Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = SCMV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4631 KB  
Article
Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis
by Ann Murithi, Gayathri Panangipalli, Zhengyu Wen, Michael S. Olsen, Thomas Lübberstedt, Kanwarpal S. Dhugga and Mark Jung
Plants 2025, 14(2), 295; https://doi.org/10.3390/plants14020295 - 20 Jan 2025
Cited by 1 | Viewed by 1521
Abstract
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response [...] Read more.
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN. Key findings included the identification of components of the plant innate immune system, such as differentially regulated R genes (mainly LRRs), and activation/deactivation of virus resistance pathways, including RNA interference (RNAi) via Argonaute (AGO), Dicer-like proteins, and the ubiquitin–proteasome system (UPS) via RING/U-box and ubiquitin ligases. Genes associated with redox signaling, WRKY transcription factors, and cell modification were also differentially expressed. Additionally, the expression of translation initiation and elongation factors, eIF4E and eIF4G, correlated with the presence of MLN viruses. These findings provide valuable insights into the molecular mechanisms of MLN resistance and highlight potential gene candidates for engineering or selecting MLN-resistant maize germplasm for SSA. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding)
Show Figures

Figure 1

25 pages, 5178 KB  
Article
Sugarcane Mosaic Virus Detection in Maize Using UAS Multispectral Imagery
by Noah Bevers, Erik W. Ohlson, Kushal KC, Mark W. Jones and Sami Khanal
Remote Sens. 2024, 16(17), 3296; https://doi.org/10.3390/rs16173296 - 5 Sep 2024
Cited by 4 | Viewed by 2302
Abstract
One of the most important and widespread corn/maize virus diseases is maize dwarf mosaic (MDM), which can be induced by sugarcane mosaic virus (SCMV). This study explores a machine learning analysis of five-band multispectral imagery collected via an unmanned aerial system (UAS) during [...] Read more.
One of the most important and widespread corn/maize virus diseases is maize dwarf mosaic (MDM), which can be induced by sugarcane mosaic virus (SCMV). This study explores a machine learning analysis of five-band multispectral imagery collected via an unmanned aerial system (UAS) during the 2021 and 2022 seasons for SCMV disease detection in corn fields. The three primary objectives are to (i) determine the spectral bands and vegetation indices that are most important or correlated with SCMV infection in corn, (ii) compare spectral signatures of mock-inoculated and SCMV-inoculated plants, and (iii) compare the performance of four machine learning algorithms, including ridge regression, support vector machine (SVM), random forest, and XGBoost, in predicting SCMV during early and late stages in corn. On average, SCMV-inoculated plants had higher reflectance values for blue, green, red, and red-edge bands and lower reflectance for near-infrared as compared to mock-inoculated samples. Across both years, the XGBoost regression model performed best for predicting disease incidence percentage (R2 = 0.29, RMSE = 29.26), and SVM classification performed best for the binary prediction of SCMV-inoculated vs. mock-inoculated samples (72.9% accuracy). Generally, model performances appeared to increase as the season progressed into August and September. According to Shapley additive explanations (SHAP analysis) of the top performing models, the simplified canopy chlorophyll content index (SCCCI) and saturation index (SI) were the vegetation indices that consistently had the strongest impacts on model behavior for SCMV disease regression and classification prediction. The findings of this study demonstrate the potential for the development of UAS image-based tools for farmers, aiming to facilitate the precise identification and mapping of SCMV infection in corn. Full article
(This article belongs to the Special Issue Crops and Vegetation Monitoring with Remote/Proximal Sensing II)
Show Figures

Graphical abstract

12 pages, 3814 KB  
Article
Alteration of Photosynthetic and Antioxidant Gene Expression in Sugarcane Infected by Multiple Mosaic Viruses
by Intan Ria Neliana, Wardatus Soleha, Suherman, Nurmalasari Darsono, Rikno Harmoko, Widhi Dyah Sawitri and Bambang Sugiharto
Int. J. Plant Biol. 2024, 15(3), 757-768; https://doi.org/10.3390/ijpb15030055 - 8 Aug 2024
Cited by 2 | Viewed by 1559
Abstract
Sugarcane mosaic virus (SCMV), sugarcane streak mosaic virus (SCSMV), and sorghum mosaic virus (SrMV) are the causative pathogens of mosaic disease. This study aimed to identify mosaic virus infection and its impact on photosynthetic and antioxidant gene expression in eight commercial sugarcane cultivars [...] Read more.
Sugarcane mosaic virus (SCMV), sugarcane streak mosaic virus (SCSMV), and sorghum mosaic virus (SrMV) are the causative pathogens of mosaic disease. This study aimed to identify mosaic virus infection and its impact on photosynthetic and antioxidant gene expression in eight commercial sugarcane cultivars grown on sugarcane plantations in East Java, Indonesia. The disease incidence and severity were observed in symptomatic leave samples, and then the virus was identified. A high incidence and severity of mosaic symptoms were observed in the PS881 and NX04 cultivars compared with the other cultivars. RT-PCR analysis detected SCSMV infection in all cultivars; double infections with SCSMV and SCMV in the PS881, PS882, and Cening cultivars; and triple infections with SCSMV, SCMV, and SrMV in the PS881 cultivar. Ascorbate peroxidase (Apx) expression was upregulated in all virus-infected cultivars and significantly increased in the triple-infected PS881 cultivar. However, catalase (Cat) expression was only slightly increased in the PS881 cultivar. The chlorophyll content was reduced, and the PsaA gene was downregulated in all cultivars. The expression of PsaA, RbcS, and Sps was significantly suppressed in the triple-infected PS881 cultivar. Moreover, the downregulation of both the RbcS and Pepc genes was concomitant with that of their protein levels. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

17 pages, 1776 KB  
Article
In Silico Identification of Sugarcane Genome-Encoded MicroRNAs Targeting Sugarcane Mosaic Virus
by Wang Wenzhi, Muhammad Aleem Ashraf, Hira Ghaffar, Zainab Ijaz, Waqar ul Zaman, Huda Mazhar, Maryam Zulfqar and Shuzhen Zhang
Microbiol. Res. 2024, 15(1), 273-289; https://doi.org/10.3390/microbiolres15010019 - 16 Feb 2024
Cited by 4 | Viewed by 2178
Abstract
Sugarcane mosaic virus (SCMV) (genus, Potyvirus; family, Potyviridae) is widespread, deleterious, and the most damaging pathogen of sugarcane (Saccharum officinarum L. and Saccharum spp.) that causes a substantial barrier to producing high sugarcane earnings. Sugarcane mosaic disease (SCMD) is caused [...] Read more.
Sugarcane mosaic virus (SCMV) (genus, Potyvirus; family, Potyviridae) is widespread, deleterious, and the most damaging pathogen of sugarcane (Saccharum officinarum L. and Saccharum spp.) that causes a substantial barrier to producing high sugarcane earnings. Sugarcane mosaic disease (SCMD) is caused by a single or compound infection of SCMV disseminated by several aphid vectors in a non-persistent manner. SCMV has flexuous filamentous particle of 700–750 nm long, which encapsidated in a positive-sense, single-stranded RNA molecule of 9575 nucleotides. RNA interference (RNAi)-mediated antiviral innate immunity is an evolutionarily conserved key biological process in eukaryotes and has evolved as an antiviral defense system to interfere with viral genomes for controlling infections in plants. The current study aims to analyze sugarcane (Saccharum officinarum L. and Saccharum spp.) locus-derived microRNAs (sof-miRNAs/ssp-miRNAs) with predicted potential for targeting the SCMV +ssRNA-encoded mRNAs, using a predictive approach that involves five algorithms. The ultimate goal of this research is to mobilize the in silico- predicted endogenous sof-miRNAs/ssp-miRNAs to experimentally trigger the catalytic RNAi pathway and generate sugarcane cultivars to evaluate the potential antiviral resistance surveillance ability and capacity for SCMV. Experimentally validated mature sugarcane (S. officinarum, 2n = 8X = 80) and (S. spp., 2n = 100–120) sof-miRNA/ssp-miRNA sequences (n = 28) were downloaded from the miRBase database and aligned with the SCMV genome (KY548506). Among the 28 targeted mature locus-derived sof-miRNAs/ssp-miRNAs evaluated, one sugarcane miRNA homolog, sof-miR159c, was identified to have a predicted miRNA binding site, at nucleotide position 3847 of the SCMV genome targeting CI ORF. To verify the accuracy of the target prediction accuracy and to determine whether the sugarcane sof-miRNA/ssp-miRNA could bind the predicted SCMV mRNA target(s), we constructed an integrated Circos plot. A genome-wide in silico-predicted miRNA-mediated target gene regulatory network was implicated to validate interactions necessary to warrant in vivo analysis. The current work provides valuable computational evidence for the generation of SCMV-resistant sugarcane cultivars. Full article
Show Figures

Figure 1

9 pages, 2680 KB  
Article
High-Order Sinc-Correlated Model Vortex Beams
by Jixian Wang, Zhangrong Mei, Yonghua Mao, Xiaohui Shi and Guoquan Zhou
Photonics 2023, 10(5), 550; https://doi.org/10.3390/photonics10050550 - 9 May 2023
Viewed by 1494
Abstract
We propose a new partially coherent vortex source model in which the spatial correlation function is a sinc function on the difference from the q-th power of the coordinates of two points of the source field. The beam radiated by such source [...] Read more.
We propose a new partially coherent vortex source model in which the spatial correlation function is a sinc function on the difference from the q-th power of the coordinates of two points of the source field. The beam radiated by such source is termed the high-order sinc-correlated model vortex (SCMV) beam. We derived the propagating formula of the cross-spectral density (CSD) function for SCMV beams in atmospheric disturbances. On the basis of the derived analytical expression, the behavior of the spectral density of the SCMV beams propagating in free space and atmosphere turbulence was investigated under comparative analysis. The results show that the spectral densities of such beams exhibited interesting novel features, which were significantly different from those of the trivial vortex beams. Full article
(This article belongs to the Special Issue Beam Propagation)
Show Figures

Figure 1

21 pages, 10526 KB  
Article
Transcriptomic and Functional Analyses Reveal the Different Roles of Vitamins C, E, and K in Regulating Viral Infections in Maize
by Kaiqiang Hao, Miaoren Yang, Yakun Cui, Zhiyuan Jiao, Xinran Gao, Zhichao Du, Zhiping Wang, Mengnan An, Zihao Xia and Yuanhua Wu
Int. J. Mol. Sci. 2023, 24(9), 8012; https://doi.org/10.3390/ijms24098012 - 28 Apr 2023
Cited by 2 | Viewed by 2484
Abstract
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. [...] Read more.
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize. Full article
(This article belongs to the Special Issue Recent Research on the Interaction between Plant and Pathogen)
Show Figures

Figure 1

3 pages, 548 KB  
Commentary
Frontline Warrior microRNA167: A Battle of Survival
by Gurparsad Singh Suri and Manish Tiwari
Int. J. Plant Biol. 2022, 13(4), 598-600; https://doi.org/10.3390/ijpb13040047 - 5 Dec 2022
Cited by 2 | Viewed by 2391
Abstract
Plant pathogens such as viruses are detrimental to the survivorship of plant species. Coinfection of maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) causes a deadly disease in maize. An investigation by Liu et al. (2022) showed the role of [...] Read more.
Plant pathogens such as viruses are detrimental to the survivorship of plant species. Coinfection of maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) causes a deadly disease in maize. An investigation by Liu et al. (2022) showed the role of Zma-miR167 in positively imparting resistance against the MCMV and SCMV. The authors identified ZmARF3 and ZmARF30 as the targets of Zma-miR167. ZmARF3 and ZmARF30 were identified as transcription factors that bind the cis-element in ZmPAO1 promoters to activate its expression. The authors showed how the Zma-miR167-ZmARF3/30-ZmPAO1 module functions differently in resistant and susceptible lines with high expression of Zma-miR167 in resistant lines correlated with the resistant phenotype. Finally, the authors concluded that MCMV-encoded p31 protein enhances ZmPAO1 enzyme activity for its survival in the host. Full article
Show Figures

Figure 1

22 pages, 3455 KB  
Article
Differential Expression of Genes between a Tolerant and a Susceptible Maize Line in Response to a Sugarcane Mosaic Virus Infection
by Gustavo Rodríguez-Gómez, Pablo Vargas-Mejía and Laura Silva-Rosales
Viruses 2022, 14(8), 1803; https://doi.org/10.3390/v14081803 - 17 Aug 2022
Cited by 4 | Viewed by 2933
Abstract
To uncover novel genes associated with the Sugarcane mosaic virus (SCMV) response, we used RNA-Seq data to analyze differentially expressed genes (DEGs) and transcript expression pattern clusters between a tolerant/resistant (CI-RL1) and a susceptible (B73) line, in addition to the F1 progeny (CI-RL1xB73). [...] Read more.
To uncover novel genes associated with the Sugarcane mosaic virus (SCMV) response, we used RNA-Seq data to analyze differentially expressed genes (DEGs) and transcript expression pattern clusters between a tolerant/resistant (CI-RL1) and a susceptible (B73) line, in addition to the F1 progeny (CI-RL1xB73). A Gene Ontology (GO) enrichment of DEGs led us to propose three genes possibly associated with the CI-RL1 response: a heat shock 90-2 protein and two ABC transporters. Through a clustering analysis of the transcript expression patterns (CTEPs), we identified two genes putatively involved in viral systemic spread: the maize homologs to the PIEZO channel (ZmPiezo) and to the Potyvirus VPg Interacting Protein 1 (ZmPVIP1). We also observed the complex behavior of the maize eukaryotic factors ZmeIF4E and Zm-elfa (involved in translation), homologs to eIF4E and eEF1α in A. thaliana. Together, the DEG and CTEPs results lead us to suggest that the tolerant/resistant CI-RL1 response to the SCMV encompasses the action of diverse genes and, for the first time, that maize translation factors are associated with viral interaction. Full article
(This article belongs to the Topic Plant Virus)
Show Figures

Graphical abstract

11 pages, 4502 KB  
Article
Incidence and Distribution of Four Viruses Causing Diverse Mosaic Diseases of Sugarcane in China
by Er-Qi He, Wen-Qing Bao, Sheng-Ren Sun, Chun-Yu Hu, Jian-Sheng Chen, Zheng-Wang Bi, Yuan Xie, Jia-Ju Lu and San-Ji Gao
Agronomy 2022, 12(2), 302; https://doi.org/10.3390/agronomy12020302 - 25 Jan 2022
Cited by 10 | Viewed by 3784
Abstract
Mosaic diseases of sugarcane caused by various viruses have been reported in most sugarcane planting countries and threaten global sugar production. There is a lack of extensive, systematic investigation of mosaic diseases and their causal viruses in China. In this study, a total [...] Read more.
Mosaic diseases of sugarcane caused by various viruses have been reported in most sugarcane planting countries and threaten global sugar production. There is a lack of extensive, systematic investigation of mosaic diseases and their causal viruses in China. In this study, a total of 901 leaf samples showing mosaic symptoms were collected from commercial fields in eight provincial regions in China and tested for sorghum mosaic virus (SrMV), sugarcane mosaic virus (SCMV), sugarcane streak mosaic virus (SCSMV), and maize yellow mosaic virus (MaYMV) using RT-PCR with four specific primer pairs. Of 901 tested samples, 38.5% (347/901) of samples were infected with one of the four viruses alone. Infection by two or more viruses was seen for 42.6% (384/901) of samples. The highest incidence of virus-causing sugarcane mosaic disease was SrMV (70.1%), followed by SCMV (33.4%) and SCSMV (30.3%), and the lowest incidence was seen for MaYMV (5.1%). Three viruses (SrMV, SCMV, and SCSMV) were found in eight sugarcane-planting provinces, whereas MaYMV was only found in Fujian, Guangxi, and Sichuan provinces. Mixed infections of the three main viruses, particularly for SrMV + SCMV and SrMV + SCSMV, were commonly found in the sugarcane samples. Our systematic determination of the occurrence and distribution of four RNA viruses associated with sugarcane mosaic diseases can provide evidence to guide the development of strategies for the prevention and control of sugarcane mosaic diseases in China. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 6754 KB  
Article
Comparative Analysis of Sugar Metabolites and Their Transporters in Sugarcane Following Sugarcane mosaic virus (SCMV) Infection
by Sehrish Akbar, Wei Yao, Lifang Qin, Yuan Yuan, Charles A. Powell, Baoshan Chen and Muqing Zhang
Int. J. Mol. Sci. 2021, 22(24), 13574; https://doi.org/10.3390/ijms222413574 - 17 Dec 2021
Cited by 22 | Viewed by 4265
Abstract
Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two [...] Read more.
Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl. Full article
(This article belongs to the Special Issue Sugar Transport in Plants)
Show Figures

Figure 1

19 pages, 2230 KB  
Review
Sugarcane Mosaic Disease: Characteristics, Identification and Control
by Guilong Lu, Zhoutao Wang, Fu Xu, Yong-Bao Pan, Michael P. Grisham and Liping Xu
Microorganisms 2021, 9(9), 1984; https://doi.org/10.3390/microorganisms9091984 - 17 Sep 2021
Cited by 46 | Viewed by 15550
Abstract
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few [...] Read more.
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 15112 KB  
Article
Selective Interaction of Sugarcane eIF4E with VPgs from Sugarcane Mosaic Pathogens
by Zongtao Yang, Meng Dong, Guangyuan Cheng, Shuxian Liu, Hai Zhang, Heyang Shang, Yingshuan Zhou, Guoqiang Huang, Muqing Zhang, Fengji Wang and Jingsheng Xu
Viruses 2021, 13(3), 518; https://doi.org/10.3390/v13030518 - 22 Mar 2021
Cited by 13 | Viewed by 3757
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) plays a key role in the infection of potyviruses in susceptible plants by interacting with viral genome-linked protein (VPg). Sugarcane (Saccharum spp.) production is threatened by mosaic disease caused by Sugarcane mosaic virus (SCMV), Sorghum mosaic [...] Read more.
Eukaryotic translation initiation factor 4E (eIF4E) plays a key role in the infection of potyviruses in susceptible plants by interacting with viral genome-linked protein (VPg). Sugarcane (Saccharum spp.) production is threatened by mosaic disease caused by Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Sugarcane streak mosaic virus (SCSMV). In this study, two eIF4Es and their isoform eIF(iso)4E and 4E-binding protein coding genes were cloned from sugarcane cultivar ROC22 and designated SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP, respectively. Real-time quantitative PCR analysis showed different expression profiles of these four genes upon SCMV challenge. A subcellular localization assay showed that SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP were distributed in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that SceIF4Ea/b and SceIF(iso)4E were selectively employed by different sugarcane mosaic pathogens, i.e., SCMV-VPg interacted with SceIF4Ea/b and SceIF(iso)4E, SrMV-VPg interacted with both SceIF4Eb and SceIF(iso)4E, and SCSMV-VPg interacted only with SceIF(iso)4E. Intriguingly, the BiFC assays, but not the Y2H assays, showed that ScnCBP interacted with the VPgs of SCMV, SrMV, and SCSMV. Competitive interaction assays showed that SCMV-VPg, SrMV-VPg, and SCMV-VPg did not compete with each other to interact with SceIF(iso)4E, and SceIF(iso)4E competed with SceIF4Eb to interact with SrMV-VPg but not SCMV-VPg. This study sheds light on the molecular mechanism of sugarcane mosaic pathogen infection of sugarcane plants and benefits sugarcane breeding against the sugarcane mosaic disease. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

22 pages, 10034 KB  
Article
Impact of Fungal Endophyte Colonization of Maize (Zea mays L.) on Induced Resistance to Thrips- and Aphid-Transmitted Viruses
by Simon Kiarie, Johnson O. Nyasani, Linnet S. Gohole, Nguya K. Maniania and Sevgan Subramanian
Plants 2020, 9(4), 416; https://doi.org/10.3390/plants9040416 - 28 Mar 2020
Cited by 37 | Viewed by 5541
Abstract
In eastern Africa, Maize lethal necrosis (MLN) is caused by the co-infection of maize plants with Maize chlorotic mottle virus (MCMV) (Tombusviridae: Machlomovirus) and Sugarcane mosaic virus (SCMV) (Potyviridae: Potyvirus). With the disease being new to Africa, minimal effective management strategies [...] Read more.
In eastern Africa, Maize lethal necrosis (MLN) is caused by the co-infection of maize plants with Maize chlorotic mottle virus (MCMV) (Tombusviridae: Machlomovirus) and Sugarcane mosaic virus (SCMV) (Potyviridae: Potyvirus). With the disease being new to Africa, minimal effective management strategies exist against it. This study examined the potential of 10 fungal isolates to colonize maize plants and induce resistance against MCMV and SCMV. Maize seeds were soaked in fungal inoculum, sown and evaluated for endophytic colonization. Fungus-treated plants were challenge-inoculated with SCMV and/or MCMV to assess the effects of fungal isolates on the viruses in terms of incidence, severity and virus titers over time. Isolates of Trichoderma harzianum, Trichoderma atroviride and Hypocrea lixii colonized different plant sections. All plants singly or dually-inoculated with SCMV and MCMV tested positive for the viruses by reverse transcription-polymerase chain reaction (RT-PCR). Maize plants inoculated by T. harzianum and Metarhizium. anisopliae resulted in up to 1.4 and 2.7-fold reduced SCMV severity and titer levels, respectively, over the controls but had no significant effect on MCMV. The results show that both T. harzianum and M. anisopliae are potential candidates for inducing resistance against SCMV and can be used for the integrated management of MLN. Full article
(This article belongs to the Special Issue Plant-Virus Interactions)
Show Figures

Figure 1

22 pages, 2673 KB  
Article
Genetic Analysis of QTL for Resistance to Maize Lethal Necrosis in Multiple Mapping Populations
by Luka A. O. Awata, Yoseph Beyene, Manje Gowda, Suresh L. M., McDonald B. Jumbo, Pangirayi Tongoona, Eric Danquah, Beatrice E. Ifie, Philip W. Marchelo-Dragga, Michael Olsen, Veronica Ogugo, Stephen Mugo and Boddupalli M. Prasanna
Genes 2020, 11(1), 32; https://doi.org/10.3390/genes11010032 - 26 Dec 2019
Cited by 23 | Viewed by 6576
Abstract
Maize lethal necrosis (MLN) occurs when maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) co-infect maize plant. Yield loss of up to 100% can be experienced under severe infections. Identification and validation of genomic regions and their flanking markers can facilitate [...] Read more.
Maize lethal necrosis (MLN) occurs when maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) co-infect maize plant. Yield loss of up to 100% can be experienced under severe infections. Identification and validation of genomic regions and their flanking markers can facilitate marker assisted breeding for resistance to MLN. To understand the status of previously identified quantitative trait loci (QTL)in diverse genetic background, F3 progenies derived from seven bi-parental populations were genotyped using 500 selected kompetitive allele specific PCR (KASP) SNPs. The F3 progenies were evaluated under artificial MLN inoculation for three seasons. Phenotypic analyses revealed significant variability (P ≤ 0.01) among genotypes for responses to MLN infections, with high heritability estimates (0.62 to 0.82) for MLN disease severity and AUDPC values. Linkage mapping and joint linkage association mapping revealed at least seven major QTL (qMLN3_130 and qMLN3_142, qMLN5_190 and qMLN5_202, qMLN6_85 and qMLN6_157 qMLN8_10 and qMLN9_142) spread across the 7-biparetal populations, for resistance to MLN infections and were consistent with those reported previously. The seven QTL appeared to be stable across genetic backgrounds and across environments. Therefore, these QTL could be useful for marker assisted breeding for resistance to MLN. Full article
(This article belongs to the Special Issue Genetic Diversity Assessment and Marker-Assisted Selection in Crops)
Show Figures

Figure 1

15 pages, 1806 KB  
Article
Status and Epidemiology of Maize Lethal Necrotic Disease in Northern Tanzania
by Fatma Hussein Kiruwa, Samuel Mutiga, Joyce Njuguna, Eunice Machuka, Senait Senay, Tileye Feyissa, Patrick Alois Ndakidemi and Francesca Stomeo
Pathogens 2020, 9(1), 4; https://doi.org/10.3390/pathogens9010004 - 18 Dec 2019
Cited by 12 | Viewed by 5377
Abstract
Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) [...] Read more.
Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n = 223). Analysis of a subset (n = 48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers’ interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamics in Tanzania and emphasizes the need for regional scientists to utilize farmers’ awareness in managing the disease. Full article
(This article belongs to the Section Plant Pathogens)
Show Figures

Figure 1

Back to TopTop