, citizen science is becoming more and more involved in research programs, especially taking advantage [...] Read more.
Monitoring the spreading of marine invasive species represents one of the most relevant challenges for marine scientists in order to understand their impact on the environment. In recent years, citizen science is becoming more and more involved in research programs, especially taking advantage of new digital technologies. Here, we present the results obtained in the first 20 months (from 12 July 2019 to 8 March 2021) since launching avvistAPP. This new app was conceived to track the spreading of the invasive ctenophore Mnemiopsis leidyi in the Adriatic Sea; it was also designed to collect sightings of 18 additional marine taxa (ctenophores, jellyfish, sea turtles, dolphins, salps and noble pen shell). A total of 1224 sightings were recorded, of which 530 referred to Mnemiopsis, followed by the scyphozoan jellyfish Rhizostoma pulmo (22%), Cotylorhiza tuberculata (11%) and Aurelia spp. (8%). avvistAPP produced data confirming the presence of Mnemiopsis (often in abundances > 20 individuals m−2) along almost the entire Italian coast in the summer of 2019 and 2020. Full article
(This article belongs to the Special Issue Patterns and Ecology of Jellyfish in Marine Environment)
Show Figures

Figure 1

15 pages, 1816 KB  
Article
Trace Metals Do Not Accumulate Over Time in The Edible Mediterranean Jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) from Urban Coastal Waters
by Lorena Basso, Paride Papadia, Lucia Rizzo, Danilo Migoni, Francesco P. Fanizzi and Stefano Piraino
Water 2021, 13(10), 1410; https://doi.org/10.3390/w13101410 - 18 May 2021
Cited by 11 | Viewed by 3869
Abstract
Jellyfish as food represent a millennial tradition in Asia. Recently, jellyfish have also been proposed as a valuable source of protein in Western countries. To identify health risks associated with the potential human consumption of jellyfish as food, trace element accumulation was assessed [...] Read more.
Jellyfish as food represent a millennial tradition in Asia. Recently, jellyfish have also been proposed as a valuable source of protein in Western countries. To identify health risks associated with the potential human consumption of jellyfish as food, trace element accumulation was assessed in the gonads and umbrella tissues of the Mediterranean Rhizostoma pulmo (Macri, 1778), sampled over a period of 16 months along the shallow coastal waters a short distance from the city of Taranto, an area affected by metallurgic and oil refinery sources of pollution. Higher tissue concentrations of trace elements were usually detected in gonads than in umbrella tissue. In particular, significant differences in the toxic metalloid As, and in the metals Mn, Mo, and Zn, were observed among different tissues. The concentrations of vanadium were slightly higher in umbrella tissues than in gonads. No positive correlation was observed between element concentration and jellyfish size, suggesting the lack of bioaccumulation processes. Moreover, toxic element concentrations in R. pulmo were found below the threshold levels for human consumption allowed by Australian, USA, and EU Food Regulations. These results corroborate the hypothesis that R. pulmo is a safe, potentially novel food source, even when jellyfish are harvested from coastal areas affected by anthropogenic impacts. Full article
Show Figures

Figure 1

Back to TopTop