Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,549)

Search Parameters:
Keywords = SEM observations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6353 KiB  
Article
Effects of Wood Ash Fertilizer on Element Dynamics in Soil Solution and Crop Uptake
by Chuanzhen Jian, Toru Hamamoto, Chihiro Inoue, Mei-Fang Chien, Hiroshi Naganuma, Takehito Mori, Akihiro Sawada, Masafumi Hidaka, Hiroyuki Setoyama and Tomoyuki Makino
Agronomy 2025, 15(5), 1097; https://doi.org/10.3390/agronomy15051097 - 30 Apr 2025
Viewed by 221
Abstract
Wood ash, a byproduct of woody biomass power generation, has potential as an alternative K fertilizer due to its high K content and pH-raising properties. However, concerns remain about heavy metal contaminants like Cr and the limited understanding of element dynamics in soil–solution–crop [...] Read more.
Wood ash, a byproduct of woody biomass power generation, has potential as an alternative K fertilizer due to its high K content and pH-raising properties. However, concerns remain about heavy metal contaminants like Cr and the limited understanding of element dynamics in soil–solution–crop systems after wood ash’s application. This study examined the effects of 1% (w/w) wood ash on element dynamics and komatsuna (Brassica rapa var. perviridis) uptake in low-K soil through a pot experiment. XRD was used to analyze mineral composition, SEM-EDS to observe surface and elemental properties, and XANES to examine Cr speciation in wood ash. Soil solution analysis covered macro- and micronutrients, heavy metals, anions, pH, and DOC, while crop element concentrations and aboveground dry weight were also quantified. The chemical speciation of Cu and Cr in a soil solution was modeled using Visual MINTEQ. Wood ash significantly increased K concentrations (from 17 mg/L to 650 mg/L) in the soil solution, along with Ca, Mg, P, and Mo, while reducing Ni, Mn, Zn, and Cd levels. Komatsuna K uptake surged from 123 mg/kg to 559 mg/kg, leading to a 3.31-fold biomass increase. Notably, the Cd concentration in the crops dropped significantly from 0.709 to 0.057 mg/kg, well below the Codex standard of 0.2 mg/kg. Although Cu and Cr concentrations rose in the soil solution, crop uptake remained low due to >99% complexation with fulvic acid, as confirmed by Visual MINTEQ modeling. This study confirms that wood ash is an effective K fertilizer, but emphasizes the need for risk mitigation strategies to ensure safe and sustainable agricultural application. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Prevention in Agricultural Soils)
Show Figures

Figure 1

15 pages, 6305 KiB  
Article
A Study on the Spectral Characteristics of 83.4 nm Extreme Ultraviolet Filters
by Qian Liu, Aiming Zhou, Hanlin Wang, Pingxu Wang, Chen Tao, Guang Zhang, Xiaodong Wang and Bo Chen
Coatings 2025, 15(5), 535; https://doi.org/10.3390/coatings15050535 - 30 Apr 2025
Viewed by 170
Abstract
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the [...] Read more.
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the nickel mesh-supported indium (In) filter, and their spectral characteristics were comprehensively studied. The material and thickness of the filter were chosen based on atomic scattering principles, determined through theoretical calculation and software simulation. The metal film was deposited using the vacuum-resistive thermal evaporation method. The measured transmission of the filter was 10.06% at 83.4 nm. The surface elements of the sample were analyzed using X-ray photoelectron spectroscopy (XPS). The surface and cross-sectional morphologies of the filter were observed using a scanning electron microscope (SEM). The impact of the oxide layer and carbon contamination on the filter’s transmittance was investigated using an ellipsometer. A multilayer “In-In2O3-C” model was established to determine the thickness of both the oxide layer and carbon contamination layer on the filter. This model introduces the filling factor based on the original model and considers the diffusion of the contamination layer, resulting in more accurate fitting results. The transmittance of the filter in the visible light range was measured using a UV-VIS spectrophotometer, and the measurement error was analyzed. This article provides preparation methods and test methods for the 83.4 nm EUV filter and conducts a detailed analysis of the spectral characteristics of the prepared optical filters, which hold significant value for space exploration applications. Full article
Show Figures

Figure 1

22 pages, 925 KiB  
Article
Improvement of the Structure and Antioxidant Activity of Protein–Polyphenol Complexes in Barley Malts Using Roasting Methods
by Guozhi Wu, Huiting Lin and Yongsheng Chen
Antioxidants 2025, 14(5), 538; https://doi.org/10.3390/antiox14050538 - 29 Apr 2025
Viewed by 134
Abstract
Proteins and polyphenols are important components in barley malt. During the roasting process of barley malt, proteins and polyphenols interact and influence each other, ultimately altering the nutritional profile and functional properties of barley malt. In this research, polyphenol-free proteins and protein–polyphenol complexes [...] Read more.
Proteins and polyphenols are important components in barley malt. During the roasting process of barley malt, proteins and polyphenols interact and influence each other, ultimately altering the nutritional profile and functional properties of barley malt. In this research, polyphenol-free proteins and protein–polyphenol complexes were extracted from barley malt subjected to varying degrees of roasting. The antioxidant activity of protein–polyphenol complexes was assessed by ABTS, FRAP, and ORAC assays. The structural characteristics of the proteins were examined through UV, FL, CD, FTIR, and SEM. We found that roasting enhances the solubility of globulin, prolamin, and glutenin and facilitates the binding of these proteins with polyphenols. Conversely, the impact of roasting on albumin exhibits a trend opposite to that observed in the other three proteins. The antioxidant activity of protein–polyphenol complexes was significantly higher than that of polyphenol-free proteins. Additionally, the microenvironment of the amino acid residues of the four proteins exhibited increased polarity following the roasting process, and the structural conformation of albumin, globulin, and glutelin transitioned from an ordered to a disordered state. Our results indicate that roasting enhances the antioxidant activity of protein–polyphenol complexes by altering the secondary and tertiary structures of these proteins, thereby exposing more hydrophobic side-chain groups inside the proteins and offering more binding sites for polyphenols. Full article
24 pages, 10960 KiB  
Article
Bacterial Cellulose-Based Nanocomposites for Wound Healing Applications
by Alexandra-Ionela Dogaru, Ovidiu-Cristian Oprea, Gabriela-Olimpia Isopencu, Adela Banciu, Sorin-Ion Jinga and Cristina Busuioc
Polymers 2025, 17(9), 1225; https://doi.org/10.3390/polym17091225 - 29 Apr 2025
Viewed by 235
Abstract
Bacterial cellulose (BC) is a polysaccharide produced by Gram-positive and Gram-negative bacteria with a strictly aerobic metabolism, having a huge number of significant applications in the biomedical field. This study investigates the development of bacterial cellulose (BC)-based composite systems that incorporate cerium dioxide [...] Read more.
Bacterial cellulose (BC) is a polysaccharide produced by Gram-positive and Gram-negative bacteria with a strictly aerobic metabolism, having a huge number of significant applications in the biomedical field. This study investigates the development of bacterial cellulose (BC)-based composite systems that incorporate cerium dioxide nanoparticles (CeO2 NPs) used as antibacterial agents to enhance wound healing, particularly for burn treatments. The innovation of this study resides in the integration of CeO2 NPs synthesized by using a precipitation method using both chemical and green reducing agents, ammonium hydroxide (NH4OH) and turmeric extract (TE), in BC membranes composed of ultrathin nanofibers interwoven into a three-dimensional network appearing as a hydrogel mass. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) confirmed the effective deposition of this agent onto the BC matrix. Antibacterial activity tests against E. coli and B. subtilis indicated strong inhibition for the composites synthesized following these routes, particularly for the BC-CeO2-TE-OH sample, processed by employing both precipitating agents. Cytotoxicity evaluations showed no inhibition of cell activity. Additionally, loading the composites with dexamethasone endowed them with analgesic release over 4 h, as observed through ultraviolet–visible spectroscopy (UV-Vis), while the FTIR spectra revealed a sustained drug presence post-release. These findings highlight BC-based films as promising candidates for advanced wound care and tissue engineering applications. Full article
Show Figures

Figure 1

16 pages, 781 KiB  
Article
Preparation of Epigallocatechin Gallate-Enriched Antioxidant Edible Films Based on Konjac Glucomannan and Sodium Alginate: Impact on Storage Stability of Mandarin Fish
by Ran Wang, Yuqi Wang, Xinzhen Zhang, Yang Gao, Xian Wu, Xueling Li, Zhengquan Liu, Yue Sun and Jin Liang
Foods 2025, 14(9), 1570; https://doi.org/10.3390/foods14091570 - 29 Apr 2025
Viewed by 76
Abstract
The objective of this research was to prepare robust edible films possessing antioxidant properties by utilizing konjac glucomannan (KGM), sodium alginate (SA), and epigallocatechin gallate (EGCG). This research also involved structural characterization and the assessment of functional attributes of the composite films with [...] Read more.
The objective of this research was to prepare robust edible films possessing antioxidant properties by utilizing konjac glucomannan (KGM), sodium alginate (SA), and epigallocatechin gallate (EGCG). This research also involved structural characterization and the assessment of functional attributes of the composite films with varying EGCG concentrations. It was found that the inclusion of EGCG reduced the viscosity of the edible film solutions while enhancing their mechanical strength. Fourier transform infrared spectroscopy demonstrated adequate compatibility among the film-forming materials, with EGCG forming hydrogen bond interactions with KGM and SA. SEM analysis revealed that increasing EGCG concentration led to the formation of discontinuous blocks and rough surfaces, with smooth and fine-grained particles observed at 0.2% (w/v) EGCG concentration. Furthermore, results from the application of the KGM-SA-based films in chilled mandarin fish showed that they could exert antioxidant function when incorporated with EGCG. The values of TVB-N and TBARS of fish pieces were obviously decreased in the 12-day storage period, indicating their potential to increase the shelf life of freshwater fish food. Full article
(This article belongs to the Section Foods of Marine Origin)
22 pages, 7404 KiB  
Article
Antibacterial Activity and Mechanism of Litsea cubeba Essential Oil Against Salmonella typhimurium
by Cuncai Wang, Xiying Chen, Mingjie Liu, Xiaoquan Tang, Youzhi Li, Yuming Zhan and Zhihui Hao
Plants 2025, 14(9), 1343; https://doi.org/10.3390/plants14091343 - 29 Apr 2025
Viewed by 109
Abstract
Litsea cubeba essential oil (LCEO) has been reported as an antibacterial agent, but its effects against Salmonella typhimurium (S.Tm) and the underlying mechanisms remain unclear. The antibacterial efficacy of LCEO was assessed utilizing both microdilution and growth curve methodologies, and its chemical composition [...] Read more.
Litsea cubeba essential oil (LCEO) has been reported as an antibacterial agent, but its effects against Salmonella typhimurium (S.Tm) and the underlying mechanisms remain unclear. The antibacterial efficacy of LCEO was assessed utilizing both microdilution and growth curve methodologies, and its chemical composition was thoroughly analyzed. Morphological alterations in the cells were observed through scanning electron microscopy (SEM), while cellular permeability was gauged based on the variations in nucleic acid and protein contents. The impact of LCEO on ATPase activity and its anti-biofilm formation activity was assessed using colorimetric methods. The results indicated that the MIC and MBC of LCEO against S.Tm were 0.4 mg/mL and 0.8 mg/mL, respectively. SEM and PI staining revealed disrupted bacterial cell integrity. Compared to those in the control group, treatment with LCEO significantly elevated the levels of extracellular nucleic acids and proteins (p < 0.05). Furthermore, at the MIC, LCEO led to a 77.9% reduction in AKP content, and decreased intracellular Na+K+-ATPase and Ca2+Mg2+-ATPase activities by 79.9% and 54.6%, respectively. Additionally, LCEO markedly inhibited biofilm formation, enhanced surface hydrophobicity, and diminished the swimming motility of S.Tm. Overall, LCEO exhibited promising antibacterial properties, indicating its potential as an effective inhibitor against S.Tm. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

12 pages, 4303 KiB  
Communication
The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers
by My Phan, Hao Liu, Lina M. Delgado, Hammed Olawale Faleke, Sai Zhang, Anthony F. Cozzolino, Dimitri Pappas and Guigen Li
Molecules 2025, 30(9), 1981; https://doi.org/10.3390/molecules30091981 - 29 Apr 2025
Viewed by 151
Abstract
This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (1A to 1D) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki–Miyaura cross-coupling over a four-day reaction period. [...] Read more.
This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (1A to 1D) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki–Miyaura cross-coupling over a four-day reaction period. Structures, thermal, and optical properties were examined using multiple analytical techniques. Fourier transform-infrared (FT-IR) spectroscopy was used to study the hydrogen bonding within the polymer system, suggesting the formation of the polymer through the Suzuki–Miyaura coupling reaction. Ultraviolet–visible (UV-vis) spectroscopy indicated strong electronic delocalization, with maximum absorbance peaks between 257 and 280 nm. Thermal characterization, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was used to investigate the thermal stability. TGA results showed that all four polymers retained more than 20% of their initial mass at 1000 °C, indicating good thermal stability across the series. DSC analysis revealed that polymer 1A exhibited a glass transition temperature (Tg) of 167 °C, indicating the presence of a network formed by aromatic conjugation and hydrogen bonding. Furthermore, the subtle Tg step observed for 1A suggests a degree of crystallinity within the polymer matrix, which was further supported by X-ray diffraction (XRD) analysis. Aggregation-induced emission (AIE) experiments provided further insights into intermolecular packing, and scanning electron microscopy (SEM) contributed to a better understanding of the morphology of the obtained polymers. These results highlight the potential of these polymers as thermally stable and conductive materials for biomedical and industrial applications. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

11 pages, 3775 KiB  
Article
Deformation Behavior of S32750 Duplex Stainless Steel Based on In Situ EBSD Technology
by Shun Bao, Han Feng, Zhigang Song, Jianguo He, Xiaohan Wu and Yang Gu
Materials 2025, 18(9), 2030; https://doi.org/10.3390/ma18092030 - 29 Apr 2025
Viewed by 126
Abstract
In this study, we investigated the two-phase hardening behavior and microstructural evolution of S32750 duplex stainless steel during the tensile deformation process. The analysis was conducted using in situ electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and microhardness testing. It was observed [...] Read more.
In this study, we investigated the two-phase hardening behavior and microstructural evolution of S32750 duplex stainless steel during the tensile deformation process. The analysis was conducted using in situ electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and microhardness testing. It was observed that strain transfer occurred between the two phases in the position away from the fracture. The ferrite phase exhibited softening, while the austenite phase underwent hardening. In the region less than 1 mm from the fracture site, both phases experienced a rapid hardening, with the maximum hardness difference between the two phases near the fracture reaching approximately 45 HV. In situ EBSD results indicate that the kernel average misorientation (KAM) value for the ferrite phase consistently exceeds that of the austenite phase during the initial stages of deformation. Conversely, in the final stages of deformation, the KAM value for austenite surpasses that of ferrite. In the initial stage of deformation, the type of grain boundaries in both phases remains largely unaltered. However, in the later stages of deformation, there is a marked increase in the number of small-angle grain boundaries within ferrite, which become approximately three times that of the large-angle grain boundaries. As deformation progresses, the maximum orientation distribution density of the ferrite phase is reduced by approximately 50%, with the preferred orientation shifting from the {100} plane to the {111} plane. In contrast, the orientation distribution of the austenite remains relatively uniform, with no significant change in the maximum orientation distribution density observed. This indicates that after substantial deformation, the rotation of ferrite grains significantly increases the deformation resistance, whereas the austenite phase continues to harden. This differential behavior leads to the continuous accumulation of strain at the phase boundaries, ultimately causing cracks to form at these boundaries and resulting in the sample’s fracture. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

18 pages, 8139 KiB  
Article
The Effect of Phenolic Acids on the Sorption and Wetting Properties of Apple Pectin-Based Packaging Films
by Magdalena Mikus and Sabina Galus
Molecules 2025, 30(9), 1960; https://doi.org/10.3390/molecules30091960 - 28 Apr 2025
Viewed by 106
Abstract
In this article, the effects of different phenolic acids, such as ferulic, gallic, caffeic, coumaric, protocatechuic, and sinapic, as active compounds on the sorption and wetting properties of apple pectin-based edible films were evaluated. The control pectin films and those with added phenolic [...] Read more.
In this article, the effects of different phenolic acids, such as ferulic, gallic, caffeic, coumaric, protocatechuic, and sinapic, as active compounds on the sorption and wetting properties of apple pectin-based edible films were evaluated. The control pectin films and those with added phenolic acids differed in appearance and physical properties. The water content of the films was reduced and ranged from 8.91 ± 0.01% to 13.44 ± 0.01% for films containing phenolic acids compared to the control films (14.31 ± 0.01%). The swelling index value of the films ranged from 86.63% for films with protocatechuic acid to 88.33% for films with the addition of caffeic acid. It was observed that the sorption isotherms had a similar shape for all the obtained films, while scanning electron microscopy (SEM) allowed for the observation of changes in the structure resulting from the film composition. It was shown that the lowest water contact angle values at the initial time (0 s) were observed for pectin films with ferulic acid (47.00° ± 4.47) and the highest for the control films (58.44° ± 5.62). After 60 s, the highest water contact angle value was recorded for the film with caffeic acid (66.39° ± 5.18) and the lowest for the film with ferulic acid (14.72° ± 5.70). Films containing gallic acid and protocatechuic acids showed the lowest water vapour permeability values among active films. The edible films developed in this study showed desirable features that could be used as bioactive packaging for food industry applications, both as protective edible coatings and active packaging films. Full article
Show Figures

Graphical abstract

12 pages, 1650 KiB  
Article
Effect of Citric Acid Concentration on the Transformation of Aragonite CaCO3 to Calcium Citrate Using Cockle Shells as a Green Calcium Source
by Pantita Chanwetprasat, Chaowared Seangarun, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Wimonmat Boonmee and Pesak Rungrojchaipon
Materials 2025, 18(9), 2003; https://doi.org/10.3390/ma18092003 - 28 Apr 2025
Viewed by 357
Abstract
Aragonite calcium carbonate (CaCO3), derived from cockle shell waste, was successfully used as a renewable calcium source to synthesize calcium citrate (CCT) using citric acid (C6H8O7). The three CCT products (CCT-2, CCT-3, and CCT-4) were [...] Read more.
Aragonite calcium carbonate (CaCO3), derived from cockle shell waste, was successfully used as a renewable calcium source to synthesize calcium citrate (CCT) using citric acid (C6H8O7). The three CCT products (CCT-2, CCT-3, and CCT-4) were prepared using three different acid concentrations: 2, 3, and 4 M. The physicochemical characteristics of the newly synthesized CCT were investigated. Fourier-transform infrared (FTIR) spectra revealed the vibrational modes of the citrate anionic group (C6H5O73−), which preliminarily confirmed the characteristics of CCT. However, X-ray diffraction (XRD) revealed that the concentration of citric acid altered the structural property and the chemical formula of the synthesized CCT. Employing 2 M citric acid, a pure tetra-hydrated phase (Ca3(C6H5O7)2·4H2O, earlandite mineral) was obtained. However, a mixture of hydrated (Ca3(C6H5O7)2·4H2O) and anhydrous (Ca3(C6H5O7)2) phases was precipitated when 3 and 4 M citric acid was used in the preparation process. The lower mass loss observed in the thermogravimetric analysis (TGA) of CCT-3 and CCT-4 compared to that of CCT-2 further confirmed that CCT-3 and CCT-4 were composed of hydrated and anhydrous CCTs. The synthesized CCT decomposed in four major processes: the first dehydration, the second dehydration, CaCO3 formation, and decarbonization, generating calcium oxide (CaO) as the final product. X-ray fluorescence (XRF) results showed that the CCT mainly consisted of CaO with a quantity of >98%. The scanning electron microscopic (SEM) image revealed the irregular plate-like CCT crystallites. The concentration of citric acid is a key factor that influences the productive parameters of CCT, including production yield, reaction time, and solubility. 2 M citric acid provided the optimal balance between productivity and cost-effectiveness, with the highest yield and soluble fraction and the lowest reaction time. The results suggest that the preparation of CCT from cockle shell waste can potentially replace the use of commercial calcite from mining, which is a limited and non-renewable resource. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

17 pages, 5850 KiB  
Article
Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China
by Yifan Zhang, Shaochun Yang, Yong Wang, Shilong Ma and Dongmou Huang
Processes 2025, 13(5), 1346; https://doi.org/10.3390/pr13051346 - 28 Apr 2025
Viewed by 147
Abstract
The low-permeability gravity-flow sandstone reservoirs in the Dongying Depression, China, contain substantial oil reserves, yet their development is constrained by complex pore structures. In this study, optical and scanning electron microscopy (SEM) observations were integrated with nuclear magnetic resonance (NMR) measurements to investigate [...] Read more.
The low-permeability gravity-flow sandstone reservoirs in the Dongying Depression, China, contain substantial oil reserves, yet their development is constrained by complex pore structures. In this study, optical and scanning electron microscopy (SEM) observations were integrated with nuclear magnetic resonance (NMR) measurements to investigate the pore system, pore size distribution, and connectivity of Es3z sandstone. By applying a Gaussian multi-peak fitting algorithm to the NMR T2 spectra, parameters that directly capture the physical attributes of the rocks were extracted. Based on the correlation between these parameters and permeability, three distinct pore structure types (A, B, and C) were identified. The results demonstrate the effectiveness of using these NMR T2 spectral parameters for quantitative pore structure characterization and classification, providing a robust framework for evaluating and predicting the quality of low-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 4677 KiB  
Article
Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking
by Hebat-Allah S. Tohamy
Gels 2025, 11(5), 329; https://doi.org/10.3390/gels11050329 - 28 Apr 2025
Viewed by 227
Abstract
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed [...] Read more.
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed the successful grafting of AMPS and incorporation of N-fullerenes, indicated by characteristic peaks and a shift in the N–H/O–H stretching frequency. Density Functional Theory (DFT) calculations revealed that the CMC–N-fullerene–AMPS hydrogel exhibited higher stability and a lower band gap energy (0.0871 eV) compared to the CMC–AMPS hydrogel, which means a high reactivity of CMC–N-fullerene–AMPS. The incorporation of N-fullerenes significantly enhanced the hydrogel’s antibacterial activity, demonstrating a 22 mm inhibition zone against E. coli and a 24 mm zone against S. aureus, suggesting potential for active food packaging applications. Critically, the hydrogel displayed a unique “turn-on” fluorescence response in the presence of bacteria, with distinct color changes observed upon interaction with E. coli (orange-red) and S. aureus (bright green). This fluorescence enhancement, coupled with the porous morphology observed via SEM (pore size 377–931 µm), suggests the potential of this hydrogel as a sensing platform for bacterial contamination within food packaging. These combined properties of enhanced antibacterial activity and a distinct, bacteria-induced fluorescence signal make the CMC–N-fullerene–AMPS hydrogel a promising candidate for developing intelligent food packaging materials capable of detecting bacterial spoilage. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Graphical abstract

16 pages, 3314 KiB  
Article
Fabrication and Characterization of Poly(hydroxybutyrate)- and Poly(caprolactone)-Based Active Biodegradable Films Incorporating Allyl Isothiocyanate
by Saliha Memis Karabuga, Perihan Kubra Akman and Fatih Tornuk
Polymers 2025, 17(9), 1189; https://doi.org/10.3390/polym17091189 - 27 Apr 2025
Viewed by 196
Abstract
In this study, in order to overcome the fragility and cost disadvantages of PHB-based films, PHB was blended with PCL. Additionally, allyl isothiocyanate (AITC) was incorporated as an active component. The resulting PHB, PCL, and PHB/PCL composite films with/without allyl isothiocyanate (AITC) prepared [...] Read more.
In this study, in order to overcome the fragility and cost disadvantages of PHB-based films, PHB was blended with PCL. Additionally, allyl isothiocyanate (AITC) was incorporated as an active component. The resulting PHB, PCL, and PHB/PCL composite films with/without allyl isothiocyanate (AITC) prepared via the casting method were analyzed for their physicochemical, thermal, mechanical, barrier, morphological properties and antimicrobial and antioxidant activities. While neat PHB films showed the highest tensile strength (TS) of 19.82 MPa and the lowest elongation at break (EB) of 1.13%, PHB/PCL blend films exhibited lower TS (15.34 MPa) and higher EB values (21.33%). AITC addition decreased TS significantly while showing no significant impact on EB. PHB/PCL blend films had the highest water vapor permeability (WVP) values, possibly due to their increased porosity, while neat PCL- and PHB-based films showed better oxygen and water vapor barrier properties, respectively. DSC analysis showed that PHB and PCL films had a crystalline phase, while in the case of PHB/PCL blend films, both polymers maintained their characteristic melting behaviors. The addition of AITC affected the thermal stability by increasing the melting temperature of the PHB films and decreasing the melting temperature of the PCL films. SEM analyses revealed that PHB and PHB-A films had a homogeneous structure, while irregular spherical structures and cracks were also observed in PCL and PCL-A films. The incorporation of AITC into the film samples (PHB-A, PCL-A, and PHB/PCL-A) brought remarkable antimicrobial (from 16.25 mm to 37.25 mm of inhibition zones) and antioxidant activity (from 281.85 to 286.41 mg trolox equivalent/1 g film sample, as measured by CUPRAC), while no activity was observed in the control films without AITC (PHB, PCL, and PHB/PCL). In conclusion, new AITC-activated PHB-, PCL-, and PHB/PCL-based films were successfully designated with additional functionalities and showed valuable potential to be used in active biodegradable food packaging applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 577 KiB  
Article
Interplay Among Classroom Environment, Grit, and Enjoyment in Shaping Feedback-Seeking Behavior in L2 Writing
by Wenqian Luan and Jianqiang Quan
Behav. Sci. 2025, 15(5), 584; https://doi.org/10.3390/bs15050584 - 27 Apr 2025
Viewed by 220
Abstract
The interplay among classroom environment, grit, and enjoyment in shaping the feedback-seeking behavior (FSB) of Chinese English as a Foreign Language (EFL) learners remains underexplored. This study investigates how the classroom psychological environment and L2 grit influence FSB, categorized as feedback monitoring (FM, [...] Read more.
The interplay among classroom environment, grit, and enjoyment in shaping the feedback-seeking behavior (FSB) of Chinese English as a Foreign Language (EFL) learners remains underexplored. This study investigates how the classroom psychological environment and L2 grit influence FSB, categorized as feedback monitoring (FM, the passive observation of feedback) and feedback inquiry (FI, proactive requests for clarification), in the context of L2 writing. This study also focuses on the mediating role of foreign language enjoyment (FLE) in this process. A mixed-methods design was utilized to study 612 Chinese junior secondary students aged 13–15 with over five years of formal English instruction. Structural equation modeling (SEM) revealed that perseverance of effort (POE) and consistency of interest (COI), as two dimensions of L2 grit, directly predicted FM (β = 0.19 and 0.27, respectively) but not FI. The classroom environment indirectly enhanced both FM (β = 0.05) and FI (β = 0.09) through FLE. Qualitative interviews highlighted cultural constraints: 83.3% of participants prioritized FM over FI due to face-saving norms, despite high grit levels (M = 3.61 on a 5-point scale), underscoring cultural barriers to proactive feedback-seeking in Chinese collectivist classrooms. These findings validate the tripartite framework of positive psychology in L2 learning and propose strategies to balance institutional support, grit cultivation, and cultural sensitivity in fostering adaptive FSB. Full article
Show Figures

Figure 1

25 pages, 4422 KiB  
Article
Green Synthesis of Zinc Oxide Nanoparticles with Psidium cattleianum Leaves Extracts as Reducing Agent: Influence of Extraction Method on Physicochemical and Biological Activities
by Christian Israel Padilla-Hernández, Jorge Manuel Silva-Jara, Martha Reyes-Becerril, Abril Fonseca-García, Luis Miguel Anaya-Esparza, Paulo Roberto Orozco-Sánchez, Juan José Rivera-Valdés, Mireille López-Orozco, Carlos Arnulfo Velázquez-Carriles and María Esther Macías-Rodríguez
Physchem 2025, 5(2), 17; https://doi.org/10.3390/physchem5020017 - 26 Apr 2025
Viewed by 706
Abstract
This work successfully synthesized green zinc oxide nanoparticles using extracts from strawberry guava leaves (Psidium cattleianum Sabine). Additionally, the reducing effect of the antioxidant extracts obtained through traditional techniques, such as infusion and maceration, was studied and compared against an emerging unconventional [...] Read more.
This work successfully synthesized green zinc oxide nanoparticles using extracts from strawberry guava leaves (Psidium cattleianum Sabine). Additionally, the reducing effect of the antioxidant extracts obtained through traditional techniques, such as infusion and maceration, was studied and compared against an emerging unconventional technology like ultrasound assisted extraction. Regarding the physical and chemical characteristics, it was found that all three systems were confined within a wavelength range of 357 to 370 nm (UV-vis) and sizes from 60 to 140 nm for the ultrasound-assisted nanoparticles (SEM), corroborated with DLS (134 ± 60 nm). Through X-ray diffraction, the hexagonal wurtzite structure was elucidated, and it was observed that ultrasound favored a higher percentage of crystallinity (98%) compared to the infusion (84%) and maceration (72%). This could be correlated with different functional groups via FTIR and with thermal events associated with thermogravimetric curves, where the total biomass weight loss was lower for nanoparticles using ultrasound extract (6.25%), followed by maceration (15.55%) and infusion (18.01%) extracts. Furthermore, these nanostructures were evaluated against clinically relevant pathogens, including Salmonella enteritidis, Staphylococcus aureus, Escherichia coli O157:H7, and Pseudomonas aeruginosa, assessing bacterial growth inhibition using the microdilution technique, and achieving inhibitions of 75%. Biofilm activity was evaluated through Congo red and crystal violet assays, where ultrasound-derived NPs proved to be good inhibitors for all pathogens. Finally, the toxicity of the nanoparticles was analyzed against peripheral blood leukocytes from goats as well as on the 3 T3-L1 cell line used in anti-obesity assays; the nanoparticles proved to be suitable in all concentrations reaching around 100% cell viability, positioning them as good candidates for diverse industrial applications that align with the principles of green chemistry towards a circular economy. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Figure 1

Back to TopTop